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Preface

DAFX is a synonym for digital audio effects. It is also the name for a European research project for
co-operation and scientific transfer, namely EU-COST-G6 “Digital Audio Effects” (1997-2001).
It was initiated by Daniel Arfib (CNRS, Marseille). In the past couple of years we have had four
EU-sponsored international workshops/conferences on DAFX, namely, in Barcelona (DAFX-98),
Trondheim (DAFX-99), Verona (DAFX-00) and Limerick (DAFX-01). A variety of DAFX topics
have been presented by international participants at these conferences. The papers can be found
on the corresponding web sites.

This book not only reflects these conferences and workshops, it is intended as a profound
collection and presentation of the main fields of digital audio effects. The contents and structure of
the book were prepared by a special book work group and discussed in several workshops over the
past years sponsored by the EU-COST-G6 project. However, the single chapters are the individual
work of the respective authors.

Chapter 1 gives an introduction to digital signal processing and shows software implementations
with the MATLAB® programming tool. Chapter 2 discusses digital filters for shaping the audio
spectrum and focuses on the main building blocks for this application. Chapter 3 introduces basic
structures for delays and delay-based audio effects. In Chapter 4 modulators and demodulators are
introduced and their applications to digital audio effects are demonstrated. The topic of nonlinear
processing is the focus of Chapter 5. First, we discuss fundamentals of dynamics processing such
as limiters, compressors/expanders and noise gates, and then we introduce the basics of nonlinear
processors for valve simulation, distortion, harmonic generators and exciters. Chapter 6 covers the
wide field of spatial effects starting with basic effects, 3D for headphones and loudspeakers, rever-
beration and spatial enhancements. Chapter 7 deals with time-segment processing and introduces
techniques for variable speed replay, time stretching, pitch shifting, shuffling and granulation. In
Chapter 8 we extend the time-domain processing of Chapters 2—7. We introduce the fundamental
techniques for time-frequency processing, demonstrate several implementation schemes and illus-
trate the variety of effects possible in the 2D time-frequency domain. Chapter 9 covers the field of
source-filter processing, where the audio signal is modeled as a source signal and a filter. We intro-
duce three techniques for source-filter separation and show source-filter transformations leading to
audio effects such as cross-synthesis, formant changing, spectral interpolation and pitch shifting
with formant preservation. The end of this chapter covers feature extraction techniques. Chapter 10
deals with spectral processing, where the audio signal is represented by spectral models such as
sinusoids plus a residual signal. Techniques for analysis, higher-level feature analysis and synthesis
are introduced, and a variety of new audio effects based on these spectral models are discussed.
Effect applications range from pitch transposition, vibrato, spectral shape shift and gender change
to harmonizer and morphing effects. Chapter 11 deals with fundamental principles of time and
frequency warping techniques for deforming the time and/or the frequency axis. Applications of
these techniques are presented for pitch-shifting inharmonic sounds, the inharmonizer, extraction
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of excitation signals, morphing and classical effects. Chapter 12 deals with the control of effect
processors ranging from general control techniques to control based on sound features and ges-
tural interfaces. Finally, Chapter 13 illustrates new challenges of bitstream signal representations,
shows the fundamental basics and introduces filtering concepts for bitstream signal processing.
MATLAB implementations in several chapters of the book illustrate software implementations of
DAFX algorithms. The MATLAB files can be found on the web site http://www.dafx.de.

I hope the reader will enjoy the presentation of the basic principles of DAFX in this book and
will be motivated to explore DAFX with the help of our software implementations. The creativity
of a DAFX designer can only grow or emerge if intuition and experimentation are combined
with profound knowledge of physical and musical fundamentals. The implementation of DAFX in
software needs some knowledge of digital signal processing and this is where this book may serve
as a source of ideas and implementation details.

I would like to thank the authors for their contributions to the chapters and also the EU-Cost-G6
delegates from all over Europe for their contributions during several meetings, especially Nicola
Bernadini, Javier Casajis, Markus Erne, Mikael Fernstrom, Eric Feremans, Emmanuel Favreau,
Alois Melka, Jgran Rudi and Jan Tro. The book cover is based on a mapping of a time-frequency
representation of a musical piece onto the globe by Jgran Rudi. Thanks to Catja Schiimann for
her assistance in preparing drawings and IATEX formatting, Christopher Duxbury for proof-reading
and Vincent Verfaille for comments and cleaning up the code lines of Chapters 8 to 10. I also
express my gratitude to my staff members Udo Ahlvers, Manfred Chrobak, Florian Keiler, Harald
Schorr and Jorg Zeller for providing assistance during the course of writing this book. Finally,
I would like to thank Birgit Gruber, Ann-Marie Halligan, Laura Kempster, Susan Dunsmore and
Zoé Pinnock from John Wiley & Sons, Ltd for their patience and assistance.

My special thanks are directed to my wife Elke and our daughter Franziska.

Hamburg, March 2002 Udo Zolzer

Preface 2nd Edition

This second edition is the result of an ongoing DAFX conference series over the past years. Each
chapter has new contributing co-authors who have gained experience in the related fields over the
years. New emerging research fields are introduced by four new Chapters on Adaptive-DAFX,
Virtual Analog Effects, Automatic Mixing and Sound Source Separation. The main focus of the
book is still the audio effects side of audio research. The book offers a variety of proven effects
and shows directions for new audio effects. The MATLAB files can be found on the web site
http://www.dafx.de.

I would like to thank the co-authors for their contributions and effort, Derry FitzGerald and
Nuno Fonseca for their contributions to the book and finally, thanks go to Nicky Skinner, Alex
King, and Georgia Pinteau from John Wiley & Sons, Ltd for their assistance.

Hamburg, September 2010 Udo Zolzer
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Introduction

V. Verfaille, M. Holters and U. Zolzer

1.1 Digital audio effects DAFX with MATLAB®

Audio effects are used by all individuals involved in the generation of musical signals and start with
special playing techniques by musicians, merge to the use of special microphone techniques and
migrate to effect processors for synthesizing, recording, production and broadcasting of musical
signals. This book will cover several categories of sound or audio effects and their impact on sound
modifications. Digital audio effects — as an acronym we use DAFX — are boxes or software tools
with input audio signals or sounds which are modified according to some sound control parameters
and deliver output signals or sounds (see Figure 1.1). The input and output signals are monitored
by loudspeakers or headphones and some kind of visual representation of the signal, such as the
time signal, the signal level and its spectrum. According to acoustical criteria the sound engineer
or musician sets his control parameters for the sound effect he would like to achieve. Both input
and output signals are in digital format and represent analog audio signals. Modification of the
sound characteristic of the input signal is the main goal of digital audio effects. The settings of
the control parameters are often done by sound engineers, musicians (performers, composers, or
digital instrument makers) or simply the music listener, but can also be part of one specific level
in the signal processing chain of the digital audio effect.
The aim of this book is the description of digital audio effects with regard to:

e Physical and acoustical effect: we take a short look at the physical background and expla-
nation. We describe analog means or devices which generate the sound effect.

e Digital signal processing: we give a formal description of the underlying algorithm and
show some implementation examples.

e Musical applications: we point out some applications and give references to sound examples
available on CD or on the web.

DAFX: Digital Audio Effects, Second Edition. Edited by Udo Zolzer.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Figure 1.1 Digital audio effect and its control [Arf99].

The physical and acoustical phenomena of digital audio effects will be presented at the beginning of
each effect description, followed by an explanation of the signal processing techniques to achieve
the effect, some musical applications and the control of effect parameters.

In this introductory chapter we next introduce some vocabulary clarifications, and then present
an overview of classifications of digital audio effects. We then explain some simple basics of digital
signal processing and show how to write simulation software for audio effects processing with the
MATLAB! simulation tool or freeware simulation tools>. MATLAB implementations of digital
audio effects are a long way from running in real time on a personal computer or allowing real-time
control of its parameters. Nevertheless the programming of signal processing algorithms and in
particular sound-effect algorithms with MATLAB is very easy and can be learned very quickly.

Sound effect, audio effect and sound transformation

As soon as the word “effect” is used, the viewpoint that stands behind is the one of the subject
who is observing a phenomenon. Indeed, “effect” denotes an impression produced in the mind of
a person, a change in perception resulting from a cause. Two uses of this word denote related, but
slightly different aspects: “sound effects” and “audio effects.” Note that in this book, we discuss
the latter exclusively. The expression — “sound effects” — is often used to depict sorts of earcones
(icons for the ear), special sounds which in production mode have a strong signature and which
therefore are very easily identifiable. Databases of sound effects provide natural (recorded) and
processed sounds (resulting from sound synthesis and from audio effects) that produce specific
effects on perception used to simulate actions, interaction or emotions in various contexts. They
are, for instance, used for movie soundtracks, for cartoons and for music pieces. On the other hand,
the expression “audio effects” corresponds to the tool that is used to apply transformations to sounds
in order to modify how they affect us. We can understand those two meanings as a shift of the
meaning of “effect”: from the perception of a change itself to the signal processing technique that
is used to achieve this change of perception. This shift reflects a semantic confusion between the
object (what is perceived) and the tool to make the object (the signal processing technique). “Sound
effect” really deals with the subjective viewpoint, whereas “audio effect” uses a subject-related
term (effect) to talk about an objective reality: the tool to produce the sound transformation.
Historically, it can arguably be said that audio effects appeared first, and sound transformations
later, when this expression was tagged on refined sound models. Indeed, techniques that made use
of an analysis/transformation/synthesis scheme embedded a transformation step performed on a
refined model of the sound. This is the technical aspect that clearly distinguishes “audio effects”

! http://www.mathworks.com
2 http://www.octave.org
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and “sound transformations,” the former using a simple representation of the sound (samples)
to perform signal processing, whereas the latter uses complex techniques to perform enhanced
signal processing. Audio effects originally denoted simple processing systems based on simple
operations, e.g. chorus by random control of delay line modulation; echo by a delay line; distortion
by non-linear processing. It was assumed that audio effects process sound at its surface, since
sound is represented by the wave form samples (which is not a high-level sound model) and
simply processed by delay lines, filters, gains, etc. By surface we do not mean how strongly
the sound is modified (it in fact can be deeply modified; just think of distortion), but we mean
how far we go in unfolding the sound representations to be accurate and refined in the data and
model parameters we manipulate. Sound transformations, on the other hand, denoted complex
processing systems based on analysis/transformation/synthesis models. We, for instance, think of
the phase vocoder with fundamental frequency tracking, the source-filter model, or the sinusoidal
plus residual additive model. They were considered to offer deeper modifications, such as high-
quality pitch-shifting with formant preservation, timbre morphing, and time-scaling with attack,
pitch and panning preservation. Such deep manipulation of control parameters allows in turn the
sound modifications to be heard as very subtle.

Over time, however, practice blurred the boundaries between audio effects and sound trans-
formations. Indeed, several analysis/transformation/synthesis schemes can simply perform various
processing that we consider to be audio effects. On the other hand, usual audio effects such as
filters have undergone tremendous development in terms of design, in order to achieve the abil-
ity to control the frequency range and the amplitude gain, while taking care to limit the phase
modulation. Also, some usual audio effects considered as simple processing actually require com-
plex processing. For instance, reverberation systems are usually considered as simple audio effects
because they were originally developed using simple operations with delay lines, even though
they apply complex sound transformations. For all those reasons, one may consider that the terms
“audio effects,” “sound transformations” and “musical sound processing” are all refering to the
same idea, which is to apply signal processing techniques to sounds in order to modify how they
will be perceived, or in other words, to transform a sound into another sound with a perceptually
different quality. While the different terms are often used interchangeably, we use “audio effects”
throughout the book for the sake of consistency.

1.2 Classifications of DAFX

Digital audio effects are mainly used by composers, performers and sound engineers, but they are
generally described from the standpoint of the DSP engineers who designed them. Therefore, their
classification and documentation, both in software documentation and textbooks, rely on the under-
lying techniques and technologies. If we observe what happens in different communities, there exist
other classification schemes that are commonly used. These include signal processing classification
[Orf96, PPPR96, Roa96, M0090, Z5102], control type classification [VWDO06], perceptual classifi-
cation [ABL103], and sound and music computing classification [CPR95], among others. Taking a
closer look in order to compare these classifications, we observe strong differences. The reason is
that each classification has been introduced in order to best meet the needs of a specific audience;
it then relies on a series of features. Logically, such features are relevant for a given community,
but may be meaningless or obscure for a different community. For instance, signal-processing
techniques are rarely presented according to the perceptual features that are modified, but rather
according to acoustical dimensions. Conversely, composers usually rely on perceptual or cognitive
features rather than acoustical dimensions, and even less on signal-processing aspects.

An interdisciplinary approach to audio effect classification [VGT06] aims at facilitating the
communication between researchers and creators that are working on or with audio effects.? Various

3e.g. DSP programmers, sound engineers, sound designers, electroacoustic music composers, performers
using augmented or extended acoustic instruments or digital instruments, musicologists.
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disciplines are then concerned: from acoustics and electrical engineering to psychoacoustics, music
cognition and psycholinguistics. The next subsections present the various standpoints on digital
audio effects through a description of the communication chain in music. From this viewpoint, three
discipline-specific classifications are described: based on underlying techniques, control signals
and perceptual attributes, then allowing the introduction of interdisciplinary classifications linking
the different layers of domain-specific descriptors. It should be pointed out that the presented
classifications are not classifications stricto sensu, since they are neither exhaustive nor mutually
exclusive: one effect can be belong to more than one class, depending on other parameters such
as the control type, the artefacts produced, the techniques used, etc.

Communication chain in music

Despite the variety of needs and standpoints, the technological terminology is predominantly
employed by the actual users of audio effects: composers and performers. This technological
classification might be the most rigorous and systematic one, but it unfortunately only refers to the
techniques used, while ignoring our perception of the resulting audio effects, which seems more
relevant in a musical context.

We consider the communication chain in music that essentially produces musical sounds [Rab,
HMMO04]. Such an application of the communication-chain concept to music has been adapted
from linguistics and semiology [Nat75], based on Molino’s work [Mol75]. This adaptation in
a tripartite semiological scheme distinguishes three levels of musical communication between a
composer (producer) and a listener (receiver) through a physical, neutral trace such as a sound.
As depicted in Figure 1.2, we apply this scheme to a complete chain in order to investigate
all possible standpoints on audio effects. In doing so, we include all actors intervening in the
various processes of the conception, creation and perception of music, who are instrument-makers,
composers, performers and listeners. The poietic level concerns the conception and creation of a
musical message to which instrument-makers, composers and performers participate in different
ways and at different stages. The neutral level is that of the physical “trace” (instruments, sounds
or scores). The aesthetic level corresponds to the perception and reception of the musical message
by a listener. In the case of audio effects, the instrument-maker is the signal-processing engineer
who designs the effect and the performer is the user of the effect (musician, sound engineer). In the
context of home studios and specific musical genres (such as mixed music creation), composers,
performers and instrument-makers (music technologists) are usually distinct individuals who need
to efficiently communicate with one another. But all actors in the chain are also listeners who
can share descriptions of what they hear and how they interpret it. Therefore we will consider the
perceptual and cognitive standpoints as the entrance point to the proposed interdisciplinary network
of the various domain-specific classifications. We also consider the specific case of the home studio
where a performer may also be his very own sound engineer, designs or sets his processing chain,
and performs the mastering. Similarly, electroacoustic music composers often combine such tasks
with additional programming and performance skills. They conceive their own processing system,
control and perform on their instruments. Although all production tasks are performed by a single
multidisciplinary artist in these two cases, a transverse classification is still helpful to achieve a

Instrument Instrument

maker (physical limits)
Sound
(aesthetic
limits)

Figure 1.2 Communication chain in music: the composer, performer and instrument maker are
also listeners, but in a different context than the auditor.
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better awareness of the relations, between the different description levels of an audio effect, from
technical to perceptual standpoints.

1.2.1 Classification based on underlying techniques

Using the standpoint of the “instrument-maker” (DSP engineer or software engineer), this first
classification focuses on the underlying techniques that are used in order to implement the audio
effects. Many digital implementations of audio effects are in fact emulations of their analog ances-
tors. Similarly, some analog audio effects implemented with one technique were emulating audio
effects that already existed with another analog technique. Of course, at some point analog and/or
digital techniques were also creatively used so as to provide new effects. We can distinguish the
following analog technologies, in chronological order:

e Mechanics/acoustics (e.g., musical instruments and effects due to room acoustics)
e Electromechanics (e.g., using vinyls)
e Electromagnetics (e.g., flanging and time-scaling with magnetic tapes)

e Electronics (e.g., filters, vocoder, ring modulators).

With mechanical means, such as designing or choosing a specific room for its acoustical properties,
music was modified and shaped to the wills of composers and performers. With electromechanical
means, vinyls could be used to time-scale and pitch-shift a sound by changing disk rotation speed.*
With electromagnetic means, flanging was originally obtained when pressing the thumb on the
flange of a magnetophone wheel® and is now emulated with digital comb filters with varying
delays. Another example of electromagnetic means is the time-scaling effect without pitch-shifting
(i.e., with “not-too-bad” timbre preservation) performed by the composer and engineer Pierre
Schaeffer back in the early 1950s. Electronic means include ring modulation, which refers to the
multiplication of two signals and borrows its name from the analog ring-shaped circuit of diodes
originally used to implement this effect.

Digital effects emulating acoustical or perceptual properties of electromechanic, electric or
electronic effects include filtering, the wah-wah effect,® the vocoder effect, reverberation, echo and
the Leslie effect. More recently, electronic and digital sound processing and synthesis allowed for
the creation of new unprecedented effects, such as robotization, spectral panoramization, prosody
change by adaptive time-scaling and pitch-shifting, and so on. Of course, the boundaries between
imitation and creative use of technology is not clear cut. The vocoding effect, for example, was
first developed to encode voice by controlling the spectral envelope with a filter bank, but was
later used for musical purposes, specifically to add a vocalic aspect to a musical sound. A digital
synthesis counterpart results from a creative use (LPC, phase vocoder) of a system allowing
for the imitation of acoustical properties. Digital audio effects can be organized on the basis of
implementation techniques, as it is proposed in this book:

e Filters and delays (resampling)

e Modulators and demodulators

4 Such practice was usual in the first cinemas with sound, where the person in charge of the projection
was synchronizing the sound to the image, as explained with a lot of humor by the awarded filmmaker Peter
Brook in his autobiography: Threads of Time: Recollections, 1998.

31t is considered that flanging was first performed by George Martin and the Beatles, when John Lennon
was asking for a technical way to replace dubbing.

1t seems that the term wah-wah was first coined by Miles Davis in the 1950s to describe how he
manipulated sound with his trumpet’s mute.
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e Non-linear processing

e Spatial effects

e Time-segment processing

e Time-frequency processing
e Source-filter processing

e Adaptive effects processing
e Spectral processing

e Time and frequency warping
e Virtual analog effects

e Automatic mixing

e Source separation.

Another classification of digital audio effects is based on the domain where the signal process-
ing is applied (namely time, frequency and time-frequency), together with the indication whether
the processing is performed sample-by-sample or block-by-block:

e Time domain:

m block processing using overlap-add (OLA) techniques (e.g., basic OLA, synchronized
OLA, pitch synchronized OLA)

m sample processing (filters, using delay lines, gain, non-linear processing, resampling and
interpolation)

e Frequency domain (with block processing):

m frequency-domain synthesis with inverse Fourier transform (e.g., phase vocoder with or
without phase unwrapping)

m time-domain synthesis (using oscillator bank)

e Time and frequency domain (e.g., phase vocoder plus LPC).

The advantage of such kinds of classification based on the underlying techniques is that the
software developer can easily see the technical and implementation similarities of various effects,
thus simplifying both the understanding and the implementation of multi-effect systems, which
is depicted in the diagram in Figure 1.3. It also provides a good overview of technical domains
and signal-processing techniques involved in effects. However, several audio effects appear in
two places in the diagram (illustrating once again how these diagrams are not real classifications),
belonging to more than a single class, because they can be performed with techniques from various
domains. For instance, time-scaling can be performed with time-segment processing as well as
with time-frequency processing. One step further, adaptive time-scaling with time-synchronization
[VZAO06] can be performed with SOLA using either block-by-block or time-domain processing, but
also with the phase vocoder using a block-by-block frequency-domain analysis with IFFT synthesis.

Depending on the user expertise (DSP programmer, electroacoustic composer), this classifi-
cation may not be the easiest to understand, even more since this type of classification does not
explicitly handle perceptual features, which are the common vocabulary of all listeners. Another
reason for introducing the perceptual attributes of sound in a classification is that when users can
choose between various implementations of an effect, they also make their choice depending on



