
Heating Services in Buildings David E. Watkins

WILEY-BLACKWELL

Heating Services in Buildings

Heating Services in Buildings Design, Installation, Commissioning & Maintenance

David E. Watkins

I Eng, FCIPHE, FSoPHE, MASHRAE, AffCIBSE, MIfL RP

A John Wiley & Sons, Ltd., Publication

This edition first published 2011 © 2011 by John Wiley & Sons.

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 2121 State Avenue, Ames, Iowa 50014-8300, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Watkins, David E. Heating services in buildings : design, installation, commissioning & maintenance / by David E Watkins. p. cm. Includes bibliographical references and index. ISBN 978-0-470-65603-7 (pbk. : alk. paper) 1. Heating. I. Title. TH7121.W37 2011 697–dc22 2010051098

A catalogue record for this book is available from the British Library.

This book is published in the following electronic formats: ePDF 9781119971658; ePub 9781119971665; Mobi 9781119971672

Set in 10 on 12 pt Minion by Toppan Best-set Premedia Limited

1 2011

Contents

Preface		xvii
1	Introduction to Heating Services	1
2	Wet Heating Systems	5
	Temperature and pressure	6
	Circulation	7
	Piping distribution arrangement	8
	One or single pipe system	8
	Two pipe system	15
	Micro bore piping system	17
	Two pipe radial system	22
	Hybrid (mixed) systems	26
	Open vented heating systems	26
	Feed and expansion (F&E) cistern	28
	Open vent pipe and cold feed and expansion pipe	30
	Introduction to and history of sealed heating systems	34
	Sealed heating systems	36
	Expansion vessels	40
	Air separation	42
	System charging	45
	Sizing the expansion vessel	50
	Gravity circulation heating systems	53
	Explanation of gravity circulation	53
3	Materials	55
	Piping materials for heating applications	55
	Light gauge copper tube	56
	Current European British Standard – copper tube	58
	Coated copper tube	59
	Forming bends in copper tube	59
	Jointing copper tube	59
	Proprietary made pipe fittings	59
	Mechanical compression type fittings	60
	Capillary type fittings	61
	Flame-free joints	64
	Push fit ring seal joints	65
	Crimped or pressed copper joints	66
	Stainless steel tube	67

Stainless steel identification	68
Light gauge stainless steel tube	69
Steel pipe	71
Low carbon mild steel tube	71
Forming bends in steel tube	73
Joints for low carbon mild steel tube	73
Mechanical type joints for steel tube	73
Malleable iron	74
Plastics	75
Cross-linked polyethylene (PEX)	76
Polybutylene (PB)	77
Jointing PEX and PB tubes	77
Valves	78
Stopcock pattern stopvalve	79
Gatevalves	79
Butterfly valves	81
Diaphragm valve	82
Plug valves and cocks	83
Non-return and check valves	84
Non-return valves	85
Check valves	85
Double check valve	86
Non-verifiable disconnector valve	87
Reduced pressure zone (RPZ) valve	88
Vacuum breaking valve	90
Floatvalves	90
Globe valves	94
Heat and Heat Transfer	97
Heat	97
Temperature	98
Specific heat capacity	100
Latent heat	101
Sensible heat	101
Heat transfer	102
Conduction	102
Convection	104
Radiation	105
Humidity	106
Heat Emitters	108
Pressed steel panel radiators	109
Convector radiator	109
Low surface temperature (LST) radiators	111
Cast iron panel radiators	112
Column radiators	113
Aluminium radiators	115
Natural convectors	110
	110

	Floor trench convector	119
	Fan, or forced convectors	120
	Skirting heating	121
	Radiant panels	124
	Embedded radiant panels	126
	Radiator fixing and shelves	126
	Examples of convection staining	127
	Radiator enclosures	129
	Radiator connections	129
	Room height effect	130
	Location of heat emitters	131
	Radiator accessories	137
	Designer radiators and towel rails	139
6	Underfloor Heating	140
	Operating principles	141
	UFH piping materials	142
	Piping arrangements	145
	Transiting pipework	147
	Floor structures and finishes	148
	Floor finishes	155
	Assessment of floor heat emission	155
	Underfloor heating components	159
	UFH water temperature control	160
	System testing and commissioning	163
7	Heat Requirements of Buildings	165
	Internal design temperatures	166
	External temperature (base design temperature)	167
	Thermal properties of buildings	169
	'U' values (thermal transmittance coefficient)	170
	Air infiltration	171
	Heat gains	177
	Building time-lag	178
	Heat loss calculations	179
	Worked engineering heat loss calculation	180
	Explanation of example calculation	180
	Boiler sizing	190
	Cube x number method	193
8	Heat Emitter Selection and Sizing	194
	Maan watan tammanatuna and dalta t	104
	Mean water temperature and delta t	196
	Condensing boiler systems mode	198
	Condensing boiler systems mode Correction factors	198 199
	Condensing boiler systems mode Correction factors Example of correction factor use	198 199 200
	Condensing boiler systems mode Correction factors	198 199

Flow of heat in pipes206Velocity208Velocity209Index pipe circuit211Pipe sizing trace212Simpler pipe sizing example222Boiler bypass flow allowance222Approximation of pipe sizes222Other piping arrangements22410Electricity227Definitions of electrical terms227Electricid generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions233Consumer unit233Consumer unit234Spur points235Lighting radial circuits237Earthing237In Controls, Components and Control Systems242System safety relief valves243Soure more static controlling pump247Room thermostats239IIControls for safety242System safety relief valves250Controls for safety242System safety relief valves250Temperature sensing valve250Mixing convectors and radiators250Temperature sensing valve255Motorised valve255Motorised valve255Motorised valve255Motorised valve255Motorised valve255Shared flow by three-way motorised valve255Shared flow by three-way motorised valve255Shared flow by thr	9	Pipe Sizing	206
Frictional resistance209Index pipe circuit211Pipe sizing procedure212Simpler pipe sizing procedure212Boiler bypass flow allowance222Approximation of pipe sizes222Other piping arrangements22410Electricity227Definitions of electricity urrents227Definitions of electricit terms227Definitions of electricit terms228Direct current (DC)231Cable identification colours232Voltage definitions233Consumer unit233Consumer unit233Spur points236Lighting radial circuits237Earthing237Earthing237Earthing237Earthing237Earthing237Earthing237Earthing237Earthing237Earthing237Earthing238Controls for safety242System safety relief valves248Room thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Current control by two-port motorised valve255Zone control by two-port motorised valve255Shared flow by three-way motorised valve255 <td></td> <td>Flow of heat in pipes</td> <td>206</td>		Flow of heat in pipes	206
Index pipe circuit211Pipe sizing data211Pipe sizing procedure212Simpler pipe sizing example222Boiler bypass flow allowance222Approximation of pipe sizes222Other piping arrangements22410Electricity226History and nature of electricity227Definitions of electrical terms227Electrical generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions233Consumer unit233Ring circuits234Spurp points236Lighting radial circuits237Immersion heater wiring237Immersion heater wiring237Earthing23911Controls for safety242System safety relief valves243Controls for safety242System safety relief valves243Controls for safety244Moon thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Temperature sensing valve255Zone control by two-port motorised valve255Zone control by two-port motorised valve255Selective diverter control by three-way motorised valve255Shared flow by three-way motorised valve255Shared flow by three-way motorised valve255Vin-pump control schemes266W		Velocity	208
Pipe sizing procedure211Pipe sizing procedure212Simpler pipe sizing procedure222Boiler bypass flow allowance222Approximation of pipe sizes222Other piping arrangements22410Electricity226History and nature of electricity227Definitions of electrical terms227Electrical generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions233Building wiring circuits233Consumer unit233Ring circuits233Suilding wiring circuits233Controls for safety242System safety relief valves243Controls for safety242System safety relief valves243Controls for safety244System safety relief valves243Controls for safety244System of thermostat controlling pump247Room thermostat location249Mising convectors and radiators250Temperature sensing valve255Zone control by two-port motorised valve255Solective diverter control by three-way motorised valve255Shared flow by three-way motorised valve255Shared flow by three-way motorised valve256Wireless controls266Wireless controls266Wireless controls266Wireless controls266Wireless c		Frictional resistance	209
Pipe sizing procedure212Simpler pipe sizing example222Boiler bypas flow allowance222Approximation of pipe sizes222Other piping arrangements22410Electricity226History and nature of electricity227Definitions of electrical terms227Electrical generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions232Voltage definitions233Consumer unit233Ring circuits234Spur points235Lighting radial circuits237Immersion heater wiring237Earthing23911Controls for safety242System safety relief valves242System safety relief valves242System of thermostat control Systems242Mixing convectors and radiators230Temperature sensing valve250Mixing convectors and radiators250Temperature sensing valve255Motorised valves255Selective diverter control by three-way motorised valve255Motorised valves255Selective diverter control by three-way motorised valve255Motorised valves255Selective diverter control by three-way motorised valve256Weather compensating control system262Wireless controls260Wireless controls260		Index pipe circuit	211
Simpler pipe sizing example222Boiler bypass flow allowance222Approximation of pipe sizes222Other piping arrangements22410Electricity226History and nature of electricity227Definitions of electrical terms227Electricial generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions233Building wiring circuits233Consumer unit233Ring circuits234Spur points235Lighting radial circuits237Immersion heater wiring237Earthing23911Controls, Components and Control Systems242System safety relief valves243Scontrols for safety244System of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority255Zontrol schemes255Zontrol schemes255Zontrol schemes255Motorised valve255Motorised valve255Selective diverter control by three-way motorised valve255Shared flow by three-way motorised valve256Wireless controls260Wireless controls260Wireless controls260Wireless controls260 <td></td> <td>Pipe sizing data</td> <td>211</td>		Pipe sizing data	211
Boiler bypass flow allowance222 Approximation of pipe sizes222 Clear piping arrangements222Other piping arrangements22410Electricity226History and nature of electricity227Definitions of electrical terms227Electricial generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions233Gonsumer unit233Ring circuits233Consumer unit236Lighting radial circuits237Immersion heater wiring237Immersion heater wiring237Earthing23911Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostat arranged for domestic hot water priority255Motorised valves258Selective diverter control by three-way motorised valve255Motorised valves258Selective diverter control by three-way motorised valve261Weather compensating control system262Wireless controls276Wireless controls schemes266 </td <td></td> <td>Pipe sizing procedure</td> <td>212</td>		Pipe sizing procedure	212
Approximation of pipe sizes222Other piping arrangements22410Electricity226History and nature of electricity227Definitions of electrical terms227Electrical generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions233Consumer unit233Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Earthing237Earthing237Immersion heater wiring237Earthing238Controls for safety242System safety relief valves243Controls for safety242System of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Zoined three-way motorised valve255Motorised valves258Selective diverter control by three-way motorised valve258Selective diverter control system262Wireless controls270Thirnenostati forst protection271		Simpler pipe sizing example	222
Other piping arrangements22410Electricity226History and nature of electricity227Definitions of electrical terms227Electrical generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions233Consumer unit233Consumer unit233Ring circuits234Spur points235Lighting radial circuits236Lighting radial circuits237Earthing237Earthing237Immersion heater wiring237Earthing23911Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostat255Motorised valves258Selective diverter control by three-way motorised valve258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection270Thermostatic ficts protection2		Boiler bypass flow allowance	222
10Electricity226History and nature of electricity227Definitions of electrical terms227Definitions of electrical terms227Electrical generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions233Building wiring circuits233Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing23911Controls for safety242System safety relief valves243Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Rasic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat diators255Motorised valves255Motorised valves258Selective diverter control by three-way motorised valve255Motorised valves258Selective diverter control system262Twin-pump control system262Twin-pump control system262Twin-pump control system262Twin-pump control system262Trimerson terms264Wotrised valves258Se		Approximation of pipe sizes	222
History and nature of electricity227Definitions of electrical terms227Electrical generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions232Building wiring circuits233Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing23911Controls, Components and Control Systems242Controls for safety242System of thermostat controlling pump247Room thermostats248Room thermostat controlling pump247Room thermostat arranged for domestic hot water priority233Cylinder thermostat arranged for domestic hot water priority235Zontrol schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve258Selective diverter control by three-way motorised valve262Wireless controls266Wireless controls260Wireless controls </td <td></td> <td>Other piping arrangements</td> <td>224</td>		Other piping arrangements	224
Definitions of electrical terms227Electrical generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions233Building wiring circuits233Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing23911Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostats255Motorised valves255Motorised valves255Motorised valves255Motorised valves255Motorised valves255Motorised valves258Selective diverter control by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wirelses controls270Thermostatic frost protection270Thermostatic frost protection270	10	Electricity	226
Electrical generation, supply and distribution228Direct current (DC)231Cable identification colours232Voltage definitions232Building wiring circuits233Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing239Controls for safety242System safety relief valves243Controls for safety247Basic system of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostats255Zone control schemes255Motorised valves258Selective diverter control by three-way motorised valve258Selective diverter control by three-way motorised valve258Wather compensating control system262Twin-pump control schemes256Win-pump control schemes266Wirelses controls270Thermostatic forst protection270Thermostati for spretection270		History and nature of electricity	227
Direct current (DC)231Cable identification colours232Voltage definitions233Building wiring circuits233Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing23911Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Room thermostat controlling pump247Room thermostat location249Mixing convectors and radiators230Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats255Zone control by two-port motorised valve255Zone control by three-way motorised valve255Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostati frost protection271		Definitions of electrical terms	227
Cable identification colours232Voltage definitions232Building wiring circuits233Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing23911Controls for safety242System safety relief valves243Controls for safety244System of thermostat controlling pump247Basic system of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostat254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve259Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Electrical generation, supply and distribution	228
Voltage definitions232Building wiring circuits233Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing23911Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat255Zone control by two-port motorised valve255Motorised valves255Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve259Shared flow by three-way motorised valve259Weather compensating control system262Twin-pump control schemes262Win-pump control schemes262Twin-pump control system262Twin-pump control schemes262Twin-pump control schemes262Twin-pump control system262Thermostatic frost protection271		Direct current (DC)	231
Building wiring circuits233Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing23911Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostats254Current control schemes255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve260Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Cable identification colours	232
Consumer unit233Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing23911Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostat248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostats255Zone control by two-port motorised valve255Motorised valves255Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve250Weather compensating control system260Wireless controls270Thirn-pump control schemes266Wireless controls270Thermostatic frost protection271		Voltage definitions	232
Ring circuits234Spur points236Lighting radial circuits237Immersion heater wiring237Earthing237 11 Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostat location249Mixing convectors and radiators250Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats245Motorised valves255Motorised valves255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve259Weather compensating control system260Twin-pump control schemes256Twin-pump control schemes257Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Building wiring circuits	233
Spur points236Lighting radial circuits237Immersion heater wiring237Earthing23911Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostats255Zone control by two-port motorised valve255Motorised valves255Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve251Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Consumer unit	233
Lighting radial circuits237Immersion heater wiring237Earthing23911Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Ring circuits	234
Immersion heater wiring237 Earthing11Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve258Selective diverter control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Spur points	236
Earthing23911Controls, Components and Control Systems242Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Lighting radial circuits	237
11Controls, Components and Control Systems242Controls for safety243System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Immersion heater wiring	237
Controls for safety242System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Earthing	239
System safety relief valves243Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes260Wireless controls270Thermostatic frost protection271	11	Controls, Components and Control Systems	242
Controls for comfort and energy efficiency247Basic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes260Wireless controls270Thermostatic frost protection271		Controls for safety	242
Basic system of thermostat controlling pump247Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		System safety relief valves	243
Room thermostats248Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes270Chermostatic frost protection271		Controls for comfort and energy efficiency	247
Room thermostat location249Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes270Thermostatic frost protection271		Basic system of thermostat controlling pump	247
Mixing convectors and radiators250Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Room thermostats	248
Temperature sensing valve251Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Room thermostat location	249
Cylinder thermostat arranged for domestic hot water priority253Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Mixing convectors and radiators	250
Cylinder thermostats254Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Temperature sensing valve	251
Current control schemes255Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Cylinder thermostat arranged for domestic hot water priority	253
Zone control by two-port motorised valve255Motorised valves258Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Cylinder thermostats	254
Motorised values258Selective diverter control by three-way motorised value259Shared flow by three-way motorised value261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Current control schemes	255
Selective diverter control by three-way motorised valve259Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Zone control by two-port motorised valve	255
Shared flow by three-way motorised valve261Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Motorised valves	258
Weather compensating control system262Twin-pump control schemes266Wireless controls270Thermostatic frost protection271		Selective diverter control by three-way motorised valve	259
Twin-pump control schemes266Wireless controls270Thermostatic frost protection271			261
Wireless controls270Thermostatic frost protection271		Weather compensating control system	262
Thermostatic frost protection 271		Twin-pump control schemes	266
-		Wireless controls	270
Automatic space temperature reduction 272		Thermostatic frost protection	271
		Automatic space temperature reduction	272

	Automatic bypass valve Thermostatic radiator valves (TRVs)	273 275
12	Oil Firing	278
	Oil	278
	Oil burner fuels	279
	Explanation of characteristics	281
	Oil storage	284
	Oil storage tanks	285
	Bunded oil catchment areas	290
	Storage tank location	291
	Oil handling and distribution	293
	Oil fire valve	298
	Domestic oil fired heating fire valves	301
	Oil filters and strainers	302
	Oil line pipe sizing	304
	Oil pre-heating	304
	Central oil storage Oil burners	304
	Pressure jet oil burner	306 308
	Rotary cup burner	308
	Rotary vaporising oil burners	312
	Rotary vaporising Dynaflame burner	312
	Constant level control unit	313
13	Natural Gas Firing	316
	Gas	316
	Natural gas	317
	Odour	317
	Toxicity	318
	Calorific value	318
	Relative density	318
	Combustion air	319
	Wobbe number	319
	Burning velocity	319
	Gas modulus	320
	Supply pressure	320
	Other gases	320
	Gas supply and distribution Gas meters	322
	Gas meters	
		323
	Meter compartment	326
	Meter compartment Gas boosting	326 327
	Meter compartment Gas boosting Gas supply pipework	326 327 327
	Meter compartment Gas boosting Gas supply pipework Domestic pipe sizing	326 327 327 328
	Meter compartment Gas boosting Gas supply pipework Domestic pipe sizing Flow of gas in pipes	326 327 327 328 330
	Meter compartment Gas boosting Gas supply pipework Domestic pipe sizing Flow of gas in pipes Gas burners	326 327 327 328 330 330
	Meter compartment Gas boosting Gas supply pipework Domestic pipe sizing Flow of gas in pipes	326 327 327 328 330

	Thermocouple assembly	333
	Boiler thermostat and main gas solenoid control valve	334
	Main burner gas pressure governor/regulator	336
	Multifunctional gas control valve	337
	Ignition methods	339
	Fan-assisted natural draught burners	340
	Forced draught gas burner	341
	Pulse combustion furnace	343
1	4 Liquefied Petroleum Gas Firing (LPG)	345
	Properties of liquefied petroleum gas	346
	Explanation of properties	346
	Liquefied petroleum gas storage	349
	Cylinder installations	349
	Bulk LPG storage installation	351
	Static electricity	353
	Fire protection	353
	LPG storage location	353
	LPG distribution systems	354
	Distribution piping materials	354
	LPG gas burners	355
1	5 Alternative Fuels and Energy	356
	Wood burning	357
	Electrical energy	358
	Electric heat generators	360
	New alternative fuels, energies and systems	361
	Solar heating	362
	Combined heat and power (CHP)	362
	Micro-combined heat and power	364
	Biofuels	366
	Biomass	366
	Biomass boilers	367
	Bio-oil	369
	Biogas	370
	Heat pumps	370
	Heat pump refrigerant	372
	Heat pump types and applications Air source	372 373
	Air-to-air heat pumps	373
	Air-to-water heat pumps	374
	Water source	375
	Water-to-air and water-to-water heat pumps	377
	Ground source heat pumps	378
	Solar energy heat pumps	381
	Coefficient of performance (COP)	381
	Heat recovery	382
		001

444

16	Combustion, Flues and Chimneys	383
	Air	383
	Combustion and combustion reaction	384
	Incomplete combustion	388
	Carbon monoxide (CO)	389
	Effects of carbon monoxide poisoning	390
	Carbon monoxide detectors	391
	Incorrect burner pressures	391
	Flame impingement	392
	Product of combustion standards	392
	Nitrogen oxide	392
	NOx	393
	Flues and chimneys	393
	Design performance factors	394
	Draught	394
	Combustion and ventilation air	394
	Temperature differential	397
	Flue or chimney height	397
	Combustion stack effect	397
	Adverse performance factors	397
	Flue and chimney terminations and terminals	400
	Draught diverters, breaks and stabilisers	404
	Thermal inversion	407
	Flue principles, construction and materials	408
	Use and lining of existing masonry chimneys	410
	Balanced flues	412
	Room sealed appliances	413
	Balanced flue terminations	415
	Flue boosting	418
	Flues for high-rise buildings	419
	Se-duct and 'U' duct flue systems	422
	Flue dilution	425
	Assessment of conventional flue pipe sizes	426
	Condensation within flues	429
	Psychrometrics	430
	Condensing boilers	430
	SEDBUK	431
	Development of condensing boilers	432
	Condensing heating systems	434
	Pluming	437
	Condensate drain	438
	Boiler efficiency	441
17	Combustion Efficiency Testing	442
	Burner efficiency	442
	Combustion efficiency testing	443

Combustion efficiency testing Flue gas temperature

Dew point temperature	446
Carbon dioxide (CO ₂) content	446
Smoke test	449
Flue draught test	452
Nitrogen oxides (NOx)	453
Electronic flue gas analysers	453

18 Circulating Pumps

454

482

Centrifugal action	455
Centrifugal pumps	456
Circulating pumps	456
Domestic inline circulators	458
Pump selection	458
Fixed or variable performance pumps	460
Pump effects	461
Pump position	463
Circulating pumps for sealed heating systems	465
Cavitation	466
Effects of cavitation	468
Pump arrangements	468
Electric motors	472
Index of protection (IP rating)	473
Methods of starting electric motors	474
Ancillary equipment for pumps	476
Noise and vibration	480

19 Domestic Hot Water

482 Choice of domestic hot water system Assessment of domestic hot water storage 483 483 Recovery time Domestic hot water temperature 485 Domestic hot water storage vessels 486 Direct domestic hot water systems 487 Indirect domestic hot water systems 487 Single feed indirect domestic hot water systems 491 Unvented domestic hot water 493 Principles of unvented domestic hot water storage systems 495 Discharge pipes from safety devices 498 Summary of controls for UVDHWSS 501 Unvented domestic hot water storage vessel with internal expansion chamber 501 Non-storage unvented domestic hot water systems 502 Domestic hot water cylinder with twin heat exchangers 503 Stratification 504 Boiler loading/electrical power for domestic hot water 507 Electric immersion heaters 508 Combination boilers for heating and domestic hot water 510

20	Solar Energy for Water Heating	513
	Solar energy	513
	Solar radiation intensity	517
	Solar thermal systems	517
	Solar thermal energy for space heating	519
	Solar thermal energy for heating swimming pools	520
	Solar energy heat source for heat pumps	521
	Solar thermal energy for raising domestic hot water temperature	522
	Direct solar domestic hot water systems	523
	Indirect solar domestic hot water systems	525
	Solar heated thermal store	525
	Frost protection	527
	Drain-back solar heating systems	530
	Solar collector panels	532
	Solar collector panel location	536
	Solar collector panel fixing	537
	Solar collector panel sizing	539
	Solar heating control schemes	539
21	Water Treatment	542
	Water supply	542
	Water treatment	543
	Hardness of water	543
	Classification of hardness	543
	Effect of hard water	545
	Base exchange softening	545
	Installation of base exchange water softener	546
	Electrolytic action	547
	Dezincification	549
	Black iron oxide	549
	Hydrogen gas	549
	Bacterial activity	550
	Oxidic corrosion	551
	Other forms of corrosion	551
	Aluminium heat emitters	552
	pH value (potential hydrogen)	552
	Corrosion inhibition	553
	Application of the inhibitor (new systems)	554
	Application of the inhibitor (existing systems)	556
	Non-domestic heating systems	556
	Sacrificial anodes	556
	Scale reducers/water conditioners	557
22	District Heating	559
	The district heating system	560
	The heat-generating station	560

	Distribution heating mains	561
	Distribution pipe materials and installation	564
	Heat meters and consumer connections	568
23	Expansion of Pipework	571
	Coefficient of linear expansion	572
	Calculating expansion	572
	Provision for expansion and expansion joints	574
	Expansion loops	575
	Expansion bellows/compensators	576
	Cyclic life	578
	Bellows application	579
	Forces on anchors and guides	580 583
	Anchors and guides Hinged angular bellows	585
	Articulated bellows	586
	Gimbal expansion bellows	587
	Packed gland sliding expansion joint	588
	Flexible rubber expansion joints	589
24	Regulations, Standards, Codes and Guides	591
	Building Regulations	592
	Water Regulations	601
	The Gas Safety (Installation and Use) Regulations	604
	British Standards	604
	Competent persons schemes	604
	Professional bodies	605
25	Testing and System Commissioning	608
	Testing for soundness	609
	Testing medium	611
	Testing metallic piping systems	613
	Testing thermoplastic piping systems	613
	Testing systems comprising mixed rigid and elastomeric piping materials	615
	Pre-commissioning activities	617
	Commissioning the heat raising plant Commissioning the circulatory system	617 617
	Operating and maintenance requirements	621
26	Operating Costs and Whole Life Costing	622
	Calorific value	623
	System efficiency	623
	Heating load	624
	Heating season/operating period	624
	Degree-days	625
	Annual energy consumed	625

Annual fuel u	tilisation	627
Annual auxiliaries running costs		628
Whole life cos	ting	628
Appendices		631
Appendix 1	Comparative table of sheet metal gauges	632
Appendix 2	Temperature comparison at atmospheric pressure	634
Appendix 3	Mesh/micron rating	635
Appendix 4	Copper tube BS EN1057 (introduced 15/8/96, Formerly BS2871)	636
Appendix 5	Dimensional tolerances of low carbon mild steel tube conforming	
	to BS EN10255, 2004. Formerly BS1387	637
Appendix 6	Hydrostatic data	638
Appendix 7	Composition of copper alloys (common)	639
Appendix 8	Composition of soft solders	640
Appendix 9	SI prefixes	641
Appendix 10	Light gauge stainless steel tube austenitic type 304 or 316 (BS EN10312)	641
Appendix 11	Elements and chemical symbols	642
Appendix 12	Beaufort wind scale	643
Appendix 13	Comparison of BSP and NPT threads	643
Appendix 14	Properties of water	644
Appendix 15	Temperature conversions	645
Appendix 16	Metric conversion factors	646
Appendix 17	Pressure conversion	648
Appendix 18	Heat flow conversion	648
Appendix 19	Approximate viscosity conversion	649
Appendix 20	Viscosity-temperature relationship	650
Appendix 21	Altitude and pressure corrections	651

Index

Preface

There have been a number of books written on the subject of heating over the years, which would fill a sizable section of any notable library if collected together.

On examining the more recent of these books, that is those published over the last twenty years, it was found that they could be categorised as belonging to one of three groups. These are books written for the DIY market which are of little use to any student who is serious about studying to become a qualified heating professional. Alternatively, there are a number of books aimed at the craft level student concentrating only on the practical aspects of the subject. The third category of technical books, of which there are fewer available, has been written for the qualified professional engineer that assumes the student has previously obtained the basic engineering knowledge that is required to advance to a higher level of their education.

This observation becomes apparent when looking for a suitable technical book to support the NVQ Level 4 Higher Professional Diploma in Building Services Engineering and other design based engineering courses.

The search found that no single book was available to support these courses and the student would have to purchase a large number of publications to cover the subject to the extent required. This would also result in the student incurring a high financial cost to obtain copies of these publications.

The answer to this situation was to produce a number of supporting handout papers that expanded upon the course lectures that eventually developed over the years into a sizable set of notes when bound together.

During the course of developing these supporting notes, the subject of heating buildings, both for domestic residential properties and commercial buildings, has changed enormously, particularly with regard to the need to conserve energy, develop alternative forms of energy and provide controls that are suitable for the system's needs.

This requirement has manifested itself in the form of increased mandatory regulations and improved technology that has been developed to meet these compulsory regulations and conservation targets.

It was that necessity to incorporate explanations and detailed information on these changes that led to the set of supporting notes being developed into the basis of this book.

The aim of this work is to provide in a text and illustrative form a complete guide from basic principles to an advanced level to all the elements that combine to impart the engineering knowledge required on the subject of hydronic heating systems.

The book has been arranged to present the subject matter in a logical order that builds on each preceding chapter and culminates to provide the complete informative material. The book also demonstrates that there is little difference between domestic and commercial heating systems in the approach to the engineering and design of the systems, but makes mention where there is a difference.

This book has been developed over many years from the collection of handout notes to its present volume, where it originally supported a City & Guilds supplementary heating course, which further developed to support the heating design and installation course accredited by the European Registration Scheme (ERS) and other similar academic courses presently run today.

It is also intended that this volume will support Unit 11, 'Space heating technology and design', which is a module contained in the NVQ Level 4 Higher Professional Diploma in Building Services Engineering.

The book is aimed at both craft level plumbing students qualified to NVQ Level 3 standard aspiring to bridge the educational gap to an engineering career, plus school leavers with the necessary academic 'A' level qualifications and employed in a building services engineering consultancy.

Although this volume has been produced to support the NVQ Level 4 course and similar design/engineering courses, it is hoped that it will be of equal interest and use to anyone concerned with the design and installation of hydronic heating systems.

This book has resisted the inclusion of over explaining or illustrating elements in order to provide the information in an affordable manner to all those concerned. This gives the lecturer the opportunity to expand upon each subject and provide further examples in the classroom.

It is also correct to acknowledge that a work of this type has only been possible due to the encouragement and assistance of many other people, most notably Mr David Bantock, whose original set of notes I inherited when I started as a part-time lecturer delivering the course, and who has been instrumental in his encouragement during its development. Also my wife, Jenny Watkins, for proofreading and endless patience, and the many students who encouraged its eventual publication.

Special acknowledgement should also be mentioned for permission to reproduce Figure 5.23, Room Height Temperature Gradients, from Elsevier Publishing, which is based on a similar illustration in their book entitled Faber & Kell's Heating & Air-conditioning of Buildings. Also, for permission granted by Baxi Heating to reproduce Figure 15.8, Illustration of a Micro-Combined Heat and Power Generating Unit and M H Mear Co. Ltd for permission to reproduce Figure 7.3, of a Mear's Slide Rule Heating Calculator.

David E. Watkins

1

Introduction to Heating Services

The broad term 'central heating' is used to describe many types and forms of heating, and some usage is totally misleading and inaccurate, through ignorance of the subject. This chapter is a basic introduction to the mechanics of central heating, which is discussed in greater detail in the following chapters.

If we examine the term, it implies a system where heat is produced from a central source and distributed around the whole building. The method of heat generation and distribution may vary with the type of heating system employed.

Central heating is sometimes referred to as space heating. To be understood fully, this must be described by its type or system arrangement, and may be categorised as being either full, part or background heating.

Full central heating may be defined as being a system of heating from a central source where all the normally habitable or used rooms/spaces are heated to achieve guaranteed temperatures under certain conditions. By today's standards, all heating systems installed in residential dwellings and most commercial buildings should conform to this category, unless there are acceptable reasons for not doing so.

Partial central heating is the term applied where only part of the building is to be heated, but even then the rooms or spaces that are heated should still have guaranteed temperatures under stated conditions. This form of central heating would be a rare occurrence for a residential dwelling but not so uncommon for some commercial buildings, especially where part of the building complex is not normally occupied.

The term 'background heating' is used to describe a form of central heating whereby lower than normal or standard recommended temperatures are aimed at for the type of building involved. The term is sometimes used to refer to heating systems installed in buildings where the room temperatures are not guaranteed. This form of heating is unacceptable by today's standards on both environmental and efficiency grounds.

It should be noted that, unless otherwise specified, full central heating should normally be designed to current regulations and standards and installed in a professional manner. In some instances, usually due to a specific use or financial reasons, the client may only require or specify partial heating to be installed, sometimes with the request that safeguards are included to allow the system to be extended at a later date to achieve full central heating.

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

Heating Services in Buildings: Design, Installation, Commissioning & Maintenance, First Edition. David E. Watkins.

As an aid to lecturers and students, full colour versions of the figures in this chapter may be found at www.wiley.com/go/watkins These figures are © 2011 by John Wiley & Sons, Ltd.

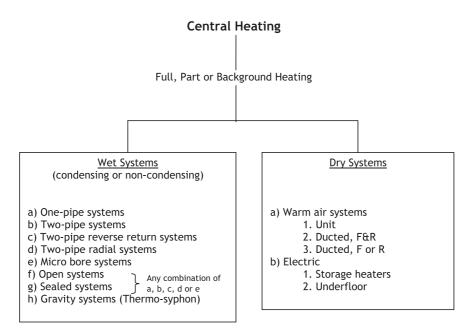


Figure 1.1 Heating system categories

Background heating, where lower than normal or recommended temperatures are aimed at, should only be used when specifically requested by the client for some reason. Even then, agreed temperatures should be incorporated into the design and guaranteed before any installation work commences. Under no circumstances should any heating system be installed without first agreeing specific room temperatures to be achieved when certain conditions exist. These conditions are discussed in Chapter 2.

Having understood the extent of the heating system and its classification, be it full, part or background heating, heating systems may be further divided under the headings of 'wet' or 'dry' systems. The terms wet or dry refer to the medium used to convey the heat from its source of generation to its point of use. Wet systems may be further classified by the piping circulation arrangement, with dry systems being divided into warm air and electric heating.

Figure 1.1 indicates the broad classifications of heating systems.

Heating systems can be sub-divided even further, but this will be explained in Chapter 21.

Wet heating systems

All wet types of heating systems employ a liquid as a medium to convey the heat from its source of generation. It is then distributed around the system to each heat emitter, where it transfers part of that heat through the heating surface of the heat emitters. Finally, the liquid is returned to the source of generation for the process to cycle continuously. The source of heat is commonly referred to as a boiler.

In all domestic heating systems, and most heating systems for other types of buildings, water is chosen as the medium for conveying the heat due to its low cost and being readily available. However, water does have the disadvantages of a low boiling point and high freezing point; it can also be corrosive to metallic materials and has a limited heat carrying capacity. The corrosive nature of the water can be reduced by water treatment, which is discussed later in this volume. The temperature limitations and heat carrying capacity of water will have to be accepted unless we change the atmospheric conditions of the system, or we can change the liquid. Liquids known as 'thermal fluids' are available and have been used successfully on larger commercial type heating installations. They possess different properties to water, such as being less aggressive to common materials, having higher boiling points and lower freezing points, a greater heat carrying capacity than water and, in some cases, a lower viscosity. The merits of thermal fluids are much superior to those of water but are generally discounted for all domestic heating systems owing to their higher capital cost and not being readily available. They are also rarely used on larger commercial systems for the same reasons, but when conditions are right they can be considered attractive. The difficulty of availability can cause problems when replacement fluid is required immediately, following any emergency maintenance work. Thermal fluids have been used for domestic applications on limited occasions in countries that experience much lower temperatures than in the UK, as the lower freezing point of the fluid can be an important advantage when sub-zero ambient temperatures are experienced for prolonged periods with the heating system in a non-operating mode. They have also been employed as the heat carrying medium for some solar heating systems.

The purpose of the water used in heating systems differs from that used in domestic hot and cold water installations. In those systems, water is the end product or consumable item and after it has been used, it is discharged to waste. The water employed in a heating system is a non-consumable substance. It is the medium used to carry the heat required and, after it has transferred some of the heat, it is returned to the boiler to be re-used over and over again.

Dry heating systems (warm air)

Warm-air dry-type heating systems differ from wet-type heating systems insofar as the fluid employed is not only the medium used to convey the heat, but is also the end product. As the name implies, air is the fluid used to carry the heat from its source of generation, a warm air heater. It is then distributed, usually through a network of ducting, where it is arranged to enter directly into the room under controlled conditions to displace the cooler air. Finally, a mixture of the two is partly returned to the warm air heater for the process to be repeated.

Warm-air heating systems are generally disliked by many occupants of dwellings that have such systems installed, but this is usually because the systems are either not designed correctly, not installed correctly or are, in many cases, incomplete. This is mainly down to ignorance of the fundamental principles of warm air heating, which, if given the respect deserved, can be a very good form of heating. This work exclusively concentrates on wet-type heating systems since it is aimed at students and engineers in the plumbing industry.

Dry heating systems (electricity)

Electrical heating systems may technically be classified as dry systems, but they do not employ a medium as they generate their heat at the point of use. For this reason, electrical heating systems are not included in this book, with the exception of heating systems that use electricity as the source of power to heat the water. Here they are classified as being wet or hydronic heating systems.

Supplementary heating

This is a term applied to describe heating appliances, either fixed or portable, that are used to supplement the central heating system – either during extreme cold spells when the outside air temperature falls well below the base design temperature, or during the heating-off season in spring or autumn, when the outside temperature drops to below that considered comfortable.

4 Heating Services in Buildings

Examples of such heating appliances include:

- Radiant electric fires, portable and fixed
- Oil filled radiators
- Oil room heaters
- LPG room heaters
- Gas fires
- Open solid fuel fires.

The list is not intended to be exhaustive, but meant to serve as a general representative selection of supplementary heating appliances.

2

Wet Heating Systems

Wet heating systems, commonly referred to as hydronic heating systems because they use a liquid as a medium, nearly always employ water as the medium to convey the heat from its source of generation, a boiler. This is rather a misnomer, as a boiler must be designed to avoid boiling the water, but is probably a leftover term from the days of raising steam. The heated water is circulated around the system, transferring part of its heat, and returns back to the boiler for the process to be repeated.

The water is fed into the heating system via a fixed piped connection to either a feed and expansion cistern, or a direct connection, as in the case of a sealed heating system. The water is allowed to enter the heating system slowly, thus avoiding creating turbulence, to fill it with all air expelled through the open vent, or by releasing it using manually operated air vents or automatic air release vents.

Water has many advantages as a heat carrying medium when used in hydronic heating systems; not least its plentiful availability. For this reason water is almost exclusively used for domestic heating systems. Hydronic heating systems are classified by the following basic principles:

Trydrome nearing systems are classified by the following b

- Temperature of medium
- Pressure of system
- Circulation method of medium
- Piping arrangement for distribution.

The classifications are to a certain extent inter-related, as the selection of one of the basic operating principles has an influence on the selection of the others, which is explained in the following discussion.

Heating Services in Buildings: Design, Installation, Commissioning & Maintenance, First Edition. David E. Watkins. © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

As an aid to lecturers and students, full colour versions of the figures in this chapter may be found at www.wiley.com/go/watkins These figures are © 2011 by John Wiley & Sons, Ltd.

TEMPERATURE AND PRESSURE

The classification of hydronic heating systems by the temperature of the circulating water exiting the boiler is closely related to the operating pressure of the system, and the two must be considered together. This is because pressure is required to maintain the water in a liquid form at high temperatures: as water will boil and convert to steam at 100°C at atmospheric pressure when measured at sea level, any increase in that pressure will have a corresponding increase in the boiling temperature of water. Likewise, any decrease in pressure below atmospheric pressure will have the effect of allowing water to boil at temperatures lower than 100°C.

Table 2.1 gives the temperature/pressure classification commonly used in the UK. The minimum pressures listed are those required to prevent the water from evaporating but should not be confused with their vapour saturation pressures, which are lower.

It can be seen from Table 2.1 that water may be retained in liquid form when the operating temperature is above 100°C by pressurising it, giving all the advantages of a liquid and none of the disadvantages of a vapour such as steam. The method of pressurising the heating system is explained later in this chapter.

In contrast to the UK practice of temperature/pressure classification, in the United States of America the classification of heating systems differs slightly, outlined in Table 2.2.

It can be seen from Table 2.2 that the US has higher temperature and pressure classifications than the UK. However, in practice there is very little difference in the operating principles of hydronic heating system either side of the Atlantic.

Almost without exception, all domestic residential heating systems are classified as being low pressure and temperature (LPHW). It is considered safer to install heating systems using materials suitable for working pressures and temperatures below 100°C, therefore avoiding the potential hazard of flash steam occurring in the event of a pipe fracture or valve gland leak.

It has traditionally been the custom to design LPHW systems with a water flow temperature of 82°C and a Δt (temperature difference) of 11–12°C, giving a return water temperature of 71°C. More recently, the Δt has been increased in certain circumstances to take into account the requirements of condensing boilers that are influenced more by lower return temperatures than flow temperatures to function efficiently. This

Classification	System temperature (°C)	Operating static pressure (bar absolute)
Low pressure hot water (LPHW)	<100	1 to 3
Medium pressure hot water (MPHW)	100 to 120	3 to 5
High pressure hot water (HPHW)	>120	>5*

Table 2.1	Hydronic design	operating water	temperatures and	pressures	(UK practice)
-----------	-----------------	-----------------	------------------	-----------	---------------

*Account must be allowed for varying static pressures that would exist in a tall building.

Table 2.2	Hydronic design	operating water	temperatures and	pressures (US	practice)

Classification	System temperature (°C)	Operating static pressure (bar gauge)
Low temperature hot water (LTHW)	<120	2
Medium temperature hot water (MTHW)	120 to 175	<11
	Normally below 160	
High temperature hot water (HTHW)	>175	<20
	Normally about 200	

has a secondary effect on the increased sizing of the heat emitters, which is discussed in more detail in Chapter 8. Another situation where one should question the return water temperature and the flow water temperature is in heating systems employing underfloor heating sections that require the floor temperature to be limited to an acceptable level.

Low temperature heating systems may be further categorised as being either 'open' systems – where the heating system incorporates an open feed and expansion cistern and operates at atmospheric pressure, plus the static pressure created by the feed and expansion cistern at the traditional flow temperature of not exceeding 82°C – or sealed systems.

With a sealed heating system, the feed and expansion cistern is replaced by a sealed expansion vessel that allows the heating system to operate at a slightly higher pressure above atmospheric pressure and also permits the flow water leaving the boiler to have fractionally higher operating temperatures, in the region of 85–95°C.

If operating water temperatures higher than 82°C are selected for the heating system, then greater consideration must be given to the choice of heat emitters to be used, and all contactable heating surfaces such as traditional panel or column type radiators should be avoided so as to reduce the risk, scalding anyone who comes into physical contact with them.

Low water temperature heating systems are the most commonly used category of operating temperatures and pressures, suitable for all buildings ranging from small domestic residential through to very large and complex developments.

Medium temperature (MPHW) heating systems are favoured where a high heat output is desired so that smaller heat emitters and corresponding smaller pipe sizes can be used. The heat emitters must be of the non-contactable type, such as convectors, low surface temperature radiators and fan coil units. These systems are more suitable to commercial type buildings where the materials used are more robust than domestic low pressure type materials, and the system is more likely to be regularly serviced and maintained. This type of system in a domestic situation would be considered unsafe.

The use of high temperature and pressure systems (HPHW) is normally considered for use in industrial applications as some industrial processes require higher temperatures for manufacturing, or for developments that have a main central plant room that distributes the primary heat at high pressure and temperature to local plant rooms, which then circulate the secondary heat at a lower temperature. This arrangement is ideal for developments that are spread out over a large geographical area, and makes full use of more economical pipe sizes and equipment. As with the medium temperature systems, material selection and maintenance are critical factors.

CIRCULATION

Heating systems can also be classified by the method of circulation employed, i.e. either by gravity (thermosiphon), or forced circulation by a pump, or a combination of both.

Full gravity heating systems have not been installed since the development of the glandless circulating pump. The practice of having a gravity circulation to the domestic hot water cylinder whilst the heating system has a forced circulation, which can have some merit when suitable conditions exist, is no longer permitted by the Building Regulations for residential dwellings, which unfortunately limits the design engineer in the options available. Even where the situation exists that the domestic hot water cylinder is located directly above the boiler at the optimum height, and the occupant's needs are such that heating part of the system is not required for a great deal of the time but domestic hot water is, we are no longer permitted to use this method.

A fully forced method of water circulation for both heating and domestic hot water primaries is by far the most efficient arrangement in the majority of applications and gives freedom in the choice of plant equipment location, but this is not always the best option.

PIPING DISTRIBUTION ARRANGEMENT

Having discussed the temperature, pressure and method of circulating the water, the piping arrangement can be established. The different arrangements listed in Figure 1.1 form the basic systems for which there are numerous variations or modifications, but each may be categorised as belonging to one of the basic forms.

These arrangements each have their own advantages and disadvantages and the final selection should be made on the most efficient and economical method suited to each individual application. Also, a combination of any of the piping arrangements described may be used if it is considered by the design engineer to best meet the needs of the system.

The various piping arrangements depicted on the following pages have been produced to explain the operating principles of each system and are not supposed to be complete. For this reason most control elements and components have been omitted for the sake of clarity as these are dealt with in detail in Chapter 11. Also, the provision to include the means of producing domestic hot water has been included in each case, minus the controls element, to complete the piping arrangement: this may be by gravity primary circulation or by forced circulation. In most cases, either method may be used, unless noted otherwise. It is not the intention here to give the impression that either a gravity primary circulation or a forced primary circulation is the preferred option for satisfying the domestic hot water requirements, but just to show the different options.

ONE OR SINGLE PIPE SYSTEM

Of all the piping arrangements used for heating distribution, the single pipe system is the simplest. It consists of a single pipe main that extends from the boiler around the building as a circuit, or number of circuits, and returns to it with all heat emitters connected to the pipe by their own branch pipe flow and return connections.

Figure 2.1 illustrates the operating principles of the single pipe system and its limitations: a progressive temperature drop around the heating pipe circuit caused by each heat emitter returning its water back into the common circuit pipe. This has the effect of cooling the flow water available to other heat emitters being served by this circuit, which in turn results in subsequent heat emitters having to be oversized to compensate for a lower mean water temperature across the heat emitter.

To avoid heat emitters at the end of each pipe circuit having to be excessively large due to the decreasing mean water temperature available, heating pipe circuits should be limited to supplying water to a few heat emitters each, to restrict the mean water temperature across the heat emitter to no less than 70°C for non-condensing systems, or lower for condensing.

Another effect of pipe circuits suffering from excessive temperature drop is that the piping system on each circuit would also have to be oversized to compensate for the lower circulating water temperature.

The piping arrangement depicted in Figure 2.2 demonstrates that this need not be the case: if the branch circuits supply a minimum number of heat emitters, then the single pipe arrangement is just as suitable for larger domestic residential properties or commercial building applications, as the small domestic heating system.

The object in the design of this system is to limit the temperature drop across each pipe circuit so as to avoid having to significantly increase pipe sizes or heat emitter sizes to compensate, and so lose the lower cost advantage claimed by this system.

From the schematic layout depicted in Figure 2.2, it can be seen that if each piping circuit is limited to a reasonable temperature drop across it, and if each piping circuit is similar in its heat carrying load to each other, then the single pipe heating arrangement is suitable for heating system compositions in larger buildings. It can also be seen that the piping system is fairly evenly balanced in its heat distribution

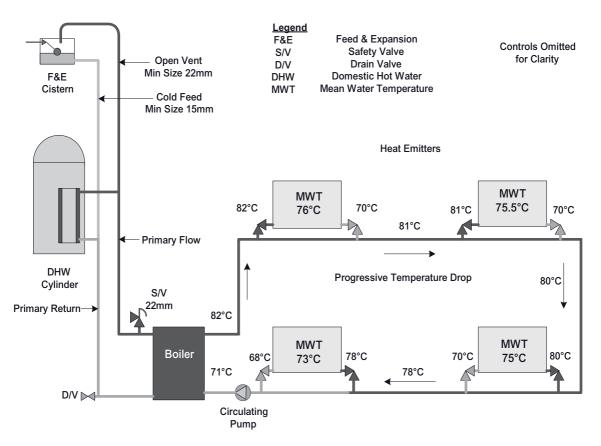
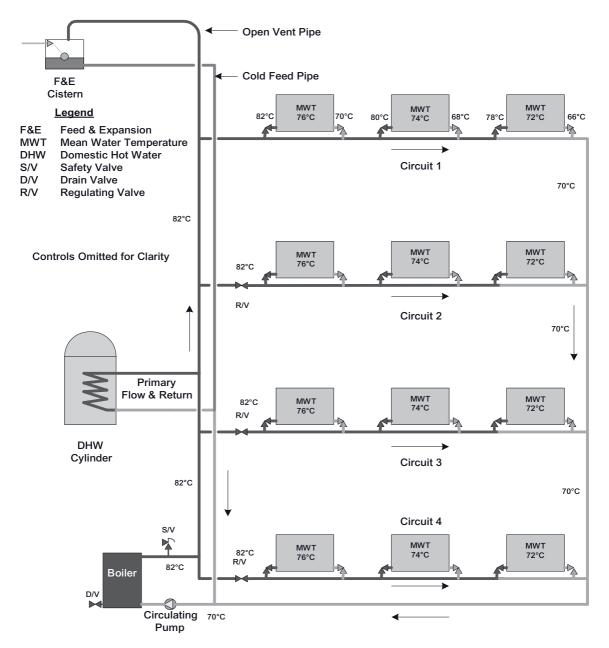


Figure 2.1 Operating principles of single pipe heating system (non-condensing)

in order to achieve the temperature drop required from each heating circuit. This is accomplished by balancing the circulating piping system with the use of regulating valves when the heating system is being commissioned.


The primary flow and return to the domestic hot water cylinder in this illustration is in fact a two pipe arrangement. Lower temperatures may be selected for condensing heating systems.

The single pipe heating system benefits from the employment of special tees, known as 'diverting' or 'inducing' tees. These special fittings are designed to encourage a degree of flow into the heat emitter by creating a resistance to the flow between the flow and return branch connections, in the form of a pressure drop on the single pipe circulating main. This creates the conditions for circulation to occur through the heat emitter, as the resistance of this passage is less than that of the heating main.

The isometric layout illustrated in Figure 2.3 demonstrates the use of these diverting tees, whereby the up feed risers only require one diverting tee to be fitted on the return connection as the thermal head will assist the circulation, but the down feed pipes should be fitted with diverting tees on both the flow and return branch connections because no thermal head exists in this situation.

Diverting tees may be obtained in a copper alloy or malleable iron and are constructed with a venturi shaped restriction inside as shown in Figure 2.4. These tees are similar in design to 'tongued' tees that were commonly used on gravity heating systems.

Figure 2.4 shows how the flow of water through the venturi of the diverting tee induces the flow from the return connection of the heat emitter.

Figure 2.2 Single pipe system for larger building with limited circuit Δt (non-condensing)

Figures 2.5 and 2.6 show how the diverting tees are arranged and how they function for both upward connections to the heat emitters using one diverting tee on the return, and downward connections where diverting tees are employed on both the flow and return connections to the heat emitters.

Diverting tees have been successfully fabricated on site from standard capillary copper pipe fittings, either the end feed type, or integral solder ring type, using a standard tee, a spigot and socket straight reducing fitting, with the larger spigot end cut short but square, which is placed inside one socket end of the tee so that the reduced socket end protrudes past the branch of the tee. The cut spigot end of the reducer must