Cleft Palate Speech

Assessment and Intervention

Edited by Sara Howard & Anette Lohmander
Cleft Palate Speech
Cleft Palate Speech: Assessment and Intervention

Sara Howard
University of Sheffield, Department of Human Communication Sciences, Sheffield, UK

Anette Lohmander
Karolinska Institutet, Department of Clinical Science, Intervention and Technique, Division of Speech and Language Pathology, Stockholm, Sweden
Contents

List of Contributors xi
Preface xvii

Part One Speech Production and Development 1
Sara Howard and Anette Lohmander

1 Physical Structure and Function and Speech Production
Associated with Cleft Palate 5
Martin Atkinson and Sara Howard
1.1 Introduction 5
1.2 The Hard and Soft Palates and the Velopharynx 6
1.3 The Tonsils and Adenoids 9
1.4 The Larynx 11
1.5 The Jaws, Dentition and Occlusion 12
1.6 Symmetry: Structure and Function 15
1.7 The Tongue 16
1.8 The Lips 18
1.9 Summary: Compensations Across Systems 19
References 19

2 The Development of Speech in Children with Cleft Palate 23
Kathy L. Chapman and Elisabeth Willadsen
2.1 Overview 23
2.2 The Impact of Clefting on Speech Production 24
2.3 Variables Impacting Speech Development for Young Children
with Cleft Palate 25
2.4 Speech Development: Birth to Age Five 26
2.5 Conclusion 35
References 36

3 The Influence of Related Conditions on Speech
and Communication 41
Christina Persson and Lotta Sjögreen
3.1 Introduction 41
3.2 Conditions Related to Structural Etiologies 42
3.3 Conditions Related to Neurological Aetiology 47
3.4 Conditions Related to a Combination of Structural and Neurological Aetiology 49
3.5 Clinical Implications 50
References 50

4 Surgical Intervention and Speech Outcomes in Cleft Lip and Palate 55
Anette Lohmander
4.1 Introduction 55
4.2 Basics of Surgery on Cleft Palate 57
4.3 Basics of Outcomes 64
4.4 Speech Outcomes 65
4.5 Conclusion 69
Appendix 4.A Review of Evidence and Methodology in Studies of Speech Outcome in Individuals Born with Cleft Lip and Palate 70
References 82

5 Secondary Management and Speech Outcome 87
John E. Riski
5.1 Introduction 87
5.2 Secondary Surgical Management of Velopharyngeal Incompetence 88
5.3 Secondary Pharyngeal Flap 88
5.4 Posterior Pharyngeal Wall Augmentation by Muscle Transposition 91
5.5 Studies Comparing Treatments of VPI 94
5.6 Posterior Pharyngeal Wall Augmentation by Implants and Injections 95
5.7 Velarplasty 96
5.8 Other Considerations in Managing VPI 97
5.9 Complications Secondary to Pharyngoplasties 99
5.10 Conclusions 99
References 100

6 Cleft Palate Speech in the Majority World: Models of Intervention and Speech Outcomes in Diverse Cultural and Language Contexts 105
Debbie Sell, Roopa Nagarajan and Mary Wickenden
6.1 Introduction 105
6.2 Speech Outcomes in a Majority World Context 106
6.3 Different Models of Provision 109
6.4 Attitudes/Cultural Aspects 115
6.5 Conclusion 119
References 119

Part Two Speech Assessment and Intervention 123
Anette Lohmander and Sara Howard

7 Phonetic Transcription for Speech Related to Cleft Palate 127
Sara Howard
CONTENTS

7.1 Introduction 127
7.2 What is Phonetic Transcription? 128
7.3 Why Transcribe? 129
7.4 What to Transcribe and How to Transcribe It 130
7.5 Features of Cleft Speech Production 131
7.6 Pitfalls of Transcription 134
7.7 Conclusion 138
Appendices 139
References 142

8 Instrumentation in the Analysis of the Structure and Function of the Velopharyngeal Mechanism 145
Debbie Sell and Valerie Pereira
8.1 Introduction 145
8.2 Visualization of the Velopharyngeal Mechanism 147
8.3 Multiview Videofluoroscopy 147
8.4 Nasendoscopy Procedure 151
8.5 Magnetic Resonance Imaging (MRI) 155
8.6 Variability in Practice 158
8.7 Future 162
References 162

9 Cross Linguistic Perspectives on Speech Assessment in Cleft Palate 167
Gunilla Henningsson and Elisabeth Willadsen
9.1 Introduction 167
9.2 Vulnerable Speech Sounds 168
9.3 Language Background of the Listener Assessing the Speech of Children with Cleft Palate 170
9.4 What Is Known about More Unfamiliar Languages? 173
9.5 Cross Linguistic Speech Samples 173
9.6 Influence on Assessment of Language Acquisition in the Young Child with Cleft Palate 176
9.7 Conclusion 177
References 177

10 Voice Assessment and Intervention 181
Lesley Cavalli
10.1 Introduction 181
10.2 Defining a Voice Disorder 181
10.3 Assessment 184
10.4 Instrumental Assessment 189
10.5 Vocal Handicap Measures 190
10.6 Treatment 191
10.7 Conclusion 195
References 196

11 Nasality – Assessment and Intervention 199
Triona Sweeney
CONTENTS
11.1 Introduction 199
11.2 Perceptual Assessment of Nasality and Nasal Airflow Errors 205
11.3 Instrumental Assessment of Nasality and Nasal Airflow Errors 207
11.4 Interpreting Results 211
11.5 Intervention 214
11.6 Conclusion 216
Appendix 11.A Temple Street Scale of Nasality and Nasal Airflow Errors 217
References 217

12 Articulation – Instruments for Research and Clinical Practice 221
Fiona E. Gibbon and Alice Lee
12.1 Introduction 221
12.2 Electropalatography (EPG) 222
12.3 Imaging Techniques 228
12.4 Motion Tracking 233
12.5 Conclusion 235
Acknowledgement 235
References 235

13 Psycholinguistic Assessment and Intervention 239
Joy Stackhouse
13.1 Introduction 239
13.2 What is a Psycholinguistic Approach? 240
13.3 A Psycholinguistic Assessment Framework 242
13.4 Intervention from a Psycholinguistic Perspective 245
13.5 Literacy: Phonological Awareness and Spelling 250
13.6 Summary 254
References 255

14 Early Communication Assessment and Intervention 259
Nancy Scherer and Brenda Louw
14.1 Introduction 259
14.2 Assessment 260
14.3 Intervention 267
References 272

15 Phonological Approaches to Speech Difficulties Associated with Cleft Palate 275
Anne Harding-Bell and Sara Howard
15.1 Introduction 275
15.2 Variability, Variation and Compensation 277
15.3 Classification of Speech Difficulties Related to Cleft Palate 278
15.4 Phonological Assessment of Speech Data Related to Cleft Palate 278
15.5 Phonological Consequences of Speech Production Related to Cleft Palate 279
15.6 Intervention 283
15.7 Summary 287
References 288

16 Speech Intelligibility 293
Tara L. Whitehill, Carrie L. Gotzke and Megan Hodge
<table>
<thead>
<tr>
<th>16.1</th>
<th>Introduction</th>
<th>293</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2</td>
<td>Definition of Intelligibility and Related Concepts</td>
<td>294</td>
</tr>
<tr>
<td>16.3</td>
<td>Measurement Issues</td>
<td>294</td>
</tr>
<tr>
<td>16.4</td>
<td>Studies of Intelligibility in Speakers with Cleft Palate</td>
<td>296</td>
</tr>
<tr>
<td>16.5</td>
<td>Current and Future Developments</td>
<td>298</td>
</tr>
<tr>
<td>16.6</td>
<td>Conclusion</td>
<td>300</td>
</tr>
<tr>
<td>References</td>
<td>301</td>
<td></td>
</tr>
</tbody>
</table>

17 Communicative Participation
Christina Havstam and Anette Lohmander

17.1	Introduction	305
17.2	ICF	306
17.3	Communicative Participation	307
17.4	Conclusions and Clinical Implications	312
References	312	

18 Evaluation and Evidence-Based Practice
Linda D. Vallino-Napoli

18.1	Introduction	317
18.2	Intervention for Speech Disorders	318
18.3	Evidence-Based Practice	319
18.4	The Systematic Review Process	323
18.5	Evidence Findings Establishing Therapy Effectiveness	325
18.6	Instrumentation – Visual Feedback	349
18.7	Surgery	350
18.8	Comments about Intervention Effectiveness	351
18.9	Intervention and the International Classification of Function (ICF)	352
18.10	Research Designs for Intervention Studies	352
18.11	Conclusions	352
Appendix 18.A	Commonly Used Evidence Hierarchies for Intervention Studies	354
References	354	

Index 359
List of Contributors

Martin Atkinson
Martin Atkinson, PhD, is Professor of Dental Anatomy Education in the Academic Division of Oral Pathology, University of Sheffield, UK. He has been involved in teaching anatomy, physiology and neuroscience to Speech and Language therapy students in Sheffield since the inception of the course in Sheffield in 1978 and has won several awards for his teaching innovations. He is co-author of ‘Basic Medical Science for Speech and Language Therapy Students’ (John Wiley & Sons Ltd).

Lesley Cavalli
Lesley Cavalli, MSc, Cert MRCSLT, currently combines her clinical work at Great Ormond Street Hospital, UK, with a lectureship in voice at University College, London. She has specialised in voice disorders throughout her career, in her clinical work, teaching and research. Her current clinical post involves the tertiary assessment and treatment of children and young people with a wide range of ENT-related conditions. She is the lead Speech and Language Therapist for the Joint Paediatric Voice Clinic at Great Ormond Street Hospital and overall SLT Service for ENT.

Kathy L. Chapman
Kathy L. Chapman, PhD is currently a Professor in the Department of Communication Sciences and Disorders at the University of Utah, USA. She currently teaches courses in phonological disorders in children, cleft palate, and research methods. Her research has focused on children with specific language impairment and language and phonological development of young children with cleft palate. She is especially interested in the impact of clefting on the developing speech sound system. Dr Chapman has numerous data-based articles and presentations related to these areas of study.

Fiona E. Gibbon
Fiona E. Gibbon, PhD, is a speech and language therapist and Professor and Head of Speech and Hearing Sciences at University College Cork, Ireland. Her research focuses on the use of instrumentation to diagnose and treat speech disorders, particularly those associated with cleft palate. She has published over seventy papers and book chapters, and has been awarded a number of research council and charity funded grants to investigate cleft palate speech. She is a Fellow of the Royal College of Speech and Language Therapists.
Carrie L. Gotzke
Carrie L. Gotzke is currently a Doctoral candidate in the Faculty of Rehabilitation Medicine at the University of Alberta, Canada. Her research interests include paediatric resonance disorders, perceptual-acoustic correlates of speech intelligibility, and measures of speech function and outcome for children with cleft palate.

Anne Harding-Bell
Anne Harding-Bell, PhD, East of England Cleft Lip and Palate Network, UK, and University teacher in the Department of Human Communication Sciences at University of Sheffield, UK. Anne led the first post graduate cleft palate studies course in Cambridge, UK, and now contributes to postgraduate teaching on distance learning courses in cleft palate at the University of Sheffield. Her research interests centre around transcribing, characterising, categorising and treating cleft speech and pre-speech patterns.

Christina Havstam
Christina Persson, SLP, PhD, is a lecturer at the Sahlgrenska academy at Gothenburg University and clinical Speech-Language Pathologist at Sahlgrenska University Hospital, Gothenburg, Sweden. Her main interest in clinical work, teaching and research is speech disorders in patients born with cleft lip and palate or 22q11 deletion syndrome. She has been a member of Gothenburg cleft palate team since 1991 and of the 22q11 deletion syndrome team since 1997.

Gunnilla Henniningsson
Gunilla Henningsson, PhD, is Associate Professor/Senior Lecturer in the Division of Speech and Language Pathology, Department of Clinical Science Intervention and Technology at the Karolinska Institute, Stockholm, Sweden. Her research is in the areas of velopharyngeal function and the development of universal speech samples for reporting speech outcomes in individuals with cleft palate.

Megan Hodge
Megan Hodge, PhD, is currently a Professor and heads the Children’s Speech Intelligibility, Research and Education Laboratory (CSPIRE) in the Faculty of Rehabilitation Medicine at the University of Alberta, Canada. Her research interests include developmental aspects of normal and disordered speech perception and production and perceptual-acoustic correlates of speech intelligibility.

Sara Howard
Sara Howard, PhD, is currently Reader in Clinical Phonetics in the Department of Human Communication Sciences at the University of Sheffield, UK, and an ESRC Research Fellow. Her research interests span clinical phonetics and phonology (with a particular interest in phonetic transcription and electropalatography) and developmental speech disorders, including cleft palate. She teaches on a series of postgraduate courses in speech disorders and cleft palate and is currently President of the International Clinical Phonetics and Linguistics Association.
Alice Lee
Alice Lee, PhD, is a Lecturer in the Department of Speech and Hearing Sciences, University College Cork, Ireland. Her research interest includes perceptual and instrumental investigations of speech disorders in individuals with structural anomalies and neurological impairment; and listener training for perceptual judgements of speech disorders. Her recent research and publications focus on electropalatographic studies of normal articulation and articulation disorders associated with cleft palate, as well as prosodic disturbance in Cantonese speakers with aphasia.

Anette Lohmander
Anette Lohmander, PhD, is a Professor and Head of the Division of Speech and Language Pathology, Karolinska Institutet, Stockholm, Sweden, and the specialist speech-language pathologist at Karolinska University Hospital. Her research interests in the area of cleft palate focus on the impact of surgical procedure, particularly on speech and language (and hearing) development and the development of efficient intervention procedures.

Brenda Louw
Brenda Louw, DPhil., is currently Professor and Chair of the Department Audiology and Speech-Language Pathology, East Tennessee State University, USA. Her research interests in cleft palate focus on early intervention, cross-cultural service delivery models and speech assessment. She is the Vice-President of the Pan African Association for Cleft Lip and Palate.

Roopa Nagarajan
Roopa Nagarajan, PhD, is currently Professor and Chairperson, Department of Speech, Language and Hearing Sciences, Sri Ramachandra University, Chennai, India. She has been involved in the development of community-based rehabilitation services for individuals with cleft lip and palate in rural India and is currently the President of the Indian Society of Cleft Lip, Palate and Craniofacial Anomalies.

Valerie Pereira
Valerie Pereira is currently undertaking a PhD in the Institute of Child Health, University College London, UK, and is a specialist speech and language therapist with Great Ormond Street Hospital for Children and the North Thames Regional Cleft Service in London. Her clinical and research interests include the instrumental assessment and measurement of speech outcomes, with a particular interest in the impact of orthognathic surgery on speech in cleft lip and palate.

Christina Persson
Christina Persson, SLP, PhD, is a Lecturer at the Sahlgrenska Academy at Gothenburg University and clinical Speech-Language Pathologist at Sahlgrenska University Hospital, Gothenburg, Sweden. Her main interest in clinical work, teaching and research is speech disorders in patients born with cleft lip and palate or 22q11 deletion syndrome. She has been a member of Gothenburg cleft palate team since 1991 and of the 22q11 deletion syndrome team since 1997.
John E. Riski
John E. Riski, PhD, CCC-S, is the Clinical Director of the Center for Craniofacial Disorders and Director of the Speech Pathology Laboratory at Children’s Healthcare of Atlanta, USA. His research encompasses speech outcomes of surgical interventions for children born with cleft lip/palate and craniofacial disorders. He is a Fellow of the American Speech Language and Hearing Association and a past-president of the American Cleft Palate-Craniofacial Association.

Nancy Scherer
Nancy Scherer, PhD, is currently Dean of Clinical & Rehabilitative Health Sciences at East Tennessee State University, USA. Her research interests have focused on early developmental milestones of children with cleft lip and/or palate and children with velocardiofacial syndrome. She has been particularly interested in efficacy studies of early speech and language intervention for children with clefts and craniofacial conditions. She is currently Principal Investigator for a comparative study of the effects of a hybrid early intervention model for children with cleft lip and palate funded by the National Institutes of Health.

Debbie Sell
Debbie Sell, PhD, is the Lead Speech and Language Therapist for the North Thames Regional Cleft Service, Head of Department at Great Ormond Street Hospital NHS Trust and is Honorary Senior Lecturer Institute of Child Health, University College London and Visiting Professor at City University, London, UK. She has been an active clinical researcher in the cleft palate field for over 25 years. She has 50 peer-reviewed publications and has co-edited two books in this field. In 2006 she was awarded an OBE for services to the UK National Health Service.

Lotta Sjögreen
Lotta Sjögreen, PhD, is a speech-language pathologist at Mun-H-Center National Orofacial Resource Centre for Rare Diseases, Gothenburg, Sweden. Her doctorate was in medical sciences and her research focuses on evaluation and intervention for orofacial dysfunctions in rare diseases.

Joy Stackhouse
Joy Stackhouse, PhD, is Professor of Human Communication Sciences at the University of Sheffield, UK, where she teaches on the Distance Learning Programmes in Speech Difficulties and Cleft Palate. She is a Fellow of the Royal College of Speech and Language Therapists and a chartered psychologist. Along with Professor Bill Wells, she has developed a psycholinguistic approach to the assessment and management of children with speech and literacy difficulties which is used in research and training.

Triona Sweeney
Triona Sweeney, PhD, is the Senior Clinical Specialist Speech and Language Therapist, The Children’s University Hospital, Temple Street, Dublin, Ireland; Lead Speech and Language Therapist on the Dublin Cleft Team; and Adjunct Professor, Speech & Language Therapy Department, University of Limerick, Ireland. Her research interests focus on perceptual and instrumental assessment of nasality and nasal airflow errors, with emphasis on reliability of assessments.
Linda D. Vallino-Napoli
Linda D. Vallino-Napoli, PhD, CCC-SLP/A, FASHA, is Head of the Craniofacial Outcomes Research Laboratory and Senior Research Scientist in the Center for Pediatric Auditory and Speech Sciences at Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA, where she is also a member of the Cleft Palate-Craniofacial team. She is an Adjunct Associate Professor in the Department of Linguistics and Cognitive Science at the University of Delaware. Dr Vallino-Napoli lectures in the area of orofacial anomalies and evidence-based practice and is the author of peer-reviewed articles and book chapters in these areas.

Tara L. Whitehill
Tara L. Whitehill, PhD, is a Professor in the Division of Speech and Hearing Sciences, University of Hong Kong and the specialist speech-language pathologist for the University of Hong Kong/Prince Philip Dental Hospital Cleft Lip and Palate Centre. Her research interests in the area of cleft palate currently focus on speech intelligibility and the relationship between intelligibility and other outcome measures.

Mary Wickenden
Mary Wickenden, PhD, has worked in the United Kingdom and India, specialising in work with young children with complex disabilities, and more recently in Sri Lanka, running the first SLT training course there. Subsequently, building on an interest in cultural aspects of health and disability, she has trained as a medical anthropologist. She is a Senior Research Fellow at the Centre for International Health and Development, University College London, UK, teaching and researching on issues related to children and disability in middle and low income countries.

Elisabeth Willadsen
Elisabeth Willadsen, PhD, is currently an Assistant Professor in the Department of Scandinavian Studies and Linguistics at the University of Copenhagen, Denmark. She currently teaches courses in language development of young children, and cleft palate. Her research focuses on pre-speech and early speech and language development of young children with and without cleft palate, with a special interest in the interaction between early phonological and lexical development in children with cleft palate.
Preface

This book emerged out of conversations which we, the editors, enjoyed over a number of years both at conferences and on visits to each other’s institutions in Sheffield, Gothenburg and, latterly, Stockholm. Observing current developments in research into speech production in cleft palate, we both recognised the need for a book which reflected the increasing breadth of the research being carried out across the world. Whilst important work was being undertaken in the more traditional areas of speech, there was a growing body of research, which recognised the potential of certain aspects of language, to contribute significantly to the field. We were also keen to recognise the importance of cross-linguistic and cross-cultural issues in cleft speech research. In addition, we wanted to broaden our focus to include both the speaker’s own and the listener’s perspective on communication. Thus we chose to use the WHO-ICF framework as a backdrop to all of the work contained in this book. Finally, we aimed to include current evidence of best practice (EBP) regarding both assessment and intervention. Our contributing authors were thankfully very receptive to these ideas, and thus the concepts of the WHO-ICF structure and EBP are given specific attention and have been regularly applied throughout the book.

For one of us, there was also a more specific stimulus for this book: coincident with its development, a set of postgraduate courses in cleft palate were being introduced at the University of Sheffield, and this book was designed, in part, with the needs of these students in mind. From this perspective it can be seen as a companion text to Watson, Sell and Grunwell’s Management of Cleft Palate Speech. Where that book provides a picture of all aspects of the multidisciplinary care of individuals with a cleft, this book focuses specifically on speech, and on assessment and intervention for speech problems associated with a cleft. We have both learnt a lot from conversations with our postgraduate students, who come from all over the world, and hope that this book reflects that learning process and will, in turn, prove useful to all of our future students.

We have clearly been very lucky that such a strong and inspiring set of researchers agreed to collaborate with us on this project. It has been a pleasure and a privilege to work with them. And we have been lucky, also, in having a series of very supportive (and unflappable!) editors at Wiley-Blackwell, who guided us patiently throughout the process, with all its attendant hiccups and delays. Our families should get a mention, too, for their support and forbearance!

Sara Howard and Anette Lohmander
Part One

Speech Production and Development

Sara Howard¹ and Anette Lohmander²

¹University of Sheffield, Department of Human Communication Sciences, Sheffield, S10 2TA, UK
²Karolinska Institutet, Department of Clinical Science, Intervention and Technique, Division of Speech and Language Pathology, SE 141 86, Stockholm, Sweden

In this book we examine the nature and impact of speech difficulties associated with cleft. As with all developmental speech impairments, cleft speech problems have experienced a significant broadening of perspective over the last century. Following a long period when all children’s speech difficulties were seen as articulatory in origin, and as being wholly interpretable through a medical model (Macbeth, 1967), there has been a gradual but welcome transformation to the current position, where much more emphasis is placed on other potential areas of difficulty (including phonology, language, literacy and interpersonal communication and interaction, as well as psychological and psychosocial implications). Developmental speech impairment is thus now situated within a social context. This fits comfortably with developments over the last decade or so, which have sought to classify and consider speech, language and communication impairments using the ICF (the International Classification of Function, Disability and Health; WHO (World Health Organization), 2001). In this book we use the ICF throughout as a point of reference.

Even a glance at the structure and headings used by the ICF indicates how useful it can be for extending our understanding of the possible impact of a communication...
impairment associated with cleft palate. There are two main parts (‘Functioning and Disability’ and ‘Contextual Factor’) with subcomponents which include, for the former, Body Structures, Body Functions, and Activity and Participation, and for the latter, Environmental Factors and Personal Factors. Such is the value of this framework that in the United Kingdom the Royal College of Speech and Language Therapists, in its manual on commissioning and planning services for cleft palate and velopharyngeal impairment (VPI), provides a detailed description of the impact of a cleft which relates specifically to the ICF classification (RCSLT (Royal College of Speech and Language Therapists), 2009). The ICF provides what McLeod (2006) describes as as ‘biopsychosocial view of health’ and, thus, of communication impairment.

It is noteworthy, of course, that unlike many types of developmental speech impairment, cleft speech problems do, indeed, have a physical basis, and thus the ICF subcomponent Body Structures is relevant in a way which is not the case for most children with speech difficulties. Thus, we need to understand what the anatomical and functional constraints on speech production are likely to be, as well as being aware of how physical structure and function are likely to be affected, over the lifespan, and over the course of speech and language development, by surgical intervention. Chapters in the following section consider each of these issues and also reflect on current evidence for different methods of assessment and intervention. The ways in which speech development for a child with a cleft palate are likely to be similar to and different from speech development in children without a cleft is clearly a hugely important area, which is also addressed in this section.

To make clinical, diagnostic decisions and to plan effective intervention, we need to be able to distinguish between speech difficulties directly attributable to the cleft and its consequences (including the likelihood of hearing impairment), and the coexistence of more general phonological delay or disorder. Such diagnosis can only take place if we have detailed information about the typical course(s) of speech and language development for children with a cleft. The ICF component ‘Body Functions’ is relevant here, including, as it does, intellectual and cognitive function, and temperament and personality, as well as specific aspects of speech production, including articulation, voice, fluency and also hearing (McLeod and Bleile, 2004).

In seeking a wider, more holistic perspective on the impact of a speech impairment, the ICF can also help us to understand the effects of a cleft on a child’s ability to participate more broadly in social interaction, across different contexts, including vital areas such as education, family and social life. The ICF components remind us that a communication impairment is not just the property of an individual, but is constantly negotiated between different individuals, in different contexts: a child’s intelligibility, for example, will differ depending on when, why, where and with whom they are talking. As the title of McCormack et al.’s article (2010) eloquently puts it ‘My speech problem, your listening problem and my frustration …’. Later chapters in this book deal in detail with intelligibility and with the child’s ability to participate in society through effective use of communicate.

The second of the main parts of the ICF, Contextual Factors, encourages us to consider the impact of a cleft palate and cleft speech difficulties in terms of the systems, policies, services and attitudes existing in a particular society, country or culture that will exert an influence on the support a child is likely to receive. Taking this perspective, one can quickly see how the impact of a cleft could be very different in the developed versus
developing (minority versus majority) world, where infrastructure and attitudes may differ significantly. One of the chapters in the following section addresses this important issue. Personal factors, such as age, gender, race, character and general psychological resilience and well-being, will also need to be taken into account when considering the impact of a cleft. Some children with severe speech disorders will nevertheless prove remarkably resilient in the face of their difficulties, whereas others may need specific help to adapt to even mild speech problems (Nash, 2006).

The ICF, then, provides us with a framework which can extend our thinking about the impact of a speech impairment associated with cleft palate and encourage us to take a more holistic view of individuals thus affected (Ma, Threats and Worrall, 2008). The material we cover in this book endeavours to do just that.

References

1

Physical Structure and Function
and Speech Production Associated
with Cleft Palate

Martin Atkinson1 and Sara Howard2

1University of Sheffield, School of Clinical Dentistry, Sheffield, S10 2TA, UK
2University of Sheffield, Department of Human Communication Sciences, Sheffield, S10 2TA, UK

1.1 Introduction

Speakers with a cleft lip and/or palate contend with unusual structure and function of the vocal organs from birth and physical abnormalities may persist after surgical intervention. (Surgery itself, for many individuals with a cleft, consists of a series of interventions over an extended period, so both structural and functional changes to the speech apparatus may be a feature of the entire period of speech development). These differences and changes may have a profound effect on speech production and speech development, and cleft lip and palate is one area where a significant proportion of the speech difficulties encountered (although not necessarily all) can be traced back in some way to an anatomical or physiological cause. This chapter explores some of the links between atypical vocal organ structure and function in cleft lip and palate, and those many and varied features encountered in speech production associated with cleft palate. Of course, some of these issues are also dealt with in other chapters in this book (Chapters 3, 5, 8, 10, 11 and 12), so the reader is directed, where appropriate, to seek further information from these chapters; this chapter, therefore, focuses on those issues not discussed.
PHYSICAL STRUCTURE AND FUNCTION AND SPEECH PRODUCTION

elsewhere in the book. More detailed accounts of the physical structures and functions associated with speech production can be found in Atkinson and White (1992) and Atkinson and McHanwell (2002).

1.2 The Hard and Soft Palates and the Velopharynx

1.2.1 Anatomy of the Hard and Soft Plate

The palate comprises the rigid bony hard palate anteriorly and the mobile muscular soft plate (velum) posteriorly. The shape of the hard plate is variable but is usually a concave dome. However it may take on a V-shape with the apex superiorly, which narrows the hard palate. This configuration of the hard palate often accompanies a class II malocclusion (Section 1.5.1); as the upper dental arch is narrowed the posterior teeth cannot align along a curved dental arch but follow the V-shape, pushing the anterior teeth forward. The bony plate is formed from components of two pairs of bones; the palatine plates of the maxilla form the anterior two thirds and the horizontal plates of the palatine bones form the remainder. The bones are joined at sutures. A midline suture marks the line of fusion of the two halves of the palate during palatogenesis and terminates anteriorly at the incisive foramen, another landmark relating to the development of the palate. The sutures are, of course, covered in life by the mucosa lining the mouth. However, the site of the incisive foramen is marked by a small incisive papilla visible just behind the central incisor teeth.

The soft palate extends from the posterior border of the hard palate. Four pairs of muscles form the soft palate (Figure 1.1). The tensor veli palatini tenses the velum by exerting a lateral force; these muscles are tendinous within the soft palate and the other muscles are attached to the tendons. The levator veli palatini raises the soft palate. Note that the tensor and levator palatini attach to the Eustachian tube and open it when the velum is raised or tensed, so that fluid drains from the middle ear cavity and air pressure is equalised on the either side of the eardrum. These two muscles are often inefficient in the early stages of cleft palate repair so that the Eustachian tube does not open. Drainage of the middle ear is therefore poor, accounting for the high incidence of ‘glue ear’ in cleft clients. The palatoglossus and palatopharyngeus muscles depress the velum. The soft palate has a backward extension, the uvula which is very variable in shape and size.

1.2.2 Embryology of Palate

In the early embryo, the oral cavity is a slit between the frontonasal process that overlies the developing brain and the first pharyngeal arch. The first arch forms the mandible and associated structures but also the maxilla, including a large component of the palate. The palate develops between the fourth and twelfth week of pregnancy to separate the nasal and oral cavities. It develops from three components that change shape and position from their original location during subsequent growth and development and must fuse together to form the palate. A small triangular component, the primary palate, develops from the frontonasal process as the nasal cavities develop around the fifth week.
The primary palate forms the area behind the four upper incisor teeth only as far back as the incisive foramen. At six weeks, two palatine processes grow in from either side of the first arch. Logically they would be expected to grow horizontally but they actually grow downwards. The reason for this apparent peculiarity is that the tongue develops very early and fills the developing oral cavity, thus deflecting the palatine processes downwards. Around eight weeks, the mandible widens out and the tongue drops into its conventional position, thus no longer impeding the palatine processes. The palatine processes dramatically ‘flip up’ into a horizontal position. This change of orientation, palatal elevation, is not simply a consequence of tongue displacement but depends on the build up of hydrophilic (water binding) chemicals that make the processes turgid. At this stage the three processes are separated by quite wide gaps but over the next two weeks the processes grow and converge. Where they make contact, a chain of reactions is triggered within the epithelial cells covering the processes that kill the cells; this process is known as programmed cell death or apoptosis. The death of the epithelial covering allows the underlying tissues to fuse to complete the palate by twelve weeks post-fertilization. The complete palate is invaded by bone anteriorly to form the hard palate and by muscle posteriorly to form the velum; this process is usually complete by about fifteen weeks (Figure 1.2).

From this brief outline of palatogenesis, it is clear that there are several stages where the processes may be disrupted. Essentially, the requisite building blocks may not develop
or may not grow sufficiently; the palatine processes may not elevate if the specific signals to build up the hydrophilic molecules are not given; the processes may not fuse if molecular signals do not trigger apoptosis or if there is any obstruction present. A palatal cleft may manifest anywhere along the Y-shaped lines of fusion between the primary palate and palatine processes (the arms of the Y) and the two palatine processes (the stem of the Y). It can vary from a cleft uvula to a complete bilateral cleft running along the whole extent of the Y and extending into the upper lip.

Figure 1.2 The development of the palate between 6 and 12 weeks post-fertilization. (a), (c) and (e) are sections taken through from the top of the head to the mandibular arch. (a) and (b) represent palate formation at about 6–7 weeks, (c) and (d) at 8 weeks as the palate elevates and (e) and (f) at 12 weeks when palatal fusion is complete. (b), (d) and (f) show the sequence of events viewed from the oral aspect of the developing palate. (Reproduced with permission from Atkinson & McHanwell, 2002.)
1.2.3 Velopharyngeal Structure and Function in Relation to Speech Production

Sell and Pereira (Chapter 8) and Sweeney (Chapter 11) provide detailed accounts of the effects of velopharyngeal (VP) problems on speech and on their assessment. Here only a brief account of the main speech production difficulties linked to VP difficulties is given. Because all known spoken languages contain both oral and nasal (and in some cases nasalized) sound segments, the ability to valve air appropriately through the oral and/or nasal cavities in close coordination with phonatory and articulatory activity is a vital component of successful speech production. Where inadequate structure or function of the soft palate and velopharyngeal port do not permit this, as is the case for a speaker with a cleft palate, speech problems are likely to emerge. Interestingly, speech production problems associated with VP insufficiency do not necessarily disappear following surgery and VP function may remain atypical into adulthood (Moon et al., 2007; Mani et al., 2010). Not only range of movement and the ultimate ability to create an adequate seal at the VP port, but also speed and timing of VP movements will affect airflow and resonance (Dotevall, Ejnell and Baker, 2001; Warren, Dalston and Mayo, 1993). Although Kuehn and Moller (2000, p. 351) note that ‘excessive nasality or hypernasality is probably the signature characteristic of persons with cleft palate’, Peterson-Falzone et al. (2005) state that difficulties achieving velopharyngeal closure can affect not only resonance, but also articulation and phonation, thus providing a reminder of the pervasive consequences of VP difficulties for speech production. Each of the five universal speech parameters proposed by Henningsson et al. (2008) for reporting on the speech of individuals with a cleft palate (hypernasality; hyponasality; audible nasal emission and/or nasal turbulence; consonant production errors; voice disorder) may be traced in some way or another to VP insufficiency.

1.3 The Tonsils and Adenoids

Because speakers with a cleft palate are particularly vulnerable to resonance problems, those structures which may impede velopharyngeal closure are of particular significance for these individuals. The tonsils and adenoids are two such structures, comprising aggregates of lymphoid tissue lying just under the mucosal lining of the pharynx. Lymphoid tissue is involved in defence mechanisms designed to fight bacterial and viral infections, acting as a first line of defence against pathogens entering through the nose or mouth. The paired tonsils (properly termed the palatine tonsils) lie just behind the palatoglossal arch (the anterior pillar of the fauces) that demarcates the junction between the oral cavity and pharynx, and immediately below the lateral attachments of the velum to the tongue and pharynx (Figure 1.3). The adenoids (the pharyngeal tonsils) lie on the posterior wall of the pharynx, behind the nasal cavities, at or just above the point at which the velum makes contact with the pharyngeal wall during elevation and closure.

Although the tonsils do not generally have any effect on articulation, resonance or voice, they may enlarge considerably if they become infected. This, in turn, may cause hypernasality, by obstructing velopharyngeal closure, and has also been linked to the fronting of target velar consonants, by restricting space in the rear of the oral cavity.
Where a tonsillectomy is performed, significant improvements in speech and voice usually follow (Mora et al., 2009), without any great risk of velopharyngeal inadequacy (Peterson-Falzone, Hardin-Jones and Karnell, 2010).

Compared with the tonsils, the effect of the adenoids on speech production is less clear-cut, due to the fact that for all speakers the adenoids change over time, both in size and in location relative to the other vocal organs. They grow very rapidly after birth to reach their maximum size at about five to six years of age, thereafter decreasing, and they shift from a vertical to a horizontal orientation. Peterson-Falzone, Hardin-Jones and Karnell (2010) provide a reminder that the adenoids are crucial for velopharyngeal (VP) closure in young children, and Maryn et al. (2004) suggest that this is so significant that ‘veloadenoidal closure’ should be added as a fifth category to the different types of VP closure proposed by Skolnick et al. (1975). As developmental structural changes take place very gradually, children usually accommodate to them without problems and there is no effect on speech production. However, for children with a submucous cleft or borderline VP inadequacy, the presence of the adenoidal pad may have been critical to achieving adequate VP closure and in these children the normal decrease in size may result in resonance problems. Conversely, enlarged adenoids may cause hyponasality and open mouth breathing, and in some cases therefore surgery may be indicated. However, the sudden structural changes brought about by an adenoidealctomy may then cause hypernasality, as the child fails to adjust to the increased velopharyngeal port space (Witzel et al., 1986).

(Maryn et al., 2004). Where a tonsillectomy is performed, significant improvements in speech and voice usually follow (Mora et al., 2009), without any great risk of velopharyngeal inadequacy (Peterson-Falzone, Hardin-Jones and Karnell, 2010).

Compared with the tonsils, the effect of the adenoids on speech production is less clear-cut, due to the fact that for all speakers the adenoids change over time, both in size and in location relative to the other vocal organs. They grow very rapidly after birth to reach their maximum size at about five to six years of age, thereafter decreasing, and they shift from a vertical to a horizontal orientation. Peterson-Falzone, Hardin-Jones and Karnell (2010) provide a reminder that the adenoids are crucial for velopharyngeal (VP) closure in young children, and Maryn et al. (2004) suggest that this is so significant that ‘veloadenoidal closure’ should be added as a fifth category to the different types of VP closure proposed by Skolnick et al. (1975). As developmental structural changes take place very gradually, children usually accommodate to them without problems and there is no effect on speech production. However, for children with a submucous cleft or borderline VP inadequacy, the presence of the adenoidal pad may have been critical to achieving adequate VP closure and in these children the normal decrease in size may result in resonance problems. Conversely, enlarged adenoids may cause hyponasality and open mouth breathing, and in some cases therefore surgery may be indicated. However, the sudden structural changes brought about by an adenoidealctomy may then cause hypernasality, as the child fails to adjust to the increased velopharyngeal port space (Witzel et al., 1986).