Food Carbohydrate Chemistry

Ronald E. Wrolstad

Food Carbohydrate Chemistry

The *IFT Press* series reflects the mission of the Institute of Food Technologists to advance the science of food contributing to healthier people everywhere. Developed in partnership with Wiley-Blackwell, *IFT Press* books serve as leading-edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, *IFT Press* publications represent the latest, most significant resources available to food scientists and related agriculture professionals worldwide. Founded in 1939, the Institute of Food Technologists is a nonprofit scientific society with 22,000 individual members working in food science, food technology, and related professions in industry, academia, and government. IFT serves as a conduit for multidisciplinary science thought leadership, championing the use of sound science across the food value chain through knowledge sharing, education, and advocacy.

IFT Press Advisory Group

Casimir C. Akoh Christopher J. Doona Florence Feeherry Jung Hoon Han David McDade Ruth M. Patrick Syed S.H. Rizvi Fereidoon Shahidi Christopher H. Sommers Yael Vodovotz Karen Nachay

IFT Press Editorial Board

Malcolm C. Bourne Dietrich Knorr Theodore P. Labuza Thomas J. Montville S. Suzanne Nielsen Martin R. Okos Michael W. Pariza Barbara J. Petersen David S. Reid Sam Saguy Herbert Stone Kenneth R. Swartzel

A John Wiley & Sons, Ltd., Publication

Food Carbohydrate Chemistry

Ronald E. Wrolstad

Distinguished Professor of Food Science Emeritus Oregon State University

A John Wiley & Sons, Ltd., Publication

This edition first published 2012 \odot 2012 by John Wiley & Sons, Inc. and Institute of Food Technologists

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

Registered office:	John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
Editorial offices:	2121 State Avenue, Ames, Iowa 50014-8300, USA The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 9600 Garsington Road, Oxford, OX4 2DQ, UK

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Blackwell Publishing, provided that the base fee is paid directly to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license by CCC, a separate system of payments has been arranged. The fee codes for users of the Transactional Reporting Service are ISBN-13: 978-0-8138-2665-3/2012.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Wrolstad, Ronald E., 1939–	
Food carbohydrate chemistry / Ronald E. Wrolsta p. cm. – (Institute of food technologists series ;	ad. – 1st ed. 48)
Includes bibliographical references and index.	
ISBN 978-0-8138-2665-3 (hardback)	
1. Carbohydrates. I. Title. QD321.W88 2012	
547'.78-dc23	2011036449
A catalogue record for this book is available from the	e British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Set in 9.5/12.5pt Palatino by Aptara® Inc., New Delhi, India

1 2012

Titles in the IFT Press series

- Accelerating New Food Product Design and Development (Jacqueline H. Beckley, Elizabeth J. Topp, M. Michele Foley, J.C. Huang, and Witoon Prinyawiwatkul)
- Advances in Dairy Ingredients (Geoffrey W. Smithers and Mary Ann Augustin)
- Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (Yoshinori Mine, Eunice Li–Chan, and Bo Jiang)
- *Biofilms in the Food Environment* (Hans P. Blaschek, Hua H. Wang, and Meredith E. Agle)
- Calorimetry in Food Processing: Analysis and Design of Food Systems (Gönül Kaletunç)
- Coffee: Emerging Health Effects and Disease Prevention (YiFang Chu)
- Food Carbohydrate Chemistry (Ronald E. Wrolstad)
- Food Ingredients for the Global Market (Yao–Wen Huang and Claire L. Kruger)
- Food Irradiation Research and Technology (Christopher H. Sommers and Xuetong Fan)
- Foodborne Pathogens in the Food Processing Environment: Sources, Detection and Control (Sadhana Ravishankar, Vijay K. Juneja, and Divya Jaroni)
- *High Pressure Processing of Foods* (Christopher J. Doona and Florence E. Feeherry)
- Hydrocolloids in Food Processing (Thomas R. Laaman)
- Improving Import Food Safety (Wayne C. Ellefson, Lorna Zach, and Darryl Sullivan)
- Innovative Food Processing Technologies: Advances in Multiphysics Simulation (Kai Knoerzer, Pablo Juliano, Peter Roupas, and Cornelis Versteeg)
- *Microbial Safety of Fresh Produce* (Xuetong Fan, Brendan A. Niemira, Christopher J. Doona, Florence E. Feeherry, and Robert B. Gravani)
- *Microbiology and Technology of Fermented Foods* (Robert W. Hutkins)
- Multiphysics Simulation of Emerging Food Processing Technologies (Kai Knoerzer, Pablo Juliano, Peter Roupas and Cornelis Versteeg)
- Multivariate and Probabilistic Analyses of Sensory Science Problems (Jean–François Meullenet, Rui Xiong, and Christopher J. Findlay
- Nanoscience and Nanotechnology in Food Systems (Hongda Chen)
- Natural Food Flavors and Colorants (Mathew Attokaran)
- *Nondestructive Testing of Food Quality* (Joseph Irudayaraj and Christoph Reh)
- Nondigestible Carbohydrates and Digestive Health (Teresa M. Paeschke and William R. Aimutis)
- Nonthermal Processing Technologies for Food (Howard Q. Zhang, Gustavo V. Barbosa– Cánovas, V.M. Balasubramaniam, C. Patrick Dunne, Daniel F. Farkas, and James T.C. Yuan)
- Nutraceuticals, Glycemic Health and Type 2 Diabetes (Vijai K. Pasupuleti and James W. Anderson)
- Organic Meat Production and Processing (Steven C. Ricke, Michael G. Johnson, and Corliss A. O'Bryan)
- Packaging for Nonthermal Processing of Food (Jung H. Han)
- Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Ross C. Beier, Suresh D. Pillai, and Timothy D. Phillips, Editors; Richard L. Ziprin, Associate Editor)
- Processing and Nutrition of Fats and Oils (Ernesto M. Hernandez and Afaf Kamal-Eldin)
- Processing Organic Foods for the Global Market (Gwendolyn V. Wyard, Anne Plotto, Jessica Walden, and Kathryn Schuett)
- Regulation of Functional Foods and Nutraceuticals: A Global Perspective (Clare M. Hasler)
- Resistant Starch: Sources, Applications and Health Benefits (Yong-Cheng Shi and Clodualdo Maningat)

- Sensory and Consumer Research in Food Product Design and Development (Howard R. Moskowitz, Jacqueline H. Beckley, and Anna V.A. Resurreccion)
- Sustainability in the Food Industry (Cheryl J. Baldwin)
- Thermal Processing of Foods: Control and Automation (K.P. Sandeep)
- Trait-Modified Oils in Foods (Frank T. Orthoefer and Gary R. List)
- Water Activity in Foods: Fundamentals and Applications (Gustavo V. Barbosa-Cánovas, Anthony J. Fontana Jr., Shelly J. Schmidt, and Theodore P. Labuza)
- Whey Processing, Functionality and Health Benefits (Charles I. Onwulata and Peter J. Huth)

Dedication

This book is dedicated to two special mentors, one being my Major Professor at the University of California, Davis, Dr. Walter G. Jennings. His concern for students and his enthusiasm for research and teaching continue to inspire. The second is the late Robert S. Shallenberger with whom I was fortunate to work while on sabbatical leave at Cornell University in 1979–1980. His influence on this book should be evident on nearly every page. I would also like to dedicate the book to the many undergraduate and graduate students, who through their suggestions, understanding, and misunderstanding helped me to revise, discard, and improve lecture presentations, homework assignments, demonstrations, and laboratory exercises. All of those items were a platform for this book.

Contents

Сс	ontributors	XV
Ac	cknowledgments	xvii
In	troduction	xix
1	Classifying, Identifying, Naming, and Drawing Sugars	
	and Sugar Derivatives	1
	Structure and Nomenclature of Monosaccharides	2
	Aldoses and Ketoses	2
	Configurations of Aldose Sugars	3
	D- vs. L-Sugars	3
	Different Ways of Depicting Sugar Structures	5
	Fischer, Haworth, Mills, and Conformational Structures	5
	Classifying Sugars by Compound Class—Hemiacetals,	
	Hemiketals, Acetals, and Ketals	7
	Structure and Nomenclature of Disacchaarides	8
	Structure and Optical Activity	10
	A Systematic Procedure for Determining Conformation	
	(C-1 or 1-C), Chiral Family (D or L), and Anomeric Form	
	$(\alpha \text{ or } \beta)$ of Sugar Pyranoid Ring Structures	13
	Structure and Nomenclature of Sugar Derivatives with	
	Relevance to Food Chemistry	14
	Glycols (Alditols)	14
	Glyconic, Glycuronic, and Glycaric Acids	15
	Deoxy Sugars	17
	Amino Sugars and Glycosyl Amines	17
	Glycosides	18
	Sugar Ethers and Sugar Esters	19
	Vocabulary	20
	References	21
2	Sugar Composition of Foods	23
	Introduction	23
	Sugar Content of Foods	24
	Composition of Sweeteners	24
	Cane and Beet Sugar	24

	Starch-Derived Sweeteners Inulin Syrup Sugar Composition of Fruits and Fruit Juices Vocabulary References	27 28 28 31
	Inulin Syrup Sugar Composition of Fruits and Fruit Juices Vocabulary References	28 28 31
	Sugar Composition of Fruits and Fruit Juices Vocabulary References	28 31
	Vocabulary References	31
	References	
	herefelices	31
3	Reactions of Sugars	35
	Introduction	35
	Mutarotation	35
	Oxidation of Sugars	39
	Glycoside Formation	40
	Acid Catalyzed Sugar Reactions	42
	Alkaline-Catalyzed Sugar Reactions	43
	Summary	45
	Vocabulary	47
	References	47
4	Browning Reactions	49
	Introduction	50
	Key Reactions in Maillard Browning	51
	Introductory Comments	51
	Sugar-Amino Condensation	51
	The Amadori and Heyn's Rearrangements	53
	Dehydration, Enolization, and Rearrangement	
	Reactions	54
	The Strecker Degradation	55
	Final Stages: Condensation and Polymerization	58
	An Alternate Free-Radical Mechanism for Nonenzymatic	
	Browning	58
	Measurement of Maillard Browning	59
	Control of Maillard Browning	60
	Introductory Comments	60
	Water Activity	60
	The Importance of pH	61
	Nature of Reactants	62
	Temperature	65
	Oxygen	68
	Chemical Inhibitors	68
	Other Browning Reactions	68
	Caramelization	68
	Ascorbic Acid Browning	69

	Enzymatic Browning	69
	Assessing Contributing Factors to Nonenzymatic	
	Browning	70
	Vocabulary	72
	References	72
5	Functional Properties of Sugars	77
	Introduction	77
	Taste Properties of Sugars	78
	The Shallenberger–Acree Theory for Sweetness Perception	80
	Sugar Solubility	83
	Crystallinity of Sugars	85
	Hygroscopicity	86
	Humectancy	87
	Viscosity	87
	Freezing Point Depression and Boiling Point Elevation	87
	Usmotic Effects	88
	Vocabulary	00
	Kelerences	00
6	Analytical Methods	91
	Introduction	91
	Physical Methods	92
	Refractometry	92
	Density	94
	Polarimetry	95
	Colorimetric Methods	95
	Total Sugars by Phenol-Sulfuric Acid	95
	Reducing Sugar Methods	96
	Chromatographic Methods	96
	Case Liquid Chromatography	90
	HPLC	100
	Enzymic Mothods	100
	Carbon Stable-Isotonic Ratio Analysis (SIRA)	102
	References	103
		101
7	Starch in Foods	107
	Introduction	108
	Sources of Starch	108
	Molecular Structure of Starch	109

	Starch Granules	112
	Gelatinization and Pasting: The Cooking of Starch	113
	Retrogradation and Gelation: The Cooling of Cooked Starch	115
	Monitoring Starch Transitions	118
	Microscopy	118
	Viscometric Methods	118
	Differential Scanning Calorimetry	119
	Starch Hydrolytic Enzymes	120
	α-Amylase	121
	β-Amylase	122
	Modified Starches	122
	Physical Modifications	123
	Chemical Modifications	125
	Resistant Starch	127
	Concluding Remarks	129
	Vocabulary	129
	References	131
8	Plant Cell Wall Polysaccharides	135
	Introduction: Why Plant Cell Walls are Important	135
	Cellulose	137
	Hemicelluloses	139
	Xyloglucans	139
	Heteroxylans	140
	$(1\rightarrow 3), (1\rightarrow 4)$ -β-D-Glucans	140
	Mannans	141
	Pectic Polysaccharides	141
	Interactions Between Polysaccharides and Cellulose	143
	The Plant Cell Wall Structure	144
	Vocabulary	145
	References	145
9	Nutritional Roles of Carbohydrates	147
	Introduction	147
	The Digestive Process: From the Bucchal Cavity through	
	the Small Intestine	148
	Absorption of Sugars	149
	Sugar Metabolism	152
	The Large Intestine and the Digestive Process	153
	The Colon	153
	Intestinal Microflora	153

Fate of Nonabsorbed Monosaccharides, Sugar	
Derivatives, and Oligosaccharides	155
Dietary Fiber	158
Carbohydrate Nutrition and Human Health	159
Vocabulary	162
References	163
Appendices	165
Unit 1. Laboratory/Homework Exercise—Building	
Molecular Models of Sugar Molecules	167
Unit 2. Homework Exercise—Recognizing Hemiacetal,	
Hemiketal, Acetal, and Ketal Functional Groups	171
Unit 3. Laboratory/Homework Exercise—Specification of	
Conformation (C-1 or 1-C), Chiral Family (D or L), and	
Anomeric Form (α or β) of Sugar Pyranoid Ring	
Structures	175
Unit 4. Demonstration of the Existence of Plane-Polarized	
Light and the Ability of Sugar Solutions to Rotate	
Plane-Polarized Light	181
Unit 5. Laboratory Exercise—Sugar Polarimetry	183
Unit 6. Laboratory Exercise or Lecture Demonstration-The	
Fehling's Test for Reducing Sugars	187
Unit 7. Laboratory Exercise—Student-Designed Maillard	
Browning Experiments	189
Unit 8. Laboratory Exercise or Lecture	
Demonstration—Microscopic Examination of Starch	193
Unit 9. Names and Structures of Oligosaccharides	197
Index	211

Contributors

Chapter 7

Andrew S. Ross

Department of Crop and Soil Science/Department of Food Science and Technology Oregon State University Corvallis, Oregon

Chapter 8

Bronwen G. Smith and Laurence D. Melton Food Science Programme The University of Auckland Auckland, New Zealand

Acknowledgments

A sincere thanks to Andrew Ross, who authored Chapter 7, and to Laurence Melton and Bronwen Smith for Chapter 8. Thanks also to Dan Smith for his insightful reviewing and to Carole Jubert, who came to the rescue of this novice in ChemDrawTM and prepared the chemical structures and figures.

Introduction

Carbohydrates are major components of foods, accounting for more than 90% of the dry matter of fruits and vegetables and providing for 70-80% of human caloric intake worldwide (BeMiller and Huber 2008). Thus, from a quantitative perspective alone, carbohydrates warrant the attention of food chemists. From the standpoint of food quality, carbohydrates are multifunctional. Sugars are the major source, as well as our reference point, for sweetness. Although carbohydrates are described as being odorless, the volatile reaction products from the Maillard reaction, Strecker degradation, and carmelization reactions can provide desirable, undesirable, or neutral flavor compounds. And, although carbohydrates are colorless, sugars participate in Maillard and carmelization reactions to produce desirable and undesirable brown colors. Cellulose, hemicellulose, pectin, and starch are the structural components of plants that are largely responsible for the textural characteristics of fruits and vegetables. Starch and starch derivatives and various hydrocolloids isolated from plants, seaweed, and microbial sources are used as thickeners, gelling agents, bodying agents, and stabilizers in foods. When it comes to nutrition, a sizable portion of the lay public view carbohydrates in a bad light. Carbohydrates are often blamed for health issues such as obesity, diabetes, and dental caries. It should be realized that carbohydrates are, or should be, the principal source of energy in our diet. After all, we evolved as a species to efficiently use carbohydrates that can be converted to glucose for our body's fuel. Good nutrition is based on the consumption of the appropriate carbohydrates in the right amounts in balance with other nutrients. It is widely accepted that consumption of various forms of complex carbohydrate can reduce the risk of diabetes, coronary heart disease, diverticulitus, and colon cancer. For peak athletic performance, the advice of professional nutritionists will emphasize consumption of the appropriate carbohydrates, in the appropriate amounts, at the appropriate time. Although the percentage of carbohydrates contributing to caloric intake in the United States is highly variable, the average is considerably less than 70%. Dietary recommendations call for increased consumption of fruits and vegetables and a greater proportion of complex carbohydrate (Walker and Reamy 2009; WHO 2010).

The major thrust of this book is to apply basic carbohydrate chemistry to the quality attributes and functional properties of foods. Structure and nomenclature of sugars and sugar derivatives is covered but limited to those compounds that exist naturally in foods or are used as food additives and food ingredients. Review and presentation of fundamental carbohydrate chemistry is minimized, with the assumption that readers have taken general organic chemistry and general biochemistry and have ready access to those books for reference. Chemical reactions focus on those that have an impact on food quality and occur under processing and storage conditions. How chemical and physical properties of sugars and polysaccharides affect the functional properties of foods is emphasized. Taste properties and nonenzymic browning reactions are covered. The nutritional roles of carbohydrates are covered from a food chemist's perspective. One chapter describes selected carbohydrate analytical methods, emphasizing the basic principles of the methods and their advantages and limitations. There is an extensive appendix that includes some laboratory and classroom exercises and lecture demonstrations.

References

- BeMiller JM, Huber KC. 2008. Carbohydrates. In: Damodaran S, Parkin KL, Fennema OR, editors. *Fennema's Food Chemistry*, 4th ed. Boca Raton, FL: CRC Press, Taylor & Francis, pp. 83–154.
- Walker C, Reamy BV. 2009. Diets for cardiovascular disease prevention: what is the evidence? *Am Fam Physician* 79:571–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19378874. Accessed September 2, 2010.
- WHO 2010. Global strategy on diet, physical activity and health. Available from: http://www.who.int/dietphysicalactivity/diet/en/index.html. Accessed September 2, 2010.

Classifying, Identifying, Naming, and Drawing Sugars and Sugar Derivatives

Structure and Nomenclature of Monosaccharides	2
Aldoses and Ketoses	2
Configurations of Aldose Sugars	3
D- vs. L-Sugars	3
Different Ways of Depicting Sugar Structures	5
Fischer, Haworth, Mills, and Conformational Structures	5
Classifying Sugars by Compound Class—Hemiacetals,	
Hemiketals, Acetals, and Ketals	7
Structure and Nomenclature of Disacchaarides	8
Structure and Optical Activity	10
A Systematic Procedure for Determining Conformation	
(C-1 or 1-C), Chiral Family (D or L), and Anomeric Form	
$(\alpha \text{ or } \beta)$ of Sugar Pyranoid Ring Structures	13
Structure and Nomenclature of Sugar Derivatives with	
Relevance to Food Chemistry	14
Glycols (Alditols)	14
Glyconic, Glycuronic, and Glycaric Acids	15
Deoxy Sugars	17
Amino Sugars and Glycosyl Amines	17
Glycosides	18
Sugar Ethers and Sugar Esters	19
Vocabulary	20
References	21

Food Carbohydrate Chemistry, First Edition. Ronald E. Wrolstad.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

Structure and Nomenclature of Monosaccharides

Sugars are polyhydroxycarbonyls that occur in single or multiple units as monosaccharides, disaccharides, trisaccharides, tetrasaccharides, or oligosacharides (typically three to ten sugar units). Monosaccharides (also known as simple sugars) exist as aldoses or ketoses, with glucose and fructose being the most common examples. **Glycose** is a generic term for sugars. Sugars are also classified according to the number of carbon atoms in the molecule (e.g., trioses, tetroses, pentoses, hexoses, heptoses, etc.).

Aldoses and Ketoses

Aldoses contain an aldehyde functional group at carbon-1 (C-1), whereas ketoses contain a carbonyl group that is almost always located at carbon-2 (C-2). C-1 for aldoses and C-2 for ketoses are the reactive centers for these molecules and are known as the **anomeric carbon atoms**. Figure 1.1 shows the structure for D-glucose, D-fructose, and, in addition, D-arabinose. Sugars have common or trivial names with historical origins from chemistry, medicine, and industry. There is also a systematic procedure for naming sugars (some examples are shown in Table 1.1). Glucose is also commonly known as dextrose. In systematic nomenclature, its suffix is hexose, indicating a 6-carbon aldose sugar, and the prefix is *gluco-*, which shows the orientation of the hydroxyl groups around carbons 2–5. The symbol D refers to the orientation of the hydroxyl group on C-5, the

Figure 1.1 Structure and nomenclature of glucose, fructose, and arabinose.

Trivial (or Common)	Systematic ^a
D-Erythrose	D- <i>erythro</i> -tetrose
D-Threose	D-threo-tetrose
D-Arabinose	D-arabino-pentose
D-Lyxose	D-lyxo-pentose
D-Ribose	D-ribo-pentose
D-Xylose	D-xylo-pentose
D-Allose	D-allo-hexose
D-Altrose	D-altro-hexose
D-Galactose	D-galacto-hexose
D-Glucose	D-gluco-hexose
D-Gulose	D-gulo-hexose
D-Idose	D- <i>ido</i> -hexose
D-Mannose	D-manno-hexose
D-Talose	D-talo-hexose

Table 1.1 Trivial and Systematic Names of Selected Sugars

^aIn the systematic name, the configurational prefix is italicized, and the stem name indicates the number of carbon atoms in the molecule.

highest numbered asymmetric carbon atom, also known as the **reference carbon atom**. Since fructose (also known as levulose) has just three asymmetric carbon atoms, its configurational prefix is the same as that for the pentose sugar arabinose. Thus, the systematic name for glucose is D-*gluco*-hexose and fructose is D-*arabino*-hexulose.

Configurations of Aldose Sugars

Figure 1.2 shows all possible configurations around the asymmetric carbon atoms for the triose, tetrose, pentose, and hexose D-aldose sugars. **Diastereoisomers** are molecular isomers that differ in configuration about one or more asymmetric carbon atoms; there are eight hexose diastereoisomers. **Epimer** is yet another term in sugar chemistry that refers to diastereoisomers that differ in configuration about only one asymmetric carbon atom (e.g., D-galactose is the 4-epimer of D-glucose). The term has historical significance because the melting point of dinitrophenylhydrazone derivatives was a classical procedure used in identifying sugars. The 2-epimers (e.g., glucose and mannose, allose and altrose, etc.) gave identical dinitrophenylhydrazone derivatives.

D- vs. L-Sugars

L-sugars are the mirror images of D-sugars. Figure 1.3 depicts the structures of D- and L-glucose in the Fischer and conformational projections. (Note: When drawing an L-sugar, the orientation of the hydroxyl groups