Already the market leader in the field, Modelling Transport has become still more indispensable following a thorough and detailed update. Enhancements include two entirely new chapters on modelling for private sector projects and on activity-based modelling; a new section on dynamic assignment and micro-simulation; and sizeable updates to sections on disaggregate modelling and stated preference design and analysis. It also tackles topical issues such as valuation of externalities and the role of GPS in travel time surveys.

Providing unrivalled depth and breadth of coverage, each topic is approached as a modelling exercise with discussion of the roles of theory, data, model specification, estimation, validation and application. The authors present the state of the art and its practical application in a pedagogic manner, easily understandable to both students and practitioners.

• Follows on from the highly successful third edition universally acknowledged as the leading text on transport modelling techniques and applications;
• Includes two new chapters on modelling for private sector projects and activity based modelling, and numerous updates to existing chapters;
• Incorporates treatment of recent issues and concerns like risk analysis and the dynamic interaction between land use and transport;
• Provides comprehensive and rigorous information and guidance, enabling readers to make practical use of every available technique;
• Relates the topics to new external factors and technologies such as global warming, valuation of externalities and global positioning systems (GPS).
MODELLING
TRANSPORT
MODELLING TRANSPORT

Fourth Edition

Juan de Dios Ortúzar
Department of Transport Engineering and Logistics
Pontificia Universidad Católica de Chile
Santiago
Chile

Luis G. Willumsen
Luis Willumsen Consultancy
and University College London
London
UK
Contents

About the Authors xv
Preface xvii

1 Introduction 1
1.1 Transport Planning and Modelling 1
 1.1.1 Background 1
 1.1.2 Models and their Role 2
1.2 Characteristics of Transport Problems 3
 1.2.1 Characteristics of Transport Demand 3
 1.2.2 Characteristics of Transport Supply 4
 1.2.3 Equilibration of Supply and Demand 6
1.3 Modelling and Decision Making 8
 1.3.1 Decision-making Styles 8
 1.3.2 Choosing Modelling Approaches 10
1.4 Issues in Transport Modelling 14
 1.4.1 General Modelling Issues 14
 1.4.2 Aggregate and Disaggregate Modelling 18
 1.4.3 Cross-section and Time Series 19
 1.4.4 Revealed and Stated Preferences 20
1.5 The Structure of the Classic Transport Model 20
1.6 Continuous Transport Planning 23
1.7 Theoretical Basis Versus Expedience 26

2 Mathematical Prerequisites 29
2.1 Introduction 29
2.2 Algebra and Functions 30
 2.2.1 Introduction 30
 2.2.2 Functions and Graphs 31
 2.2.3 Sums of Series 34
2.3 Matrix Algebra 35
 2.3.1 Introduction 35
 2.3.2 Basic Operations of Matrix Algebra 36
2.4 Elements of Calculus 37
 2.4.1 Differentiation 37
 2.4.2 Integration 38
 2.4.3 The Logarithmic and Exponential Functions 39
Contents

2.4.4 Finding Maximum and Minimum Values of Functions 40
2.4.5 Functions of More Than One Variable 41
2.4.6 Multiple Integration 43
2.4.7 Elasticities 43
2.4.8 Series Expansions 44

2.5 Elementary Mathematical Statistics 44
2.5.1 Probabilities 44
2.5.2 Random Variables 46
2.5.3 Moments around Zero 47
2.5.4 More Advanced Statistical Concepts 48

Data and Space 55

Basic Sampling Theory 55
3.1.1 Statistical Considerations 55
3.1.2 Conceptualisation of the Sampling Problem 60
3.1.3 Practical Considerations in Sampling 63

Errors in Modelling and Forecasting 65
3.2.1 Different Types of Error 65
3.2.2 The Model Complexity/Data Accuracy Trade-off 68

Basic Data-Collection Methods 71
3.3.1 Practical Considerations 71
3.3.2 Types of Surveys 73
3.3.3 Survey Data Correction, Expansion and Validation 86
3.3.4 Longitudinal Data Collection 90
3.3.5 Travel Time Surveys 93

Stated Preference Surveys 94
3.4.1 Introduction 94
3.4.2 The Survey Process 99
3.4.3 Case Study Example 117

Network and Zoning Systems 128
3.5.1 Zoning Design 129
3.5.2 Network Representation 131

Exercises 135

Trip Generation Modelling 139

4.1 Introduction 139
4.1.1 Some Basic Definitions 139
4.1.2 Characterisation of Journeys 141
4.1.3 Factors Affecting Trip Generation 142
4.1.4 Growth-factor Modelling 143

4.2 Regression Analysis 144
4.2.1 The Linear Regression Model 144
4.2.2 Zonal-based Multiple Regression 151
4.2.3 Household-based Regression 153
4.2.4 The Problem of Non-Linearity 154
4.2.5 Obtaining Zonal Totals 156
4.2.6 Matching Generations and Attractions 156
Contents

4.3 Cross-Classification or Category Analysis 157
 4.3.1 The Classical Model 157
 4.3.2 Improvements to the Basic Model 159
 4.3.3 The Person-category Approach 162
4.4 Trip Generation and Accessibility 164
4.5 The Frequency Choice Logit Model 165
4.6 Forecasting Variables in Trip Generation Analysis 167
4.7 Stability and Updating of Trip Generation Parameters 168
 4.7.1 Temporal Stability 168
 4.7.2 Geographic Stability 169
 4.7.3 Bayesian Updating of Trip Generation Parameters 170
Exercises 172

5 Trip Distribution Modelling 175
5.1 Definitions and Notation 176
5.2 Growth-Factor Methods 178
 5.2.1 Uniform Growth Factor 178
 5.2.2 Singly Constrained Growth-Factor Methods 179
 5.2.3 Doubly Constrained Growth Factors 180
 5.2.4 Advantages and Limitations of Growth-Factor Methods 181
5.3 Synthetic or Gravity Models 182
 5.3.1 The Gravity Distribution Model 182
 5.3.2 Singly and Doubly Constrained Models 183
5.4 The Entropy-Maximising Approach 184
 5.4.1 Entropy and Model Generation 184
 5.4.2 Generation of the Gravity Model 186
 5.4.3 Properties of the Gravity Model 188
 5.4.4 Production/Attraction Format 190
 5.4.5 Segmentation 191
5.5 Calibration of Gravity Models 191
 5.5.1 Calibration and Validation 191
 5.5.2 Calibration Techniques 192
5.6 The Tri-proportional Approach 193
 5.6.1 Bi-proportional Fitting 193
 5.6.2 A Tri-proportional Problem 195
 5.6.3 Partial Matrix Techniques 196
5.7 Other Synthetic Models 198
 5.7.1 Generalisations of the Gravity Model 198
 5.7.2 Intervening Opportunities Model 199
 5.7.3 Disaggregate Approaches 200
5.8 Practical Considerations 201
 5.8.1 Sparse Matrices 201
 5.8.2 Treatment of External Zones 201
 5.8.3 Intra-zonal Trips 201
 5.8.4 Journey Purposes 202
 5.8.5 K Factors 202
 5.8.6 Errors in Modelling 202
 5.8.7 The Stability of Trip Matrices 204
Exercises 205
Contents

6 Modal Split and Direct Demand Models 207
- 6.1 Introduction 207
- 6.2 Factors Influencing the Choice of Mode 208
- 6.3 Trip-end Modal-split Models 209
- 6.4 Trip Interchange Heuristics Modal-split Models 209
- 6.5 Synthetic Models 211
 - 6.5.1 Distribution and Modal-split Models 211
 - 6.5.2 Distribution and Modal-split Structures 213
 - 6.5.3 Multimodal-split Models 214
 - 6.5.4 Calibration of Binary Logit Models 217
 - 6.5.5 Calibration of Hierarchical Modal-split Models 218
- 6.6 Direct Demand Models 219
 - 6.6.1 Introduction 219
 - 6.6.2 Direct Demand Models 220
 - 6.6.3 An Update on Direct Demand Modelling 221
 - Exercises 223

7 Discrete Choice Models 227
- 7.1 General Considerations 227
- 7.2 Theoretical Framework 230
- 7.3 The Multinomial Logit Model (MNL) 232
 - 7.3.1 Specification Searches 232
 - 7.3.2 Universal Choice Set Specification 233
 - 7.3.3 Some Properties of the MNL 234
- 7.4 The Nested Logit Model (NL) 235
 - 7.4.1 Correlation and Model Structure 235
 - 7.4.2 Fundamentals of Nested Logit Modelling 237
 - 7.4.3 The NL in Practice 240
 - 7.4.4 Controversies about some Properties of the NL Model 241
- 7.5 The Multinomial Probit Model 248
 - 7.5.1 The Binary Probit Model 248
 - 7.5.2 Multinomial Probit and Taste Variations 249
 - 7.5.3 Comparing Independent Probit and Logit Models 250
- 7.6 The Mixed Logit Model 250
 - 7.6.1 Model Formulation 250
 - 7.6.2 Model Specifications 251
 - 7.6.3 Identification Problems 254
- 7.7 Other Choice Models and Paradigms 256
 - 7.7.1 Other Choice Models 256
 - 7.7.2 Choice by Elimination and Satisfaction 256
 - 7.7.3 Habit and Hysteresis 258
 - 7.7.4 Modelling with Panel Data 259
 - 7.7.5 Hybrid Choice Models Incorporating Latent Variables 265
 - Exercises 266

8 Specification and Estimation of Discrete Choice Models 269
- 8.1 Introduction 269
- 8.2 Choice-Set Determination 270
 - 8.2.1 Choice-set Size 270
 - 8.2.2 Choice-set Formation 271
Contents

8.3 Specification and Functional Form
- 8.3.1 Functional Form and Transformations 272
- 8.3.2 Theoretical Considerations and Functional Form 273
- 8.3.3 Intrinsic Non-linearities: Destination Choice 274

8.4 Statistical Estimation
- 8.4.1 Estimation of Models from Random Samples 275
- 8.4.2 Estimation of Models from Choice-based Samples 288
- 8.4.3 Estimation of Hybrid Choice Models with Latent Variables 288
- 8.4.4 Comparison of Non-nested Models 291

8.5 Estimating the Multinomial Probit Model
- 8.5.1 Numerical Integration 292
- 8.5.2 Simulated Maximum Likelihood 293
- 8.5.3 Advanced Techniques 294

8.6 Estimating the Mixed Logit Model
- 8.6.1 Classical Estimation 296
- 8.6.2 Bayesian Estimation 298
- 8.6.3 Choice of a Mixing Distribution 302
- 8.6.4 Random and Quasi Random Numbers 305
- 8.6.5 Estimation of Panel Data Models 307

8.7 Modelling with Stated-Preference Data
- 8.7.1 Identifying Functional Form 309
- 8.7.2 Stated Preference Data and Discrete Choice Modelling 310
- 8.7.3 Model Estimation with Mixed SC and RP Data 322

Exercises

9 Model Aggregation and Transferability

9.1 Introduction 333

9.2 Aggregation Bias and Forecasting 334

9.3 Confidence Intervals for Predictions 335
- 9.3.1 Linear Approximation 336
- 9.3.2 Non Linear Programming 337

9.4 Aggregation Methods 338

9.5 Model Updating or Transferance 341
- 9.5.1 Introduction 341
- 9.5.2 Methods to Evaluate Model Transferability 341
- 9.5.3 Updating with Disaggregate Data 343
- 9.5.4 Updating with Aggregate Data 344

Exercises

10 Assignment

10.1 Basic Concepts 349
- 10.1.1 Introduction 349
- 10.1.2 Definitions and Notation 350
- 10.1.3 Speed–Flow and Cost–Flow Curves 351

10.2 Traffic Assignment Methods 355
- 10.2.1 Introduction 355
- 10.2.2 Route Choice 356
- 10.2.3 Tree Building 358

10.3 All-or-nothing Assignment 359
Contents

10.4 Stochastic Methods
- 10.4.1 Simulation-Based Methods 361
- 10.4.2 Proportional Stochastic Methods 362
- 10.4.3 Emerging Approaches 364

10.5 Congested Assignment
- 10.5.1 Wardrop’s equilibrium 367
- 10.5.2 Hard and Soft Speed-Change Methods 369
- 10.5.3 Incremental Assignment 369
- 10.5.4 Method of Successive Averages 370
- 10.5.5 Braess’s Paradox 372

10.6 Public-Transport Assignment
- 10.6.1 Introduction 373
- 10.6.2 Issues in Public-Transport Assignment 373
- 10.6.3 Modelling Public-Transport Route Choice 376
- 10.6.4 Assignment of Transit Trips 380

10.7 Limitations of the Classic Methods
- 10.7.1 Limitations in the Node-link Model of the Road Network 381
- 10.7.2 Errors in Defining Average Perceived Costs 382
- 10.7.3 Not all Trip Makers Perceive Costs in the Same Way 382
- 10.7.4 The Assumption of Perfect Information about Costs in All Parts of the Network 382
- 10.7.5 Day-to-day Variations in Demand 382
- 10.7.6 Imperfect Estimation of Changes in Travel Time with Changes in the Estimated Flow on Links 383
- 10.7.7 The Dynamic Nature of Traffic 383
- 10.7.8 Input Errors 384

10.8 Practical Considerations 385

Exercises 388

11 Equilibrium and Dynamic Assignment

11.1 Introduction 391

11.2 Equilibrium
- 11.2.1 A Mathematical Programming Approach 392
- 11.2.2 Social Equilibrium 396
- 11.2.3 Solution Methods 397
- 11.2.4 Stochastic Equilibrium Assignment 401
- 11.2.5 Congested Public Transport Assignment 403

11.3 Transport System Equilibrium
- 11.3.1 Equilibrium and Feedback 404
- 11.3.2 Formulation of the Combined Model System 406
- 11.3.3 Solving General Combined Models 409
- 11.3.4 Monitoring Convergence 410

11.4 Traffic Dynamics
- 11.4.1 The Dynamic Nature of Traffic 411
- 11.4.2 Travel Time Reliability 413
- 11.4.3 Junction Interaction Methods 414
- 11.4.4 Dynamic Traffic Assignment (DTA) 415

11.5 Departure Time Choice and Assignment
- 11.5.1 Introduction 420
- 11.5.2 Macro and Micro Departure Time Choice 421
Contents

11.5.3 Underlying Principles of Micro Departure Time Choice 421
11.5.4 Simple Supply/Demand Equilibrium Models 423
11.5.5 Time of Travel Choice and Equilibrium Assignment 424
11.5.6 Conclusion 425
Exercises 426

12 Simplified Transport Demand Models 429
12.1 Introduction 429
12.2 Sketch Planning Methods 430
12.3 Incremental Demand Models 431
12.3.1 Incremental Elasticity Analysis 431
12.3.2 Incremental or Pivot-point Modelling 433
12.4 Model Estimation from Traffic Counts 435
12.4.1 Introduction 435
12.4.2 Route Choice and Matrix Estimation 436
12.4.3 Transport Model Estimation from Traffic Counts 436
12.4.4 Matrix Estimation from Traffic Counts 439
12.4.5 Traffic Counts and Matrix Estimation 444
12.4.6 Limitations of ME2 446
12.4.7 Improved Matrix Estimation Models 447
12.4.8 Treatment of Non-proportional Assignment 448
12.4.9 Quality of Matrix Estimation Results 450
12.4.10 Estimation of Trip Matrix and Mode Choice 450
12.5 Marginal and Corridor Models 452
12.5.1 Introduction 452
12.5.2 Corridor Models 453
12.5.3 Marginal Demand Models 454
12.6 Gaming Simulation 456
Exercises 458

13 Freight Demand Models 461
13.1 Importance 461
13.2 Factors Affecting Goods Movements 462
13.3 Pricing Freight Services 463
13.4 Data Collection for Freight Studies 463
13.5 Aggregate Freight Demand Modelling 466
13.5.1 Freight Generations and Attractions 466
13.5.2 Distribution Models 466
13.5.3 Mode Choice 468
13.5.4 Assignment 468
13.5.5 Equilibrium 469
13.6 Disaggregate Approaches 470
13.7 Some Practical Issues 471

14 Activity Based Models 473
14.1 Introduction 473
14.2 Activities, Tours and Trips 474
14.3 Tours, Individuals and Representative Individuals 477
14.4 The ABM System 478
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5 Population Synthesis</td>
<td>479</td>
</tr>
<tr>
<td>14.6 Monte Carlo and Probabilistic Processes</td>
<td>481</td>
</tr>
<tr>
<td>14.7 Structuring Activities and Tours</td>
<td>482</td>
</tr>
<tr>
<td>14.8 Solving ABM</td>
<td>484</td>
</tr>
<tr>
<td>14.9 Refining Activity or Tour Based Models</td>
<td>485</td>
</tr>
<tr>
<td>14.10 Extending Random Utility Approaches</td>
<td>487</td>
</tr>
<tr>
<td>15 Key Parameters, Planning Variables and Value Functions</td>
<td>489</td>
</tr>
<tr>
<td>15.1 Forecasting Planning Variables</td>
<td>489</td>
</tr>
<tr>
<td>15.1.1 Introduction</td>
<td>489</td>
</tr>
<tr>
<td>15.1.2 Use of Official Forecasts</td>
<td>490</td>
</tr>
<tr>
<td>15.1.3 Forecasting Population and Employment</td>
<td>491</td>
</tr>
<tr>
<td>15.1.4 The Spatial Location of Population and Employment</td>
<td>493</td>
</tr>
<tr>
<td>15.2 Land-Use Transport Interaction Modelling</td>
<td>493</td>
</tr>
<tr>
<td>15.2.1 The Lowry Model</td>
<td>495</td>
</tr>
<tr>
<td>15.2.2 The Bid-Choice Model</td>
<td>496</td>
</tr>
<tr>
<td>15.2.3 Systems Dynamics Approach</td>
<td>497</td>
</tr>
<tr>
<td>15.2.4 Urban Simulation</td>
<td>499</td>
</tr>
<tr>
<td>15.3 Car-Ownership Forecasting</td>
<td>499</td>
</tr>
<tr>
<td>15.3.1 Background</td>
<td>499</td>
</tr>
<tr>
<td>15.3.2 Time-series Extrapolations</td>
<td>500</td>
</tr>
<tr>
<td>15.3.3 Econometric Methods</td>
<td>503</td>
</tr>
<tr>
<td>15.3.4 International Comparisons</td>
<td>507</td>
</tr>
<tr>
<td>15.4 The Value of Travel Time</td>
<td>509</td>
</tr>
<tr>
<td>15.4.1 Introduction</td>
<td>509</td>
</tr>
<tr>
<td>15.4.2 Subjective and Social Values of Time</td>
<td>509</td>
</tr>
<tr>
<td>15.4.3 Some Practical Results</td>
<td>510</td>
</tr>
<tr>
<td>15.4.4 Methods of Analysis</td>
<td>512</td>
</tr>
<tr>
<td>15.5 Valuing External Effects of Transport</td>
<td>522</td>
</tr>
<tr>
<td>15.5.1 Introduction</td>
<td>522</td>
</tr>
<tr>
<td>15.5.2 Methods of Analysis</td>
<td>524</td>
</tr>
<tr>
<td>Exercises</td>
<td>530</td>
</tr>
<tr>
<td>16 Pricing and Revenue</td>
<td>533</td>
</tr>
<tr>
<td>16.1 Pricing, Revenue and Forecasting</td>
<td>533</td>
</tr>
<tr>
<td>16.1.1 Background</td>
<td>533</td>
</tr>
<tr>
<td>16.1.2 Prices and Perceptions</td>
<td>534</td>
</tr>
<tr>
<td>16.1.3 Modelling and Forecasting</td>
<td>534</td>
</tr>
<tr>
<td>16.2 Private Sector Projects</td>
<td>535</td>
</tr>
<tr>
<td>16.2.1 Involvement of Private Sector in Transport Projects</td>
<td>535</td>
</tr>
<tr>
<td>16.2.2 Agents and Processes</td>
<td>536</td>
</tr>
<tr>
<td>16.2.3 Some Consequences of the Process</td>
<td>538</td>
</tr>
<tr>
<td>16.3 Risk</td>
<td>538</td>
</tr>
<tr>
<td>16.3.1 Uncertainty and Risk</td>
<td>538</td>
</tr>
<tr>
<td>16.3.2 Risk Management and Mitigation</td>
<td>539</td>
</tr>
<tr>
<td>16.4 Demand Modelling</td>
<td>539</td>
</tr>
<tr>
<td>16.4.1 Willingness to Pay</td>
<td>539</td>
</tr>
<tr>
<td>16.4.2 Simple Projects</td>
<td>540</td>
</tr>
<tr>
<td>16.4.3 Complex Projects</td>
<td>541</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4.4</td>
<td>Project Preparation</td>
<td>542</td>
</tr>
<tr>
<td>16.4.5</td>
<td>Forecasting Demand and Revenue during a Bid</td>
<td>544</td>
</tr>
<tr>
<td>16.4.6</td>
<td>Ramp Up, Expansion, Leakage</td>
<td>544</td>
</tr>
<tr>
<td>16.5</td>
<td>Risk Analysis</td>
<td>545</td>
</tr>
<tr>
<td>16.5.1</td>
<td>Sensitivity and Sources of Risk</td>
<td>546</td>
</tr>
<tr>
<td>16.5.2</td>
<td>Stochastic Risk Analysis</td>
<td>547</td>
</tr>
<tr>
<td>16.6</td>
<td>Concluding Remarks</td>
<td>548</td>
</tr>
</tbody>
</table>

References 551

Index 581
About the Authors

Juan de Dios Ortúzar is Professor of Transport Engineering at Pontificia Universidad Católica de Chile, his alma mater and where he has worked since 1972. From this remote setting he has managed to form generations of young researchers in Latin America and Europe. Outside academia, he has been advisor to governments and international agencies, and has directed several transport studies involving the application of advanced demand modelling techniques and the collection of large-scale travel survey data. A keen golfer he also enjoys playing guitar and singing with friends.

Luis (Pilo) Willumsen has some 40 years of experience as a consultant, transport planner and researcher with a distinguished academic career. He studied Engineering in Chile and has been based in Britain since 1975: he was a researcher and lecturer at Leeds University and then at University College London. He was a Board Director of Steer Davies Gleave having joined it full-time in 1989 with a special responsibility for technical and international development. He left that company in 2009 and is now Director of the Luis Willumsen Consultancy and Visiting Professor in the Department of Civil, Environmental and Geomatic Engineering at University College London.
Preface

This book is a result of nearly 40 years of collaboration, sometimes at a distance and sometimes working together in Britain and in Chile. Throughout these years we discussed many times what we thought were the strong and weak aspects of transport modelling and planning. We speculated, researched and tested in practice some new and some not so new ideas. We have agreed and disagreed on topics like the level of detail required for modelling or the value of disaggregate or activity based models in forecasting; we took advantage of a period when our views converged to put them in writing; here they are.

We wish to present the most important (in our view) transport modelling techniques in a form accessible to students and practitioners alike. We attempt this giving particular emphasis to key topics in contemporary modelling and planning:

- the practical importance of theoretical consistency in transport modelling;
- the issues of data and specification errors in modelling, their relative importance and methods to handle them;
- the key role played by the decision-making context in the choice of the most appropriate modelling tool;
- how uncertainty and risk influence the choice of the most appropriate modelling tool;
- the advantages of variable resolution modelling; a simplified background model coupled with a much more detailed one addressing the decision questions in hand;
- the need for a monitoring function relying on regular data collection and updating of forecasts and models so that courses of action can be adapted to a changing environment.

We have approached the subject from the point of view of a modelling exercise, discussing the role of theory, data, model specification in its widest sense, model estimation, validation and forecasting. Our aim in writing this book was to create both a text for a diploma or Master’s course in transport and a reference volume for practitioners; however, the material is presented in such a way as to be useful for undergraduate courses in civil engineering, geography and town planning. The book is based on our lecture notes prepared and improved over several years of teaching at undergraduate and graduate levels; we have also used them to teach practitioners both through in-house training programmes and short skills-updating courses. We have extended and enhanced our lecture notes to cover additional material and to help the reader tackling the book without the support of a supervisor.

Chapters 3 to 9, 12 and 15 provide all the elements necessary to run a good 30 sessions course on transport demand modelling; in fact, such a course – with different emphasis on certain subjects – has been taught by us at undergraduate level in Chile, and at postgraduate level in Australia, Britain, Colombia, Italy, Mexico, Portugal and Spain; the addition of material from Chapters 10 and 11 would make it a transport modelling course. Chapters 4 to 6 and 10 to 12 provide the basic core for a course on network modelling and equilibrium in transport; a course on transport supply modelling would require
more material, particularly relating to important aspects of public transport supply which we do not discuss in enough detail. Chapters 13, 14 and 16 cover material which is getting more important as time goes by, in particular as the shift in interest in the profession is moving from passenger issues to freight and logistics, and to the role models play not only in social evaluation but also in the analysis of private projects. Chapter 1 provides an introduction to transport planning issues and outlines our view on the relationship between planning and modelling. Chapter 2 is there mainly for the benefit of those wishing to brush up their analytical and statistical skills and to make the volume sufficiently self-contained.

During our professional life we have been fortunate to be able to combine teaching with research and consultancy practice. We have learnt from papers, research, experimentation and mistakes. We are happy to say the latter have not been too expensive in terms of inaccurate advice. This is not just luck; a conscientious analyst pays for mistakes by having to work harder and longer to sort out alternative ways of dealing with a difficult modelling task. We have learnt the importance of choosing appropriate techniques and technologies for each task in hand; the ability to tailor modelling approaches to decision problems is a key skill in our profession. Throughout the book we examine the practical constraints to transport modelling for planning and policy making in general, particularly in view of the limitations of current formal analytical techniques, and the nature and quality of the data likely to be available.

We have avoided the intricate mathematical detail of every model to concentrate instead on their basic principles, the identification of their strengths and limitations, and a discussion of their use. The level of theory supplied by this book is, we believe, sufficient to select and use the models in practice. We have tried to bridge the gap between the more theoretical publications and the too pragmatic ‘recipe’ books; we do not believe the profession would have been served well by a simplistic ‘how to’ book offering a blueprint to each modelling problem. In this latest edition we have also marked, with a shaded box, material which is more advanced and/or still under development but important enough to be mentioned. There are no single solutions to transport modelling and planning. A recurring theme in the book is the dependence of modelling on context and theory. Our aim is to provide enough information and guidance so that readers can actually go and use each technique in the field; to this end we have striven to look into practical questions about the application of each methodology. Wherever the subject area is still under development we have striven to make extensive references to more theoretical papers and books which the interested reader can consult as necessary. In respect of other, more settled modelling approaches, we have kept the references to those essential for understanding the evolution of the topic or serving as entry points to further research.

We believe that nobody can aspire to become a qualified practitioner in any area without doing real work in a laboratory or in the field. Therefore, we have gone beyond the sole description of the techniques and have accompanied them with various application examples. These are there to illustrate some of the theoretical or practical issues related to particular models. We provide a few exercises at the end of key chapters; these can be solved with the help of a scientific pocket (or better still, a spreadsheet) calculator and should assist the understanding of the models discussed.

Although the book is ambitious, in the sense that it covers quite a number of themes, it must be made clear from the outset that we do not intend (nor believe it possible) to be up-to-the-minute in every topic. The book is a good reflection of the state of the art but for leading-edge research the reader should use the references provided as signposts for further investigation.

We wrote most of the first edition during a sabbatical visit by the first of us to University College London in 1988–89. This was possible thanks to support provided by the UK Science and Engineering Research Council, The Royal Society, Fundación Andes (Chile), The British Council and The Chartered Institute of Transport. We thank them for their support as we acknowledge the funding provided for our research by many institutions and agencies over the past 30 years. The third and this fourth edition benefited greatly from further sabbatical stays at University College London in 1998–99 and 2009; these were possible thanks to the support provided by the UK Engineering and Physical Sciences Research Council. We also wish to acknowledge the support to our research provided by the Chilean Fund for
Preface

Developing Scientific and Technical Research (FONDECYT) and the Millennium Institute on Complex Engineering Systems (ICM: P05-004F; FONDECYT: FBO16). Steer Davies Gleave also allowed the second author to spend time updating the second and third editions.

We have managed to maintain an equal intellectual contribution to the contents of this book but in writing and researching material for it we have benefited from numerous discussions with friends and colleagues. Richard Allsop taught us a good deal about methodology and rigour. Huw Williams’s ideas are behind many of the theoretical contributions in Chapter 7; Andrew Daly and Hugh Gunn have helped to clarify many issues in Chapters 3, 7–9 and 15. Dirck Van Vliet’s emphasis in explaining assignment and equilibrium in simple but rigorous terms inspired Chapters 10 and 11. Tony Fowkes made valuable comments on car ownership forecasting and stated-preference methods. Jim Steer provided a constant reference to practical issues and the need to develop improved approaches to address them.

Many parts of the first edition of the book also benefited from a free, and sometimes very enthusiastic, exchange of ideas with our colleagues J. Enrique Fernández and Joaquin de Cea at the Pontificia Universidad Católica de Chile, Sergio Jara-Díaz and Jaime Gibson at the Universidad de Chile, Sergio Jara-Díaz and Jaime Gibson at the Universidad de Chile, Marc Gaudry at the Université de Montréal, Roger Mackett at University College London, Dennis Gilbert and Mike Bell at Imperial College. Many others also contributed, without knowing, to our thoughts.

Subsequent editions of the book have benefited from comments from a number of friends and readers, apart from those above, who have helped to identify errors and areas for improvement. Among them we should mention Michel Bierlaire from the École Polytechnique Fédérale de Lausanne, Patrick Bonnel from the French Laboratoire d’Economie des Transports, David Boyce at the University of Illinois, Victor Cantillo from Universidad del Norte, Barranquilla, Elisabetta Cherchi from University of Cagliari, Michael Florian from Université de Montréal, Rodrigo Garrido, Luis I. Rizzi and Francisca Yañez from Pontificia Universidad Católica de Chile, Cristián Guevara now at Universidad de Los Andes in Chile, Stephane Hess at Leeds University, Ben Heydecker from University College London, Frank Koppelman from Northwestern University, Mariette Kraan at the University of Twente, Francisco J. Martínez and Marcela Munizaga at the Universidad de Chile, Piotr Olszewski from Warsaw University of Technology, Joan L. Walker from University of California at Berkeley, and Sofia Athanassiou, Gloria Hutt, Neil Chadwick, John Swanson, Yaron Hollander and Serbjeet Kohli at Steer Davies Gleave. Special thanks are due to John M. Rose at ITLS, University of Sydney, for his contributions to Chapter 3.

Our final thanks go to our graduate and undergraduate students in Australia, Britain, Chile, Colombia, México, Italy, Portugal and Spain; they are always sharp critics and provided the challenge to put our money (time) where our mouth was.

We have not taken on board all suggestions as we felt some required changing the approach and style of the text; we are satisfied future books will continue to clarify issues and provide greater rigour to many of the topics discussed here; transport is indeed a very dynamic subject. Despite this generous assistance, we are, as before, solely responsible for the errors remaining in this latest edition. We genuinely value the opportunity to learn from our mistakes.

Juan de Dios Ortúzar and Luis G. Willumsen
1

Introduction

1.1 Transport Planning and Modelling

1.1.1 Background

The world, including transport, is changing fast. We still encounter many of the same transport problems of the past: congestion, pollution, accidents, financial deficits and pockets of poor access. We are increasingly becoming money rich and time poor. However, we have learnt a good deal from long periods of weak transport planning, limited investment, emphasis on the short term and mistrust in strategic transport modelling and decision making. We have learnt, for example, that old problems do not fade away under the pressure of attempts to reduce them through better traffic management; old problems reappear in new guises with even greater vigour, pervading wider areas, and in their new forms they seem more complex and difficult to handle.

We now have greater confidence in technical solutions than in the previous century. This is not the earlier confidence in technology as the magic solution to economic and social problems; we have also learnt that this is a mirage. However, Information Technology has advanced enough to make possible new conceptions of transport infrastructure (e.g. road transport informatics), movement systems (e.g. automated driverless trains) and electronic payment (e.g. smartcards, video tolling). Mobile phones and GPS services are changing the way to deliver useful traveller information, facilitating payment and charging for the use of transport facilities. Of particular interest to the subject of this book is the advent of low-cost and high-speed computing; this has practically eliminated computing power as a bottleneck in transport modelling. The main limitations are now human and technical: contemporary transport planning requires skilled and experienced professionals plus, as we will argue below, theoretically sound modelling techniques with competent implementations in software.

Emerging countries are becoming more significant in the world stage but they suffer serious transport problems as well. These are no longer just the lack of roads to connect distant rural areas with markets. Indeed, the new transport problems bear some similarities with those prevalent in the post-industrialised world: congestion, pollution, and so on. However, they have a number of very distinctive features deserving a specific treatment: relatively low incomes, fast urbanisation and change, high demand for public transport, scarcity of resources including capital, sound data and skilled personnel.

The birth of the twenty-first century was dominated by two powerful trends affecting most aspects of life and economic progress. The stronger trend is globalisation, supported and encouraged by the other trend, cheap and high-capacity telecommunications. The combination of the two is changing the way we perceive and tackle many modern issues; their influence in transport planning is starting to be
felt. Some of these influences are the role of good transport infrastructure in enhancing the economic competitiveness of modern economies; a wider acceptance of the advantages of involving the private sector more closely in transport supply and operations; the possible role of telecommunications in reducing the need to travel.

Important technical developments in transport modelling have taken place since the mid-1970s, in particular at major research centres; these developments have been improved and implemented by a small group of resourceful consultants. However, many of these innovations and applications have received limited attention outside the more academic journals. After these years of experimentation there is now a better recognition of the role of modelling in supporting transport planning. This book attempts a review of the best of current practice in transport modelling; in most areas it covers the ‘state of the art’ but we have selected those aspects which have already been implemented successfully in practice. The book does not represent the leading edge of research into modelling. It tries, rather, to provide a survival tool-kit for those interested in improving transport modelling and planning, a kind of bridge or entry-point to the more theoretical papers that will form the basis of transport modelling in the future.

Transport modelling is not transport planning; it can only support planning, and in a few cases it may have the most important role in the process. We have known many good professionals who have developed sophisticated transport models but are frustrated because their work has apparently been ignored in many key planning decisions. In truth, planning and implementation have the power to change the world and transport modelling can only assist in this if adopted as an effective aid to decision making. This requires wise planners and, above all, better modellers.

1.1.2 Models and their Role

A model is a simplified representation of a part of the real world—the system of interest—which focuses on certain elements considered important from a particular point of view. Models are, therefore, problem and viewpoint specific. Such a broad definition allows us to incorporate both physical and abstract models. In the first category we find, for example, those used in architecture or in fluid mechanics which are basically aimed at design. In the latter, the range spans from the mental models all of us use in our daily interactions with the world, to formal and abstract (typically analytical) representations of some theory about the system of interest and how it works. Mental models play an important role in understanding and interpreting the real world and our analytical models. They are enhanced through discussions, training and, above all, experience. Mental models are, however, difficult to communicate and to discuss.

In this book we are concerned mainly with an important class of abstract models: mathematical models. These models attempt to replicate the system of interest and its behaviour by means of mathematical equations based on certain theoretical statements about it. Although they are still simplified representations, these models may be very complex and often require large amounts of data to be used. However, they are invaluable in offering a ‘common ground’ for discussing policy and examining the inevitable compromises required in practice with a level of objectivity. Another important advantage of mathematical models is that during their formulation, calibration and use the planner can learn much, through experimentation, about the behaviour and internal workings of the system under scrutiny. In this way, we also enrich our mental models thus permitting more intelligent management of the transport system.

A model is only realistic from a particular perspective or point of view. It may be reasonable to use a knife and fork on a table to model the position of cars before a collision but not to represent their mechanical features, or their route choice patterns. The same is true of analytical models: their value is limited to a range of problems under specific conditions. The appropriateness of a model is, as discussed in the rest of this chapter, dependent on the context where it will be used. The ability to choose and adapt models for particular contexts is one of the most important elements in the complete planner’s tool-kit.
This book is concerned with the contribution transport modelling can make to improved decision making and planning in the transport field. It is argued that the use of models is inevitable and that of formal models highly desirable. However, transport modelling is only one element in transport planning: administrative practices, an institutional framework, skilled professionals and good levels of communication with decision makers, the media and the public are some of the other requisites for an effective planning system. Moreover, transport modelling and decision making can be combined in different ways depending on local experience, traditions and expertise. However, before we discuss how to choose a modelling and planning approach it is worth outlining some of the main characteristics of transport systems and their associated problems. We will also discuss some very important modelling issues which will find application in other chapters of this book.

1.2 Characteristics of Transport Problems

Transport problems have become more widespread and severe than ever in both industrialised and developing countries alike. Fuel shortages are (temporarily) not a problem but the general increase in road traffic and transport demand has resulted in congestion, delays, accidents and environmental problems well beyond what has been considered acceptable so far. These problems have not been restricted to roads and car traffic alone. Economic growth seems to have generated levels of demand exceeding the capacity of most transport facilities. Long periods of under-investment in some modes and regions have resulted in fragile supply systems which seem to break down whenever something differs slightly from average conditions.

These problems are not likely to disappear in the near future. Sufficient time has passed with poor or no transportation planning to ensure that a major effort in improving most forms of transport, in urban and inter-urban contexts, is necessary. Given that resources are not unlimited, this effort will benefit from careful and considered decisions oriented towards maximising the advantages of new transport provision while minimising their money costs and undesirable side-effects.

1.2.1 Characteristics of Transport Demand

The demand for transport is derived, it is not an end in itself. With the possible exception of sightseeing, people travel in order to satisfy a need (work, leisure, health) undertaking an activity at particular locations. This is equally significant for goods movements. In order to understand the demand for transport, we must understand the way in which these activities are distributed over space, in both urban and regional contexts. A good transport system widens the opportunities to satisfy these needs; a heavily congested or poorly connected system restricts options and limits economic and social development.

The demand for transport services is highly qualitative and differentiated. There is a whole range of specific demands for transport which are differentiated by time of day, day of week, journey purpose, type of cargo, importance of speed and frequency, and so on. A transport service without the attributes matching this differentiated demand may well be useless. This characteristic makes it more difficult to analyse and forecast the demand for transport services: tonne and passenger kilometres are extremely coarse units of performance hiding an immense range of requirements and services.

Transport demand takes place over space. This seems a trivial statement but it is the distribution of activities over space which makes for transport demand. There are a few transport problems that may be treated, albeit at a very aggregate level, without explicitly considering space. However, in the vast majority of cases, the explicit treatment of space is unavoidable and highly desirable. The most common approach to treat space is to divide study areas into zones and to code them, together with transport networks, in a form suitable for processing with the aid of computer programs. In some cases, study
areas can be simplified assuming that the zones of interest form a corridor which can be collapsed into a linear form. However, different methods for treating distance and for allocating origins and destinations (and their attributes) over space are an essential element in transport analysis.

The spatiality of demand often leads to problems of lack of coordination which may strongly affect the equilibrium between transport supply and demand. For example, a taxi service may be demanded unsuccessfully in a part of a city while in other areas various taxis may be plying for passengers. On the other hand, the concentration of population and economic activity on well-defined corridors may lead to the economic justification of a high-quality mass transit system which would not be viable in a sparser area.

Finally, transport demand and supply have very strong dynamic elements. A good deal of the demand for transport is concentrated on a few hours of a day, in particular in urban areas where most of the congestion takes place during specific peak periods. This time-variable character of transport demand makes it more difficult—and interesting—to analyse and forecast. It may well be that a transport system could cope well with the average demand for travel in an area but that it breaks down during peak periods. A number of techniques exist to try to spread the peak and average the load on the system: flexible working hours, staggering working times, premium pricing, and so on. However, peak and off-peak variations in demand remain a central, and fascinating, problem in transport modelling and planning.

1.2.2 Characteristics of Transport Supply

The first distinctive characteristic of transport supply is that it is a service and not a good. Therefore, it is not possible to stock it, for example, to use it in times of higher demand. A transport service must be consumed when and where it is produced, otherwise its benefit is lost. For this reason it is very important to estimate demand with as much accuracy as possible in order to save resources by tailoring the supply of transport services to it.

Many of the characteristics of transport systems derive from their nature as a service. In very broad terms a transport system requires a number of fixed assets, the infrastructure, and a number of mobile units, the vehicles. It is the combination of these, together with a set of rules for their operation, that makes possible the movement of people and goods.

It is often the case that infrastructure and vehicles are not owned nor operated by the same group or company. This is certainly the case of most transport modes, with the notable exception of many rail systems. This separation between supplier of infrastructure and provider of the final transport service generates a rather complex set of interactions between government authorities (central or local), construction companies, developers, transport operators, travellers and shippers, and the general public. The latter plays several roles in the supply of transport services: it represents the residents affected by a new scheme, or the unemployed in an area seeking improved accessibility to foster economic growth; it may even be car owners wishing to travel unhindered through somebody else’s residential area.

The provision of transport infrastructure is particularly important from a supply point of view. Transport infrastructure is ‘lumpy’, one cannot provide half a runway or one-third of a railway station. In certain cases, there may be scope for providing a gradual build-up of infrastructure to match growing demand. For example, one can start providing an unpaved road, upgrade it later to one or two lanes with surface treatment; at a later stage a well-constructed single and dual carriageway road can be built, to culminate perhaps with motorway standards. In this way, the provision of infrastructure can be adjusted to demand and avoid unnecessary early investment in expensive facilities. This is more difficult in other areas such as airports, metro lines, and so on.

Investments in transport infrastructure are not only lumpy but also take a long time to be carried out. These are usually large projects. The construction of a major facility may take from 5 to 15 years from
planning to full implementation. This is even more critical in urban areas where a good deal of disruption is also required to build them. This disruption involves additional costs to users and non-users alike.

Moreover, transport investment has an important political role. For example, politicians in developing countries often consider a road project a safe bet: it shows they care and is difficult to prove wrong or uneconomic by the popular press. In industrialised nations, transport projects usually carry the risk of alienating large numbers of residents affected by them or travellers suffering from congestion and delay in overcrowded facilities. Political judgement is essential in choices of this kind but when not supported by planning, analysis and research, these decisions result in responses to major problems and crises only; in the case of transport this is, inevitably, too late. Forethought and planning are essential.

The separation of providers of infrastructure and suppliers of services introduces economic complexities too. For a start, it is not always clear that all travellers and shippers actually perceive the total costs incurred in providing the services they use. The charging for road space, for example, is seldom carried out directly and when it happens the price does not include congestion costs or other external effects, perhaps the nearest approximation to this being toll roads and modern road-pricing schemes.

The use of taxes on vehicles and fuels is only a rough approximation to charging for the provision of infrastructure.

But, why should this matter? Is it not the case that other goods and services like public parks, libraries and the police are often provided without a direct charge for them? What is wrong with providing free road space? According to elementary economic theory it does matter. In a perfect market a good allocation of resources to satisfy human needs is only achieved when the marginal costs of the goods equal their marginal utility. This is why it is often advocated that the price of goods and services, i.e. their perceived cost, should be set at their marginal cost. Of course real markets are not perfect and ability to pay is not a good indication of need; however, this general framework provides the basis for contrasting other ways of arranging pricing systems and their impact on resource allocation.

Transport is a very important element in the welfare of nations and the well-being of urban and rural dwellers. If those who make use of transport facilities do not perceive the resource implications of their choices, they are likely to generate a balance between supply and demand that is inherently inefficient. Underpriced scarce resources will be squandered whilst other abundant but priced resources may not be used. The fact that overall some sectors of the economy (typically car owners) more than pay for the cost of the road space provided, is not a guarantee of more rational allocation of resources. Car owners probably see these annual taxes as fixed, sunk, costs which at most affect the decision of buying a car but not that of using it.

An additional element of distortion is provided by the number of concomitant- or side-effects associated with the production of transport services: accidents, pollution and environmental degradation in general. These effects are seldom internalised; the user of the transport service rarely perceives nor pays for the costs of cleaning the environment or looking after the injured in transport related accidents. Internalising these costs could also help to make better decisions and to improve the allocation of demand to alternative modes.

One of the most important features of transport supply is congestion. This is a term which is difficult to define as we all believe we know exactly what it means. However, most practitioners do know that what is considered congestion in Leeds or Lampang is often accepted as normal in London or Lagos. Congestion arises when demand levels approach the capacity of a facility and the time required to use it (travel through it) increases well above the average under low demand conditions. In the case of transport infrastructure the inclusion of an additional vehicle generates supplementary delay to all other users as well, see for example Figure 1.1. Note that the contribution an additional car makes to the delay of all users is greater at high flows than at low flow levels.

This is the external effect of congestion, perceived by others but not by the driver originating it. This is a cost which schemes such as electronic road pricing attempt to internalise to help more reasoned decision making by the individual.
1.2.3 Equilibration of Supply and Demand

In general terms the role of transport planning is to ensure the satisfaction of a certain demand D for person and goods movements with different trip purposes, at different times of the day and the year, using various modes, given a transport system with a certain operating capacity. The transport system itself can be seen as made up of:

- an infrastructure (e.g. a road network);
- a management system (i.e. a set of rules, for example driving on the right, and control strategies, for example at traffic signals);
- a set of transport modes and their operators.

Consider a set of volumes on a network V, a corresponding set of speeds S, and an operating capacity Q, under a management system M. In very general terms the speed on the network can be represented by:

$$S = f(Q, V, M)$$ \hspace{1cm} (1.1)

The speed can be taken as an initial proxy for a more general indicator of the level of service (LOS) provided by the transport system. In more general terms a LOS would be specified by a combination of speeds or travel times, waiting and walking times and price effects; we shall expand on these in subsequent chapters. The management system M may include traffic management schemes, area traffic control and regulations applying to each mode. The capacity Q would depend on the management system M and on the levels of investment I over the years, thus:

$$Q = f(I, M)$$ \hspace{1cm} (1.2)

The management system may also be used to redistribute capacity giving priority to certain types of users over others, either on efficiency (public-transport users, cyclists), environmental (electric vehicles) or equity grounds (pedestrians).
Introduction

As in the case of most goods and services, one would expect the level of demand D to be dependent on the level of service provided by the transport system and also on the allocation of activities A over space:

$$D = f\{S, A\} \quad (1.3)$$

Combining equations (1.1) and (1.3) for a fixed activity system one would find the set of equilibrium points between supply and demand for transport. But then again, the activity system itself would probably change as levels of service change over space and time. Therefore one would have two different sets of equilibrium points: short-term and long-term ones. The task of transport planning is to forecast and manage the evolution of these equilibrium points over space and time so that social welfare is maximised. This is, of course, not a simple task: modelling these equilibrium points should help to understand this evolution better and assist in the development and implementation of management strategies M and investment programmes I.

Sometimes very simple cause-effect relationships can be depicted graphically to help understand the nature of some transport problems. A typical example is the car/public-transport vicious circle depicted in Figure 1.2.

![Figure 1.2 Car and public-transport vicious circle](image)

Economic growth provides the first impetus to increase car ownership. More car owners means more people wanting to transfer from public transport to car; this in turn means fewer public-transport passengers, to which operators may respond by increasing the fares, reducing the frequency (level of service) or both. These measures make the use of the car even more attractive than before and induce more people to buy cars, thus accelerating the vicious circle. After a few cycles (years) car drivers are facing increased levels of congestion; buses are delayed, are becoming increasingly more expensive and running less frequently; the accumulation of sensible individual decisions results in a final state in which almost everybody is worse off than originally.

Moreover, there is a more insidious effect in the long term, not depicted in Figure 1.2, as car owners choose their place of work and residence without considering the availability (or otherwise) of public transport. This generates urban sprawl, low density developments that are more difficult and expensive to serve by more efficient public transport modes. This is the ‘development trap’ that leads to further congestion and a higher proportion of our time spent in slow moving cars.
This simple representation can also help to identify what can be done to slow down or reverse this vicious circle. These ideas are summarised in Figure 1.3. Physical measures like bus lanes or other bus-priority schemes are particularly attractive as they also result in a more efficient allocation of road space. Public transport subsidies have strong advocates and detractors; they may reduce the need for fare increases, at least in the short term, but tend to generate large deficits and to protect poor management from the consequences of their own inefficiency. Car restraint, and in particular congestion charging, can help to internalise externalities and generate a revenue stream that can be distributed to other areas of need in transportation.

![Figure 1.3](image)

The type of model behind Figures 1.2 and 1.3 is sometimes called a *structural model*, as discussed in Chapter 12; these are simple but powerful constructs, in particular because they permit the discussion of key issues in a fairly parsimonious form. However, they are not exempt from dangers when applied to different contexts. Think, for example, of the vicious circle model in the context of developing countries. Population growth will maintain demand for public transport much longer than in industrialised countries. Indeed, some of the bus flows currently experienced in emerging countries are extremely high, reaching 400 to 600 buses per hour one-way along some corridors. The context is also relevant when looking for solutions; it has been argued that one of the main objectives of introducing bus-priority schemes in emerging countries is not to protect buses from car-generated congestion but to organise bus movements (Gibson et al. 1989). High bus volumes often implement a *de facto* priority, and interference between buses may become a greater source of delay than car-generated congestion. To be of value, the vicious circle model must be revised in this new context.

It should be clear that it is not possible to characterise all transport problems in a unique, universal form. Transport problems are context dependent and so should be the ways of tackling them. Models can offer a contribution in terms of making the identification of problems and selection of ways of addressing them more solidly based.

1.3 Modelling and Decision Making

1.3.1 Decision-making Styles

Before choosing a modelling framework one needs to identify the general decision-making approach adopted in the country, government or decision unit. It must be recognised that there are several