PEDIATRIC SOLID ORGAN TRANSPLANTATION
This book is dedicated to the memory of Amir H. Tejani, MD (1933–2002) whose inspiration and foresight led to the first edition of this textbook, *Pediatric Solid Organ Transplantation*, and to the founding of The International Pediatric Transplant Association (IPTA).
Pediatric Solid Organ Transplantation
SECOND EDITION

EDITED BY

Richard N. Fine
Dean, School of Medicine, MD
Distinguished Professor of Pediatrics
Stony Brook University School of Medicine
Stony Brook, New York 11794-8111
USA

Steven A. Webber
Professor of Pediatrics, MBChB, MRCP
University of Pittsburgh School of Medicine
Division of Cardiology
Children’s Hospital
3705 Fifth Avenue
Pittsburgh, PA 15213
USA

Kim M. Olthoff
Associate Professor of Surgery, MD, FACS
Director, Liver Transplant Program
University of Pennsylvania and the Children’s
Hospital of Philadelphia
2 Dulles, 3400 Spruce Street
Philadelphia, PA 19104
USA

Deirdre A. Kelly
Professor of Paediatric Hepatology,
MD, FRCPI, FRCP, FRCPCH
The Liver Unit
Birmingham Children’s Hospital NHS Trust
Steelhouse Lane,
Birmingham, B4 6NH
UK

William E. Harmon
Professor of Pediatrics, MD
Division of Nephrology
Children’s Hospital Boston
300 Longwood Avenue, Hunn-319
Boston, MA 02115
USA

Blackwell Publishing
Contents

Preface to the Second Edition, viii
Preface to the First Edition, ix
Contributors, x

Section 1 Immunology and Genetics

1 The Immune Response to Organ Allografts
 Manikkam Suthanthiran, 3

2 Allorecognition Pathways
 Nader Najafian and Mohamed H. Sayegh, 12

3 Costimulation
 Elizabeth Ingulli and David M. Briscoe, 21

4 The HLA System and Histocompatibility Testing
 for Organ Transplantation
 René J. Duquesnoy, 30

5 Gene Polymorphisms and Pharmacogenomics
 Robyn Temple-Smolkin, Gilbert J. Burckart and
 Adriana Zeevi, 40

6 Genomics and Proteomics as Research Tools
 Elaine S. Mansfield and Minnie M. Sarwal, 47

7 Tolerance: A Review of its Mechanisms in the
 Transplant Setting
 Alan D. Salama, 56

Section 2 Immunosuppression and
its Complications

8 Mechanisms of Action of Immunosuppressive Agents
 Alan M. Krensky, 69

9 Induction and Maintenance Immunosuppression
 William E. Harmon, 77

10 Novel Immunosuppressants
 Flavio Vincenti and Ryutaro Hirose, 89

11 Therapies for the Allosensitized Patient
 Alice Peng and Stanley C. Jordan, 95

12 Infections Post-Transplantation
 Michael Green and Marian G. Michaels, 103

13 Post-Transplant Lymphoproliferative Disorders
 and Malignancy
 Steven A. Webber and Michael Green, 114

14 Organ Toxicities
 Vikas R. Dharnidharka, Carlos E. Araya and
 Mark R. Benfield, 124

Section 3 Kidney Transplantation

15 Historical Notes
 Vassilios E. Papalois and John S. Najarian, 139

16 Recipient Characteristics
 Sharon M. Bartosh, 146

17 Evaluation of the Candidate
 Uptal D. Patel and Susan E. Thomas, 153

18 Donor Evaluation, Surgical Technique and
 Perioperative Management
 Zoran Vukcevic, Demetrius Ellis, Mark Bellinger and
 Ron Shapiro, 161

19 Pathology of the Kidney Allograft
 Arthur H. Cohen, 167

20 Post-Transplant Management
 Jodi M. Smith and Ruth A. McDonald, 174

21 Outcomes and Risk Factors
 Alicia M. Neu and Barbara A. Fivush, 185
Section 4 Liver Transplantation

22 Historical Notes
Silvio Nadalin, Massimo Malagó and Christoph E. Broelsch, 193

23 Recipient Characteristics
Udeme D. Ekong, Estella M. Alonso and Peter F. Whittington, 199

24 Evaluation of the Candidate
Binita M. Kamath and Elizabeth B. Rand, 207

25 Donor Evaluation, Surgical Technique and Perioperative Management
Jean C. Emond, Steven J. Lobritto and Dominique Jan, 213

26 Pathology of the Liver Allograft
Maria Parizhskaya and Ronald Jaffe, 226

27 Post-Transplant Management
Kyle Soltys, Robert Squires, Rakesh Sindhi and George V. Mazariegos, 232

28 Outcomes and Risk Factors
Marc L. Melcher and John P. Roberts, 242

Section 5 Heart Transplantation

29 Historical Notes
Steven A. Webber and William H. Neches, 253

30 Recipient Characteristics
Charles E. Canter and David C. Naftel, 259

31 Evaluation of the Candidate
Gerard J. Boyle, 265

32 Donor Evaluation, Surgical Technique and Perioperative Management
Frank A. Pigula and Steven A. Webber, 271

33 Pathology of the Cardiac Allograft
Maria Parizhskaya, 282

34 Post-Transplant Management
Shelley D. Miyamoto and Biagio A. Pietra, 288

35 Outcomes and Risk Factors
W. Robert Morrow and Richard E. Chinnock, 299

Section 6 Lung and Heart-Lung Transplantation

36 Historical Notes
Eric N. Mendeloff, 309

37 Recipient Characteristics
Eithne F. MacLaughlin, 314

38 Evaluation of the Candidate
Albert Faro, Gary Visner and George B. Mallory, 318

39 Donor Evaluation, Surgical Technique and Perioperative Management
Charles B. Huddleston, 326

40 Pathology of the Lung Allograft
Paul S. Dickman, 336

41 Post-Transplant Management
Marilyn S. Woo, 340

42 Outcomes and Risk Factors
Stuart C. Sweet, 349

Section 7 Intestinal Transplantation

43 Historical Notes
Jorge Reyes, 359

44 Recipient Characteristics
Jean F. Botha and Debra L. Sudan, 361

45 Evaluation of the Candidate
Stuart S. Kaufman, 365

46 Donor Evaluation, Surgical Technique and Perioperative Management
Thomas M. Fishbein and Cal S. Matsumoto, 372

47 Pathology of the Intestinal Allograft
Maria Parizhskaya and Ronald Jaffe, 383

48 Post-Transplant Management
Erick Hernandez, Tomoaki Kato, Andreas G. Tzakis and John F. Thompson, 387

49 Outcomes and Risk Factors
Douglas G. Farmer, 394
Section 8 Special Issues after Pediatric Transplantation

50 Growth and Puberty
 Franz Schaefer, 403

51 Cognitive Development
 Erik Qvist, Hannu Jalanko and Christer Holmberg, 412

52 Psychosocial Adaptation and Adherence
 Eyal Shemesh, 418

53 Pregnancy
 Vincent T. Armenti, Michael J. Moritz and John M. Davison, 425

54 Gynecologic Issues
 Gina S. Sucato and Pamela J. Murray, 437

55 Transition to Adult Care
 Janet McDonagh and Deirdre A. Kelly, 446

Index, 454

Plate sections face pages 224 & 225 and 384 & 385
Preface to the Second Edition

Over six years has passed since the first edition of *Pediatric Solid Organ Transplantation* was published. This book remains the only textbook devoted to the field of pediatric transplantation. The concept for the first edition was that of the late Amir Tejani, an individual who relentlessly promoted the field of pediatric transplantation.

Transplantation of the major organs has now become routine in many countries across the globe, and some of the best results of transplantation are now being achieved in the youngest of recipients, including neonates and infants. In parallel with the growth and success of transplantation in children, the International Pediatric Transplant Association (IPTA), and its journal *Pediatric Transplantation*, have both flourished since the first edition of this book. Like the journal, this book is an official publication of the IPTA, and many of IPTA’s members have contributed to this second edition.

In the second edition, the strengths of the first edition have been maintained, while new features have been added. The addition of three new co-editors has ensured that all facets of pediatric transplantation are represented in the editorial team. The organ specific sections have all been revised by experts (new and old) to keep the text up-to-date in this rapidly evolving field. Consistency has been applied to the content of all the organ specific sections to enhance the overall structure of the text. Section Two on Immunosuppression and its Complications has been expanded by four chapters to include sections on mechanisms of action, therapies for the sensitized patient, post-transplant lymphoproliferative disorders and organ toxicities of immunosuppressive therapy. A new section has been added (Section Eight) to emphasize the many special issues that effect survivors of pediatric transplantation. This new section focuses on topics related to quality of life; an issue of profound importance as the number of long-term survivors of pediatric solid organ transplantation continues to grow. A wide variety of topics ranging from growth and cognitive development to adherence and transition to adult care are covered in this important new section.

The editors wish to express their sincere appreciation to all the authors who contributed their time and expertise to this project. The end result reflects the sum of these excellent individual contributions. In addition, we would like to thank Kerrie Roberts who coordinated all the early stages of manuscript submission with endless forbearance and efficiency. We also would like to thank Rebecca Huxley and Maria Khan of Blackwell Publishing without whom this project would not have been possible. The final stages of production were carried out by Alice Nelson who assisted the editors in resolving the remaining issues and whose contribution to the final success of this publication is inestimable. The patience, collegiality and professionalism of these individuals has helped create a work that we hope will serve as the definitive reference for all those interested in improving the care and quality of life of children undergoing solid organ transplantation.

We believe Dr Tejani would be very pleased with this new edition of *Pediatric Solid Organ Transplantation*.

Richard N. Fine
Steven A. Webber
Kim M. Oltzoff
Deirdre A. Kelly
William E. Harmon

January 2007
Preface to the First Edition

Pediatric solid organ transplantation has experienced exciting and substantial advances in the past decade consequent to continued improvement in clinical outcomes.

The database of the North American Pediatric Renal Transplant Cooperative Study has demonstrated the value of a registry in changing clinical practice, and has stimulated the development of similar registries in other pediatric solid organ transplants such as liver and heart. The evolution of pediatric transplantation to its own independent status has been marked by several international meetings followed by the creation of the Journal of Pediatric Transplantation and, most recently, by the establishment of the International Pediatric Transplant Association (IPTA). Guided by the Pediatric Committee of the American Society of Transplantation, certification of programs in renal, hepatic and heart and lung transplants is now underway.

To provide a more cohesive approach to the teaching of pediatric transplantation in various subspecialties, the council of IPTA has initiated the compilation of this book.

In organizing the structure of the text, the Editors have recognized that there is a central core of information that is common to all clinical transplantation. Grouped together in the first two sections of the book, this core is intended to provide information about the immune system, rejection and tolerance, immunosuppressives and infections: issues common to all organs. Organ specific sections are structured in a common format designed to cover transplantation while maintaining the unique needs of the organ speciality.

The Editors wish to express their sincere appreciation to all the authors who contributed their time and expertise to this project. We are particularly grateful to the Associate Editors who contributed to the conception and realization of the book. It is our hope that this comprehensive text will strengthen intra-speciality cooperation, familiarize pediatric physicians and surgeons with the salient aspects of each other’s respective areas and help improve the quality of life of children undergoing transplants.

Amir H. Tejani, MD
Professor of Pediatrics and Surgery
New York Medical College
Valhalla, New York

William E. Harmon, MD
Associate Professor of Pediatrics
Harvard Medical School
Boston, Massachusetts

Richard N. Fine, MD
Professor and Chairman
Department of Pediatrics
State University of New York Stony Brook, New York
Contributors

Estella M. Alonso, MD
Professor of Pediatrics
Department of Pediatrics
Northwestern University School of Medicine
The Siragusa Transplantation Center
Children’s Memorial Hospital
Chicago, IL

Carlos E. Araya, MD
Fellow
Division of Pediatric Nephrology
University of Florida College of Medicine
Gainesville, FL

Vincent T. Armenti, MD, PhD
Professor of Surgery
Abdominal Organ Transplant Program
Temple University School of Medicine
Philadelphia, PA

Sharon M. Bartosh, MD
Professor of Pediatrics
University of Wisconsin Children’s Hospital
Madison, WI

Mark Bellinger, MD
Clinical Professor of Urology
University of Pittsburgh
Pittsburgh, PA

Mark R. Benfield, MD
Professor and Chief
Division of Pediatric Nephrology
University of Alabama at Birmingham
Birmingham, AL

Jean F. Botha, MD
University of Nebraska Medical Center
Omaha, NE

Gerard J. Boyle, MD
Department of Cardiology
Cleveland Clinic Foundation
Cleveland, OH

David M. Briscoe, MD
Associate Professor of Pediatrics
Harvard Medical School
Boston, MA

Christoph E. Broelsch, MD, FACS
Professor of Surgery and Transplantation
Dept of General Surgery and Transplantation
University Hospital Essen
Germany

Gilbert J. Burckart, PharmD
Professor and Chairman, Department of Pharmacy
Director, Clinical Pharmacogenomics Laboratory
University of Southern California
Los Angeles, CA

Charles E. Canter, MD
Professor of Pediatrics
Washington University School of Medicine
St. Louis, MO

Richard E. Chinnock, MD
Department of Pediatrics
Loma Linda Medical Center
Loma Linda, CA

Arthur H. Cohen, MD
Emeritus Professor of Pathology and Medicine
UCLA School of Medicine and
Department of Pathology
Cedars-Sinai Medical Center
Los Angeles, CA
John M. Davison, MD
Emeritus Professor of Obstetrics and Gynaecology
Royal Victoria Infirmary
Newcastle upon Tyne
UK

Vikas R. Dharnidharka, MD
Associate Professor
Division of Pediatric Nephrology
University of Florida College of Medicine
Gainesville, FL

Paul S. Dickman, MD
Clinical Professor of Pathology, University of Arizona
Department of Pathology/Laboratory
Phoenix Children's Hospital
1919 East Thomas Road
Phoenix, AZ

René J. Duquesnoy, PhD
Professor of Pathology and Surgery
University of Pittsburgh Medical Center
Pittsburgh, PA

Udeme D. Ekong, MBBS, MRCP
Assistant Professor of Pediatrics
Department of Pediatrics
Northwestern University School of Medicine
The Siragusa Transplantation Center
Children's Memorial Hospital
Chicago, IL

Demetrius Ellis, MD
Professor of Pediatrics
University of Pittsburgh
Chief, Pediatric Nephrology
Children's Hospital of Pittsburgh
Pittsburgh, PA

Jean C. Emond, MD
Thomas S. Zimmer Professor and Vice Chairman
Department of Surgery
Columbia University
Center for Liver Disease and Transplantation
New York Presbyterian Hospital
New York, NY

Douglas G. Farmer, MD
Associate Professor of Surgery
Director, Intestinal Transplantation
Dumont-UCLA Transplant Center
Los Angeles, CA

Albert Faro, MD
Assistant Professor of Pediatrics
Washington University in St. Louis School of Medicine
St. Louis Children's Hospital
Division of Allergy and Pulmonary Medicine
St. Louis, MO

Thomas M. Fishbein, MD
Professor of Surgery
Director, Center for Intestinal Care and Transplant
Georgetown University Hospital
Children's National Medical Center
Washington, DC

Barbara A. Fivush, MD
Professor of Pediatrics
Chief, Division of Pediatric Nephrology
The Johns Hopkins University School of Medicine
Baltimore, MD

Michael Green, MD, MPH
Professor of Pediatrics and Surgery
University of Pittsburgh School of Medicine
Division of Infectious Diseases
Children's Hospital of Pittsburgh
Pittsburgh, PA

William E. Harmon, MD
Professor of Pediatrics
Division of Nephrology
Children's Hospital Boston
Harvard Medical School
Boston, MA

Erick Hernandez, MD
Assistant Professor of Clinical Pediatrics
Division of Pediatric Gastroenterology
Miller School of Medicine
University of Miami
Miami, FL

Ryutaro Hirose, MD
Associate Professor of Clinical Surgery
Dept of Surgery
University of California, San Francisco
Kidney Transplant Service
San Francisco, CA

Christer Holmberg, MD
Professor of Pediatrics
Hospital for Children and Adolescents
University of Helsinki
Helsinki
Finland
CONTRIBUTORS

Charles B. Huddleston, MD
Professor of Surgery
Washington University School of Medicine
St. Louis Children’s Hospital
St. Louis, MO

Elizabeth Ingulli, MD
Assistant Professor, Pediatrics
Division of Nephrology
Center for Immunology
University of Minnesota Medical School
Minneapolis, MN

Ronald Jaffe, MB.BCh
Professor of Pathology
University of Pittsburgh School of Medicine
Marjory K. Harmer Professor of Pediatric Pathology
Children’s Hospital of Pittsburgh
Pittsburgh, PA

Hannu Jalanko, MD
Docent in Pediatrics
Head of Pediatric Nephrology and Transplantation
Hospital for Children and Adolescents
University of Helsinki
Helsinki
Finland

Dominique Jan, MD
Professor of Clinical Surgery
Department of Surgery
Columbia University
Center for Liver Disease and Transplantation
New York Presbyterian Hospital
New York, NY

Stanley C. Jordan, MD
Medical Director, Kidney Transplantation and Transplant Immunology
Center for Kidney Diseases and Transplantation
Comprehensive Transplant Center
Cedars-Sinai Medical Center
Professor of Pediatrics and Medicine
David Geffen School of Medicine at UCLA
Los Angeles, CA

Binita M. Kamath, MBBChir
Fellow
University of Pennsylvania
The Fred and Suzanne Biesecker Liver Center
Division of Gastroenterology and Nutrition
Children’s Hospital of Philadelphia
Philadelphia, PA

Tomoaki Kato, MD
Assistant Professor of Clinical Surgery
Division of Liver and GI Transplantation
Miller School of Medicine
University of Miami
Miami, FL

Stuart S. Kaufman, MD
Medical Director, Pediatric Liver and Intestinal Transplantation
Georgetown University Transplant Institute and Children’s National Medical Center
Washington, DC

Deirdre A. Kelly, MD, FRCPI, FRCP, FRCPCH
Professor of Paediatric Hepatology
The Liver Unit
Birmingham Children’s Hospital NHS Trust
Steelhouse Lane
Birmingham
UK

Alan M. Krensky, MD
Sheilagh Galligan Professor
Stanford University Medical Center
Stanford, CA

Steven J. Lobritto, MD
Medical Director, Pediatric Liver Transplantation
Associate Clinical Professor of Pediatrics and Medicine
Department of Surgery
Columbia University
Center for Liver Disease and Transplantation
New York Presbyterian Hospital
New York, NY

Janet McDonagh, MD
Senior Lecturer in Paediatric and Adolescent Rheumatology
Institute of Child Health
Birmingham Children’s Hospital NHS Trust
Steelhouse Lane
Birmingham
UK

Ruth A. McDonald, MD
Associate Professor
Division of Nephrology
Children’s Hospital and Regional Medical Center
University of Washington
Seattle, WA
Eithne F. MacLaughlin, MD
Associate Professor of Clinical Pediatrics
Keck School of Medicine of the University of Southern California
Division of Pulmonology
Children’s Hospital Los Angeles
Los Angeles, CA

Massimo Malagó, MD
The Ilse Bagel Professor of Surgery and Transplantation
Department of General Surgery and Transplantation
University Hospital Essen
Germany

George B. Mallory, MD
Director, Lung Transplant Program
Associate Professor of Pediatrics
Baylor College of Medicine
Baylor University
Texas Children’s Hospital
Houston, TX

Elaine S. Mansfield, MD
Senior Research Scientist
Department of Pediatrics
Stanford University School of Medicine
Stanford, CT

Cal S. Matsumoto, MD
Assistant Professor of Surgery
Center for Intestinal Care and Transplant
Georgetown University Hospital
Children’s National Medical Center
Washington, DC

George V. Mazariegos, MD
Director, Pediatric Transplantation
Associate Professor of Surgery and Critical Care Medicine
University of Pittsburgh Medical Center
Thomas E. Starzl Transplantation Institute
Children’s Hospital of Pittsburgh
Pittsburgh, PA

Marc L. Melcher, MD, PhD
Acting Assistant Professor
Stanford School of Medicine
Department of Surgery
University of California, San Francisco
San Francisco, CA

Eric N. Mendeloff, MD
Director, Congenital Heart Surgery and Pediatric Heart and Lung Transplantation
Medical City Children’s Hospital
Dallas, TX

Marian G. Michaels, MD, MPH
Professor of Pediatrics and Surgery
University of Pittsburgh School of Medicine
Division of Infectious Diseases
Children’s Hospital of Pittsburgh
Pittsburgh, PA

Shelley D. Miyamoto, MD
Director of Heart Failure and Cardiomyopathy Program
Department of Pediatrics, Division of Cardiology
University of Colorado Health Sciences
Cardiac Transplant Program
The Children’s Hospital
Denver, CO

Michael J. Moritz, MD
Professor of Surgery
Lehigh Valley Hospital
Allentown, PA

W. Robert Morrow, MD
David Clark Chair in Pediatric Cardiology
Professor of Pediatrics
UAMS College of Medicine
Chief, Pediatric Cardiology
Arkansas Children’s Hospital
Little Rock, AK

Pamela J. Murray, MD, MHP
Associate Professor of Pediatrics, Division Chief of Adolescent Medicine and Associate Professor of Obstetrics/Gynecology Reproductive Health Services
University of Pittsburgh School of Medicine
Pittsburgh, PA

Silvio Nadalin, MD
Department of General Surgery and Transplantation
University Hospital Essen
Germany

David C. Naftel, PhD
Professor of Surgery
University of Alabama Birmingham School of Medicine
Birmingham, AL

Nader Najafian, MD
Assistant Professor of Medicine
Transplantation Research Center
Brigham and Women’s Hospital
Children Hospital Boston
Harvard Medical School
Boston, MA
CONTRIBUTORS

John S. Najarian, MD
Professor of Surgery
Emeritus Professor and Chairman of Surgery
Emeritus Regents’ Professor
Department of Surgery
University of Minnesota
Minneapolis, MN

William H. Neches, MD
Emeritus Professor of Pediatrics and Pediatric Cardiology
Children’s Hospital of Pittsburgh
Pittsburgh, PA

Alicia M. Neu, MD
Associate Professor of Pediatrics
Clinical Director, Division of Pediatric Nephrology
Medical Director, Pediatric Dialysis and Kidney Transplantation
The Johns Hopkins University School of Medicine
Baltimore, MD

Vassilios E. Papalois, MD, PhD, FICS
Consultant Transplant and General Surgeon
Transplant Unit
St. Mary’s Hospital
London
UK

Maria Parizhskaya, MD
Pathologist
Virginia Beach, VA

Uptal D. Patel, MD
Assistant Professor of Medicine and Pediatrics
Divisions of Nephrology and Pediatric Nephrology
Duke Children’s Hospital and Health Center
Duke University
Durham, NC

Alice Peng, MD
Associate Director, Kidney Transplant Program
Center for Kidney Diseases and Transplantation
Comprehensive Transplant Center
Cedars-Sinai Medical Center
UCLA School of Medicine
Los Angeles, CA

Biagio A. Pietra, MD
Medical Director of Cardiac Transplant Program
Department of Pediatrics, Division of Cardiology
University of Colorado Health Sciences
Cardiac Transplant Program
The Children’s Hospital
Denver, CO

Frank A. Pigula, MD
Assistant Professor
Department of Cardiothoracic Surgery
Boston Children’s Hospital
Harvard Medical School
Boston, MA

Erik Qvist, MD
Assistant Professor of Pediatrics
Hospital for Children and Adolescents
University of Helsinki
Helsinki
Finland

Elizabeth B. Rand, MD
Associate Professor
Medical Director, Liver Transplant Program
Director Gastroenterology and Nutrition Fellowship Program
University of Pennsylvania
The Fred and Suzanne Biesecker Liver Center
Division of Gastroenterology and Nutrition
Children’s Hospital of Philadelphia
Philadelphia, PA

Jorge Reyes, MD
Director, Transplant Services
Children’s Hospital and University of Washington School of Medicine
Seattle, WA

John P. Roberts, MD
Department of Surgery
University of California, San Francisco
San Francisco, CA

Alan D. Salama, PhD, MRCP
Senior Lecturer and Honorary Consultant Physician
Renal Section, Division of Medicine
Imperial College London
Hammersmith Hospital
London
UK

Minnie M. Sarwal, MD, PhD, MRCP, DCH
Associate Professor of Nephrology
Department of Pediatrics
Stanford University School of Medicine
Stanford, CT

Mohamed H. Sayegh, MD
Professor of Medicine and Pediatrics
Transplantation Research Center
Brigham and Women’s Hospital
Children Hospital Boston
Harvard Medical School
Boston, MA
Franz Schaefer, MD
Professor of Pediatrics
Head, Division of Pediatric Nephrology
Hospital for Pediatric and Adolescent Medicine
University of Heidelberg
Heidelberg
Germany

Ron Shapiro, MD
Professor of Surgery
Director, Kidney, Pancreas, and Islet Transplantation
Thomas E. Starzl Transplantation Institute
University of Pittsburgh
Director, Pediatric Renal Transplantation
Children’s Hospital of Pittsburgh
Pittsburgh, PA

Eyal Shemesh, MD
Mt Sinai Medical Center
Assistant Professor of Psychiatry
Assistant Professor of Pediatrics
Recanati-Miller Transplant Institute, Psychiatry, Pediatrics
1 Gustave L. Levy Place
New York, NY

Rakesh Sindhi, MD
Associate Professor of Surgery
University of Pittsburgh Medical Center
Thomas E. Starzl Transplantation Institute
Children’s Hospital of Pittsburgh
Pittsburgh, PA

Jodi M. Smith, MD
Acting Assistant Professor
Division of Nephrology
Children’s Hospital and Regional Medical Center
University of Washington
Seattle, WA

Kyle Soltys, MD
Assistant Professor of Surgery
University of Pittsburgh Medical Center
Thomas E. Starzl Transplantation Institute
Children’s Hospital of Pittsburgh
Pittsburgh, PA

Robert Squires, MD
Clinical Director of Gastroenterology
Children’s Hospital of Pittsburgh
Pittsburgh, PA

Gina S. Sucato, MD, MPH
Assistant Professor of Pediatrics
Division of Adolescent Medicine
University of Pittsburgh School of Medicine
Pittsburgh, PA

Debra L. Sudan, MD
Professor of Surgery
University of Nebraska Medical Center
983285 Nebraska Medical Center
Omaha, NE

Manikkam Suthanthiran, MD
Stanton Griffis Distinguished Professor of Medicine
Division of Nephrology
Department of Medicine
Weill Medical College of Cornell University
and Department of Transplantation Medicine and Extracorporeal Therapy
New York Presbyterian Hospital
New York, NY

Stuart C. Sweet, MD, PhD
Assistant Professor of Pediatrics
Medical Director, Pediatric Lung Transplant Program
Medical Director, Lung Transplantation
Division of Allergy and Pulmonary Medicine
Department of Pediatrics
St. Louis Children’s Hospital at Washington School of Medicine
St. Louis, MO

Robyn Temple-Smolkin, PhD
Postdoctoral Associate
University of Pittsburgh Medical Center
Pittsburgh, PA

Susan E. Thomas, MD
Clinical Associate Professor of Pediatrics
Medical Director, Pediatric Renal Transplant Program
C.S. Mott Children’s Hospital
University of Michigan
Ann Arbor, MI

John F. Thompson, MD
Professor of Pediatrics
Division of Pediatric Gastroenterology
Miller School of Medicine
University of Miami
Miami, FL

Andreas G. Tzakis, MD, PhD
Professor of Surgery
Division of Liver and GI Transplantation
Miller School of Medicine
University of Miami
Miami, FL
CONTRIBUTORS

Flavio Vincenti, MD
Professor of Clinical Medicine
University of California, San Francisco
Kidney Transplant Service
San Francisco, CA

Gary Visner, DO
Attending Physician
Children’s Hospital of Philadelphia
University of Pennsylvania
Philadelphia, PA

Zoran Vukcevic, MD
Transplant Fellow
University of Pittsburgh Medical Center
Thomas E. Starzl Transplantation Institute
Department of Critical Care Medicine
Pittsburgh, PA

Steven A. Webber, MBChB, MRCP
Professor of Pediatrics
University of Pittsburgh School of Medicine
Pittsburgh, PA

Peter F. Whittington, MD
Professor of Pediatrics
Department of Pediatrics
Northwestern University School of Medicine
The Siragusa Transplantation Center
Children’s Memorial Hospital
Chicago, IL

Marilyn S. Woo, MD
Medical Director, Cardiothoracic Transplant Program
Children’s Hospital Los Angeles
Keck School of Medicine
University of Southern California
Los Angeles, CA

Adriana Zeevi, PhD
Professor of Pathology and Surgery
Director, Histocompatibility and Immunogenetics Laboratory
University of Pittsburgh Medical Center
Pittsburgh, PA
SECTION ONE
Immunology and Genetics
Organ transplantation has benefited significantly from advances in immunology and molecular biology. A relatively young scientific discipline, immunobiology of organ transplantation is the quintessential example of translational science that has resulted in truly life-saving remedies for those afflicted with irreparable end-organ failure. There are several commonalities in the immune response to cellular and solid organ allografts, and the essential principles are reviewed in this chapter.

T-CELL SURFACE PROTEINS, ANTIGEN RECOGNITION AND SIGNAL TRANSDUCTION

The antigen recognition complex is comprised of the clone specific T-cell antigen receptor (TCR) \(\alpha \) and \(\beta \) heterodimer that is responsible for the recognition of the antigenic peptide displayed in the groove of major histocompatibility complex (MHC) encoded proteins, and the clonally invariant CD3 complex responsible for signal transduction (Table 1.1) [1–5]. Whereas the majority of peripheral blood T cells display TCR \(\alpha \) and \(\beta \) heterodimer on their cell surface, a minority expresses TCR \(\gamma \) and \(\delta \) chains.

The T-cell surface is also decorated with lineage specific and functional proteins that contribute to the immune synapse between the T cells and the antigen presenting cells (APCs). Peripheral blood T cells express either the CD4 protein or the CD8 protein on their cell surface and the CD4 and CD8 proteins bind nonpolymorphic domains of human leukocyte antigen (HLA) class II (DR, DP, DQ) and class I (A, B, C) molecules, respectively, and contribute to the associative recognition process termed MHC restriction. Kinetic models of the immune synapse suggest that a critical threshold of

Table 1.1 Cell-surface proteins important for T-cell activation.* (Reproduced from Suthanthiran et al. [52] with permission.)

<table>
<thead>
<tr>
<th>T-cell surface</th>
<th>APC surface</th>
<th>Functional response</th>
<th>Consequence of blockade</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFA-1 (CD11a, CD18)</td>
<td>ICAM (CD54)</td>
<td>Adhesion</td>
<td>Immunosuppression</td>
</tr>
<tr>
<td>ICAM1 (CD54)</td>
<td>LFA-1 (CD11a, CD18)</td>
<td>Antigen recognition</td>
<td>Immunosuppression</td>
</tr>
<tr>
<td>CD8, TCR, CD3</td>
<td>MHC</td>
<td>Adhesion</td>
<td>Immunosuppression</td>
</tr>
<tr>
<td>CD4, TCR, CD3</td>
<td>MHCII</td>
<td>Antigen recognition</td>
<td>Immunosuppression</td>
</tr>
<tr>
<td>CD2</td>
<td>LFA3 (CD58)</td>
<td>Costimulation</td>
<td>Immunosuppression</td>
</tr>
<tr>
<td>CD40L (CD154)</td>
<td>CD40</td>
<td>Costimulation</td>
<td>Anergy</td>
</tr>
<tr>
<td>CD5</td>
<td>CD72</td>
<td>Costimulation</td>
<td>Anergy</td>
</tr>
<tr>
<td>CD28</td>
<td>B7-1 (CD80)</td>
<td>Costimulation</td>
<td>Anergy</td>
</tr>
<tr>
<td>CD28</td>
<td>B7-2 (CD86)</td>
<td>Costimulation</td>
<td>Anergy</td>
</tr>
<tr>
<td>CTLA4 (CD152)</td>
<td>B7-1 (CD80)</td>
<td>Inhibition</td>
<td>Immunostimulation</td>
</tr>
<tr>
<td>CTLA4 (CD152)</td>
<td>B7-2 (CD86)</td>
<td>Inhibition</td>
<td>Immunostimulation</td>
</tr>
</tbody>
</table>

APC, antigen-presenting cell; ICAM, intercellular adhesion molecule; LFA, leukocyte function-associated antigen; MHC, major histocompatibility complex.

* Receptor/counter-receptor pairs that mediate interactions between T cells and APCs are shown in this table. Inhibition of each protein-to-protein interaction, except the CTLA4–B7-1/B7-2 interaction results in an abortive in vitro immune response. Initial contact between T cells and APCs requires an antigen-independent adhesive interaction. Next, the T-cell antigen receptor complex engages processed antigen presented within the antigen-presenting groove of MHC molecules. Finally, costimulatory signals are required for full T-cell activation. An especially important signal is generated by B7-mediated activation of CD28 on T cells. Activation of CD28 by B7-2 may provide a more potent signal than activation by B7-1. CTLA4, present on activated but not resting T cells, imparts a negative signal.
TCR to MHC-peptide engagements is obligatory to stabilize the TCR/peptide physical contacts and the redistribution of cell surface proteins. An important consequence is the co-clustering of the TCR/CD3 complex with the T-cell surface proteins that include integrins such as leukocyte function-associated antigen 1 (LFA-1) and nonintegrins such as CD2 [6–8].

The immunologic synapse consists of a multiplicity of T-cell surface protein forms and clusters, thereby creating a platform for antigen recognition and generation of various crucial T-cell activation-related signals. The synapse begins to form when the initial adhesions between T-cell surface proteins and APC surface proteins are formed. These adhesions create intimate contact between T cells and APCs and thereby provide an opportunity for T cells to recognize antigen. Antigen-driven T-cell activation, a tightly regulated, preprogrammed process, begins when T cells recognize intracellularly processed fragments of foreign proteins (approximately 8–16 amino acids) embedded within the groove of the MHC proteins expressed on the surface of APCs. Some recipient T cells directly recognize the allograft (i.e. donor antigen(s) presented on the surface of donor APCs), while other T cells recognize the donor antigen after it is processed and presented by self-APCs [9].

Following activation by antigen, the TCR/CD3 complex and co-clustered CD4 and CD8 proteins are physically associated with intracellular protein–tyrosine kinases (PTKs) of two different families, the src (including p59fyn and p56lck) and...
ZAP-70 families. The CD45 protein, a tyrosine phosphatase, contributes to the activation process by dephosphorylating an autoinhibitory site on the p56Lck PTK. Intracellular domains of several TCR/CD3 proteins contain activation motifs that are crucial for antigen-stimulated signaling. Certain tyrosine residues within these motifs serve as targets for the catalytic activity of src family PTKs. Subsequently, these phosphorylated tyrosines serve as docking stations for the SH2 domains (recognition structures for select phosphotyrosine-containing motifs) of the ZAP-70 PTK. Following antigen engagement of the TCR/CD3 complex, select serine residues of the TCR and CD3 chains are also phosphorylated.

The wave of tyrosine phosphorylation triggered by antigen recognition encompasses other intracellular proteins and is a cardinal event in initiating T-cell activation. Tyrosine phosphorylation of the phospholipase Cγ1 activates this coenzyme and triggers a cascade of events that lead to full expression of T-cell programs: hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2) and generation of two intracellular messengers, inositol 1,4,5-triphosphate (IP3) and diacylglycerol. IP3, in turn, mobilizes ionized calcium from intracellular stores, while diacylglycerol, in the presence of increased cytosolic free Ca2+, binds to and translocates protein kinase C (PKC) – a phospholipid/Ca2+-sensitive protein serine/threonine kinase – to the membrane in its enzymatically active form. Sustained activation of PKC is dependent on diacylglycerol generation from hydrolysis of additional lipids such as phosphatidylincholine.

The increase in intracellular free Ca2+ and sustained PKC activation promote the expression of several nuclear regulatory proteins (e.g. nuclear factor of activated T cells [NF-AT], nuclear factor kappa B [NF-κB], activator protein 1 [AP-1]) and the transcriptional activation and expression of genes central to T-cell growth (e.g. interleukin-2 [IL-2] and receptors for IL-2 and IL-15).

Calcineurin, a Ca2+- and calmodulin-dependent serine/threonine phosphatase, is crucial to Ca2+-dependent, TCR-initiated signal transduction [11]. Inhibition by cyclosporine and tacrolimus (FK506) of the phosphatase activity of calcineurin is considered central to their immunosuppressive activity [12,13].

Allograft rejection is contingent on the coordinated activation of alloreactive T cells and APCs (Fig. 1.1 and Table 1.2). Through the intermediacy of cytokines and cell-to-cell interactions, a heterogeneous contingent of lymphocytes, including CD4+ helper T cells, CD8+ cytotoxic T cells, antibody-forming B cells, and other proinflammatory leukocytes are recruited into the allograft response [14].
COSTIMULATORY SIGNALS

Signaling of T cells via the TCR/CD3 complex (antigenic signal) is necessary, albeit insufficient, to induce T-cell proliferation; full activation is dependent on both the antigenic signals and the costimulatory signals (signal two) engendered by the contactual interactions between cell surface proteins expressed on antigen-specific T cells and APCs (Fig. 1.2; see Table 1.1) [15,16]. The interaction of the CD2 protein on the T-cell surface with the CD58 (leukocyte function-associated antigen 3 [LFA-3]) protein on the surface of APCs, and that of the CD11a/CD18 (LFA-1) proteins with the CD54 (intercellular adhesion molecule 1 [ICAM-1]) proteins [17], and/or the interaction of the CD5 with the CD72 proteins [8] aids in imparting such a costimulatory signal.

Recognition of the B7-1 (CD80) and B7-2 (CD86) proteins expressed upon CD4\(^+\) T cells generates a very powerful T-cell costimulus [18]. Monocytes and dendritic cells constitutively express CD86. Cytokines (e.g. granulocyte–macrophage colony-stimulating factor [GM-CSF] or \(\gamma\)-interferon [IFN\(\gamma\)])
stimulate expression of CD80 on monocytes, B cells, and dendritic cells. Many T cells express B7 binding proteins (i.e. CD28 proteins that are constitutively expressed on the surface of CD4+ T cells and CTLA-4 (CD152)), a protein whose ectodomain is closely related to that of CD28, and is expressed upon activated CD4+ and CD8+ T cells. CD28 binding of B7 molecules stimulates a Ca2+-independent activation pathway that leads to stable transcription of the IL-2, IL-2 receptors, and other activation genes resulting in vigorous T-cell proliferation. For some time, the terms CD28 and the costimulatory receptor were considered synonymous by some, but the demonstration that robust T-cell activation occurs in CD28-deficient mice indicated that other receptor ligand systems contribute to signal two [19]. In particular the interaction between CD40 expressed upon APCs and CD40 ligand (CD154) expressed by antigen-activated CD4+ T cells has received great attention as a potent second signal [20].

The delivery of the antigenic signal and the costimulatory signal leads to stable transcription of the IL-2, several T-cell growth factor receptors, and other pivotal T-cell activation genes. The Ca2+-independent costimulatory CD28 pathway is resistant to inhibition by cyclosporine or tacrolimus as compared to the calcium-dependent pathway of T-cell activation. In contrast, recognition of B7 proteins by CTLA-4, a protein primarily expressed on activated T cells, stimulates a negative signal to T cells and this signal is a prerequisite for peripheral T-cell tolerance [21].

The formulation that full T-cell activation is dependent on the costimulatory signal as well as the antigenic signal is significant, as T-cell molecules responsible for costimulation and their cognate receptors on the surface of APCs then represent target molecules for the regulation of the antiallograft response. Indeed, transplantation tolerance has been induced in experimental models by targeting a variety of cell-surface receptors for these transcellular molecules is induced in experimental models by targeting a variety of cell-surface receptors that contribute to the generation of costimulatory signals.

INTERLEUKIN-2/INTERLEUKIN-15 STIMULATED T-CELL PROLIFERATION

T-cell proliferation occurs as a consequence of the T-cell activation-dependent production of IL-2 and the expression of multimeric high affinity IL-2 receptors on T cells formed by the noncovalent association of three IL-2 binding peptides (α, β, γ) [22–26]. IL-15 is a paracrine-type T-cell growth factor family member with very similar overall structural and identical T-cell stimulatory qualities to IL-2 [22]. The IL-2 and IL-15 receptor complexes share β and γ chains that are expressed in low abundance upon resting T cells; expression of these genes is amplified in activated T cells. The α-chain receptor components of the IL-2 and IL-15 receptor complexes are distinct and expressed upon activated, but not resting, T cells. The intracytoplasmic domains of the IL-2 receptor β and γ chains are required for intracellular signal transduction. The ligand-activated, but not resting, IL-2/IL-15 receptors are associated with intracellular PTKs [22,26–28]. Raf-1, a protein serine/threonine kinase that is prerequisite to IL-2/IL-15–triggered cell proliferation, associates with the intracellular domain of the shared β chain [29]. Translocation of IL-2 receptor-bound Raf-1 serine/threonine kinase into the cytosol requires IL-2/IL-15–stimulated PTK activity. The ligand-activated common γ chain recruits a member of the Janus kinase family, Jak 3, to the receptor complex that leads to activation of a member of the STAT family. Activation of this particular Jak-STAT pathway is prerequisite for proliferation of antigen-activated T cells. The subsequent events leading to IL-2/IL-15–dependent proliferation are not fully resolved; however, IL-2/IL-15–stimulated expression of several DNA binding proteins including bcl-2, c-jun, c-fos, and c-myc contributes to cell-cycle progression [30,31]. It is interesting and probably significant that IL-2, but not IL-15, triggers apoptosis of many antigen-activation T cells. In this way, IL-15–triggered events are more detrimental to the allograft response than IL-2. As IL-15 is not produced by T cells, IL-15 expression is not regulated by cyclosporine or tacrolimus.

IMMUNOBIOLOGY AND MOLECULAR FEATURES OF REJECTION

The net consequence of cytokine production and acquisition of cell-surface receptors for these transcellular molecules is the emergence of antigen-specific and graft-destructive T cells (see Fig. 1.1) [14]. Cytokines also facilitate the humoral arm of immunity by promoting the production of cytopathic antibodies. Moreover, IFNγ and tumor necrosis factor-α (TNFα) can amplify the ongoing immune response by up-regulating the expression of HLA molecules as well as costimulatory molecules (e.g. B7) on graft parenchymal cells and APCs. We and others have demonstrated the presence of antigen-specific cytotoxic T lymphocytes (CTL) and anti-HLA antibodies during, or preceding, a clinical rejection episode [32,33]. We have detected messenger RNA (mRNA) encoding the CTL-selective serine protease (granzyme B), perforin, and Fas-ligand attack molecules and immunoregulatory cytokines, such as IL-10 and IL-15, in human renal allografts undergoing acute rejection (reviewed in reference [34]). Indeed these gene-expression events can anticipate clinically apparent rejection. More recent efforts to develop a noninvasive method for the molecular diagnosis of rejection have proved rewarding. Using either peripheral blood [35] or urinary leukocytes [36] rejection-related, gene-expression events evident in renal biopsy specimens are also detected in peripheral blood or urinary sediment specimens. We suspect that a noninvasive, molecular-diagnostic approach to rejection may prove pivotal toward detection of insidious, clinically silent rejection episodes that, although rarely detected through
standard measures, are steroid-sensitive but usually lead to chronic rejection [37].

The immune response directed at the allograft may not all be unidirectional and graft destructive; the immune repertoire appears to include both graft destructive immunity, as exemplified by the presence of granzyme B expressing cytotoxic cells, and graft protective immunity, as exemplified by FoxP3+CD25+CD4+ T-regulatory cells. Indeed, we and others have found that acute rejection of human allografts is associated not only with cytotoxic cells but also with FoxP3+ T-regulatory cells [38,39]. Emerging data also suggest that the outcome of an episode of acute rejection depends upon the balance between cytotoxic cells and T-regulatory cells, with reversible acute rejection and renal graft salvage being associated with FoxP3 and T-regulatory cells [38].

TRANSPANTATION TOLERANCE

There are many definitions of transplantation tolerance. We define clinical transplantation tolerance as an inability of the organ graft recipient to express a graft destructive immune response in the absence of exogenous immunosuppressive therapy. While this statement does not restrict either the mechanistic basis or the quantitative aspects of immune unresponsiveness of the host, tolerance is antigen-specific, induced as a consequence of prior exposure to the specific antigen, and is not dependent on the continuous administration of exogenous nonspecific immunosuppressants.

A classification of tolerance on the basis of the mechanisms involved, site of induction, extent of tolerance, and the cell primarily tolerized is provided in Table 1.3. Induction strategies for the creation of peripheral tolerance are listed in Table 1.4.

<table>
<thead>
<tr>
<th>Table 1.3</th>
<th>Classification of tolerance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Based on the major mechanism involved</td>
</tr>
<tr>
<td>1. Clonal deletion</td>
<td></td>
</tr>
<tr>
<td>2. Clonal energy</td>
<td></td>
</tr>
<tr>
<td>3. Suppression</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Based on the period of induction</td>
</tr>
<tr>
<td>1. Fetal</td>
<td></td>
</tr>
<tr>
<td>2. Neonatal</td>
<td></td>
</tr>
<tr>
<td>3. Adult</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Based on the cell tolerized</td>
</tr>
<tr>
<td>1. T cell</td>
<td></td>
</tr>
<tr>
<td>2. B cell</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Based on the extent of tolerance</td>
</tr>
<tr>
<td>1. Complete</td>
<td></td>
</tr>
<tr>
<td>2. Partial, including split</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Based on the main site of induction</td>
</tr>
<tr>
<td>1. Central</td>
<td></td>
</tr>
<tr>
<td>2. Peripheral</td>
<td></td>
</tr>
</tbody>
</table>

Several hypotheses, not necessarily mutually exclusive and at times even complementary, have been proposed for the cellular basis of tolerance. Data from several laboratories support the following mechanistic pathways – clonal deletion, clonal energy, and immunoregulation – for the creation of a tolerant state.

Clonal deletion

Clonal deletion is a process by which self–antigen-reactive cells, (especially those with high affinity for the self-antigens), are eliminated from the organism’s immune repertoire. This process is called central tolerance. In the case of T cells, this process takes place in the thymus, and the death of immature T cells is considered to be the ultimate result of high-affinity interactions between a T cell with productively rearranged TCR and the thymic nonlymphoid cells, including dendritic cells that express the self-MHC antigen. This purging of the immune repertoire of self-reactive T cells is termed negative selection and is distinguished from the positive selection process responsible for the generation of the T-cell repertoire involved in the recognition of foreign antigens in the context of self-MHC molecules. Clonal deletion, or at least marked depletion, of mature T cells as a consequence of apoptosis can also occur in the periphery (reviewed in reference [40]). The form of graft tolerance occurring as a consequence of mixed hematopoietic chimerism entails massive deletion of alloreactive clones [41]. Tolerance to renal allografts has been
achieved in patients that have accepted a bone marrow graft from the same donor [42,43]. It is interesting that IL-2, the only T-cell growth factor that triggers T-cell proliferation as well as apoptosis, is an absolute prerequisite for the acquisition of organ graft tolerance through use of nonlymphoablative treatment regimens [44,45]. Tolerance achieved under these circumstances also involves additional mechanisms, including clonal anergy and suppressor mechanisms [46–48].

Clonal anergy

Clonal anergy refers to a process in which the antigen-reactive cells are functionally silenced. The cellular basis for the hypo-responsiveness resides in the anergic cell itself, and the current data suggest that the anergic T cells fail to express the T-cell growth factor, IL-2, and other crucial T-cell activation genes because of defects in the antigen-stimulated signaling pathway.

T-cell clonal anergy can result from suboptimal antigen-driven signaling of T cells, as mentioned earlier. The full activation of T cells requires at least two signals, one signal generated via the TCR/CD3 complex, and the second (costimulatory) signal initiated/delivered by the APCs. Stimulation of T cells via the TCR/CD3 complex alone – provision of antigenic signal without the obligatory costimulatory signal – can result in T-cell anergy/paralysis (Fig. 1.3 and Table 1.1).

B-cell activation, in a fashion analogous to T-cell activation, requires at least two signals. The first signal is initiated via the B-cell antigen receptor immunoglobulin, and a second costimulatory signal is provided by cytokines or cell surface proteins of T-cell origin. Thus, delivery of the antigenic signal alone to the B cells without the instructive cytokines or T-cell help can lead to B-cell anergy and tolerance.

Immunoregulatory (suppressor) mechanisms

Antigen-specific T or B cells are physically present and are functionally competent in tolerant states resulting from suppressor mechanisms. The cytopathic and antigen-specific cells are restrained by the suppressor cells or factors or express non-cytopathic cellular programs. Each of the major subsets of T cells, the CD4 T cells and the CD8 T cells, has been implicated in mediating suppression. Indeed, a cascade involving MHC antigen-restricted T cells, MHC antigen-unrestricted T cells, and their secretory products have been reported to collaborate to mediate suppression. Recently, a subset of CD4+ T cells, the CD4+CD25+ cells that express FoxP3, has been identified to mediate potent suppressive activity [49,50].

At least four distinct mechanisms have been advanced to explain the cellular basis for suppression: (i) An antiidiotypic regulatory mechanism in which the idiootype of the TCR of the original antigen-responsive T cells functions as an immunogen and elicits an antiidiotypic response. The elicited antiidiotypic regulatory cells, in turn, prevent the further responses of the idiootype-bearing cells to the original sensitizing stimulus; (ii) The veto process by which recognition by alloreactive T cells of allograft-expressing veto cells results in the targeted killing (veto process) of the original alloreactive T cells by the veto cells; (iii) Immune deviation, a shift in CD4+ T-cell programs away from Th1-type (IL-2, IFNγ expressing) toward the Th2-type (IL-4, IL-10 expressing) program; and (iv) The production of suppressor factors or cytokines. (e.g. the production of TGF-β by myelin basic protein-specific CD8 T cells or other cytokines with antiproliferative properties.) The process leading to full tolerance is infectious. Tolerant T cells recruit nontolerant T cells into the tolerant state [47].

Fig. 1.3 T-cell activation/anergy decision points. Several potential sites for the regulation of T-cell signaling are shown. The antigenic peptide displayed by major histocompatibility complex (MHC) (site 1), costimulatory signals (site 2), T-cell antigen receptor (TCR) (site 3), and cytokine signaling (site 4) can influence the eventual outcome. Altered peptide ligands, blockade of costimulatory signals, downregulation of TCR, and interleukin (IL)-10 favor anergy induction, whereas fully immunogenic peptides, delivery of costimulatory signals, appropriate number of TCRs, and IL-12 prevent anergy induction and facilitate full activation of T cells. (Reproduced from Suthanthiran [48] with permission.)
ACKNOWLEDGMENTS

REFERENCES

tolerant state also establishes a condition in which foreign tissues housed in the same microenvironment as the specific antigen to which the host has been tolerized are protected from rejection [47]. Tolerance is a multistep process [46–48].

Clearly more than one mechanism is operative in the induction of tolerance (see Fig. 1.3). The tolerant state is not an all-or-nothing phenomenon but is one that has several gradations. Of the mechanisms proposed for tolerance, clonal deletion might be of greater importance in the creation of self-tolerance, and clonal anergy and immunoregulatory mechanisms might be more applicable to transplantation tolerance. More recent data suggest both clonal deletion and immunoregulatory mechanisms are needed to create and sustain central or peripheral tolerance. From a practical viewpoint, a nonimmunogenic allograft (e.g. located in an immunologically privileged site or physically isolated from the immune system) might also be “tolerated” by an immunocompetent organ-graft recipient.

Authentic tolerance has been difficult to identify in human renal allograft recipients. Nevertheless, the clinical examples, albeit infrequent, of grafts functioning without any exogenous immunosuppressive drugs (either due to noncompliance of the patient or due to discontinuation of drugs for other medical reasons) does suggest that some long-term recipients of allografts develop tolerance to the transplanted organ and accept the allografts. The recent progress in our understanding of the immunobiology of graft rejection and tolerance and the potential to apply molecular approaches to the bedside hold significant promise for the creation of a clinically relevant tolerant state and transplantation without exogenous immunosuppressants – the ultimate goal of the transplant physician.
Allorecognition Pathways
Nader Najafian and Mohamed H. Sayegh

Allorecognition is the ability of T cells to respond to foreign histocompatibility antigens of other members of the same species. The major histocompatibility complex (MHC) molecules were originally discovered by their ability to induce serologic responses and rejection of tumor and skin grafts in mice [1,2]. It is now clear that the MHC antigens are the primary antigens responsible for causing graft rejection and are generally associated with a brisk time course of rejection. Allograft rejection is a T-cell-dependent process [3]; animals that lack T cells do not reject an allograft. T lymphocytes initiate the immune response, which ultimately results in graft rejection. Allorecognition is the essential first step for triggering the cascade of events that results in rejection of the graft. Once activated, they secrete cytokines and chemokines to activate and attract various effector cells, such as CD8+ T cells and macrophages into the allograft. They are also able to interact with B cells which will secrete highly specific alloreactive antibodies. These cells in turn mediate the effector mechanisms of allograft destruction. Experimental and clinical data have confirmed that there are two distinct, nonmutually exclusive pathways of T-cell allorecognition: the “direct” and “indirect” pathways (Fig. 2.1) [4–6]. The “direct” pathway describes the ability of T cells through the T-cell receptor to engage and respond to intact allogeneic MHC molecules on the surface of antigen-presenting cells (APCs). This pathway is responsible for the vigorous in vitro response demonstrated in the primary allogeneic mixed lymphocyte reaction (MLR). In vivo, the direct pathway appears to be the principal route of T-cell sensitization leading to acute allograft rejection. The “indirect” pathway refers to the recognition of donor antigens presented as peptides in association with self-MHC by recipient APCs. This corresponds to the normal pathway of T-cell recognition of foreign or autoantigens in the context of self-MHC molecules such as the case in infections and autoimmune diseases. The following includes recent data about the role of allorecognition pathways in allograft rejection, both at the stage of priming of T cells and of effector phase of rejection. The importance of these pathways in developing tolerance-inducing strategies in organ transplantation is also reviewed.

DIRECT PATHWAY OF ALLORECOGNITION

Direct refers to cell recognition of a whole intact foreign MHC molecule on the surface of donor cells. Although the specific peptide (typically derived from endogenous proteins, including MHC antigens, see below) bound in the groove of the MHC molecule may be important in this recognition process, it does not restrict this response. The graft, which includes donor bone marrow-derived APCs, usually expresses several class I and II MHC molecules that differ from the recipient’s MHC molecules, and which can directly stimulate recipients T cells. Donor APCs prime CD4+ and CD8+ T cells through the direct pathway. However, as these donor APCs are destroyed during the priming process, direct T-cell priming is likely to be time-limited. Thus, direct allorecognition may account for early acute cellular rejection. Consistent with this concept, direct alloactivity was not detectable in the peripheral blood of a cohort of renal and lung allograft recipients with chronic allograft dysfunction several years after transplantation [7–9].

Two features of the direct pathway serve to define the strength of the allogeneic response [10]. First of all, the precursor frequency of T cells that directly recognize allo-MHC is unusually high, 100–1000 times higher than the response to nominal antigens [11]. Second, unlike the response to nominal antigens, the direct response to allo-MHC requires no previous exposure or priming (i.e. can be initiated by naïve T cells). Over the years, several theories have emerged to explain the molecular basis of the strength of the direct pathway of allorecognition.

Matzinger and Bevan [12] hypothesized that the high precursor frequency of alloreactive T cells is secondary to the high frequency of different allogeneic determinants presented on allogeneic APCs (determinant frequency theory). Formulated prior to our understanding of MHC-restricted peptide presentation, this model suggested that the each allo-MHC molecule was an “interaction antigen” and could form “binary complexes” with all other cell surface proteins on the membrane surface. The resulting complex of allo-MHC + X (where X is a cell surface protein) could interact with the T-cell receptor. Each allo-MHC could form a large
number of different antigenic complexes with different cell surface receptors and create a high frequency of antigenic determinants. This theory predicts that the high precursor frequency of alloreactive T cells results from the ability of a single allogeneic APC to stimulate many T-cell clones because of the large number of different determinants created by allo-MHC and a cell surface receptor.

Bevan [13] later proposed an alternative theory to explain the phenomenon of alloreactivity. In this theory, alloreactive T cells recognize a determinant on the foreign MHC molecule itself, and the peptides being presented by the MHC is not of central importance. All the foreign MHC molecules (approximately 100,000) can serve to stimulate T cells with low-affinity receptors by creating a high density of foreign determinants (high determinant density theory). In contrast, the density of foreign determinants created by the presentation of a foreign peptide in the context of self-MHC would be quite low, as most of the self-MHC molecules would be presenting self-peptides. When the determinant density is high, as in the case of allogeneic APCs, even low-affinity T cells can be activated.

The determinant frequency and determinant density theories need not be mutually exclusive. In fact, experimental evidence now supports the notion that both the conformation of the MHC molecule itself and the peptide–MHC complex can determine alloreactivity [14–17].

Lechler et al. [18] used results from studies of specific HLA-DR primed T-cell clones to postulate that allorecognition is structurally heterogeneous and varies according to the responder and stimulator MHC types. In closely related MHC combinations, allorecognition would be caused by T cells recognizing novel endogenous peptides that have never been encountered by responder T cells. In more disparate MHC combinations, the alloresponse would be directed primarily against the residues on the allo-MHC itself, and the bound peptide would have a minimal role. T-cell recognition of allo-MHC would thus be secondary to “molecular mimicry” by the allo-MHC of the three-dimensional complex of self-MHC + peptide. The “molecular mimicry” hypothesis may explain how a T cell positively selected to recognize foreign antigens in the context of self-MHC can now recognize and react to an intact allo-MHC molecule.

The concept of positive and negative selection in the thymus also helps to explain the strength of the alloimmune response [19]. During development, T cells with receptors of too high affinity are deleted (negative selection), whereas those with too low affinity are not selected. The end result of this selection is that TCRs of intermediate affinity exit the thymus and enter the periphery. Within an individual, clonal deletion occurs early in development. Potentially, autoreactive clones (with too high affinity for self) are deleted; failure of deletion of some clones may lead to autoimmunity. In the case of transplantation across an allelic difference, however, the recipient’s T cells do not contact allo-MHC molecules during development in the thymus and thus escape the deletion (negative selection) imposed by interaction with self-MHC. Thus, the end result is the large number of donor MHC–peptide complexes on the graft to which a potential recipient has not been tolerated during ontogeny. Moreover, the relatively low affinity of any given TCR for its ligand suggest that each T cell could potentially recognize more than one MHC–peptide complex [20]. The high density of alloantigens on the surface of an allograft additionally contributes to the strong T-cell response.

STRUCTURE OF THE MHC MOLECULE AND ALLORECOGNITION

A key to our understanding of the molecular basis of allorecognition was the resolution of the X-ray crystal structure of the human class I MHC HLA-A2 molecule by Wiley and
ROLE OF ENDOGENOUS PEPTIDES IN ALLORECOGNITION

Emerging studies with T-cell clones have demonstrated that MHC-bound endogenous peptides are integral to T-cell allorecognition. For example, alloreactivity of T cells to class II MHC molecules is diminished after incubation with class II-bearing APCs with an exogenous influenza peptide, suggesting that the exogenous peptide blocked presentation of a particular endogenous peptide required for allorecognition [27]. Furthermore, several studies using CD4+ T-cell clones showed that reactivity to cells expressing the appropriate class II molecule depended on the type of cell expressing the class II antigens [28,29]. Alloreactivity required not only the appropriate allogeneic class II molecule but also the proper endogenous peptide expressed by the particular cell type.

The identification of mutant cell lines, such as T2 and RMA-S [30–32], that are defective in processing and transporting endogenous peptides further confirmed the necessity of MHC-bound peptides for allorecognition. When the human T2 cell line was transfected with the murine class I Kb gene, Kb was expressed on the cell surface in normal levels. However, all the Kb molecules lacked peptide. Most Kb-specific cytotoxic T lymphocyte (CTL) clones could not recognize the T2-Kb transfecants unless the cells were loaded with cytoplasmic peptides [33]. One clone was able to recognize empty Kb molecules, but the level of lysis was 10- to 100-fold lower than the level of lysis observed after peptide loading. Thus, it appears that the MHC-bound peptides create or stabilize the conformational determinants necessary for the interaction between the T-cell receptor (TCR) and MHC receptor. The resulting structural unit of recognition is a trimolecular complex formed by the TCR, the MHC molecule, and the MHC-bound peptide.

While numerous studies suggest that the majority of T cells recognize allo-MHC + peptide complex, there is evidence that some alloreactive T cells can recognize empty MHC molecules. Human T-cell clones specific for the human class I HLA-A2 antigen were able to respond to empty HLA-A2 molecules [34]. Further studies using the RMA-S cell line, which lacks the peptide transporter gene, have demonstrated that CTLs can lyse targets expressing empty class I molecules [35,36].

In addition to the importance of the presence of peptides bound to the peptide-binding groove, conformational changes of the MHC-peptide complex may also be important. Bluestone et al. [14,37] demonstrated that conformational changes induced by the peptide bound to the peptide-binding groove in class I MHC can alter T-cell alloreactivity. Thus, alloreactivity of some T-cell clones may be peptide dependent but not peptide specific. The conformational determinants created by MHC binding to peptide may determine whether or not the TCR can interact with the MHC molecule. Two different peptides may produce similar conformational determinants within the peptide-binding groove of the same MHC. This concept would predict the observation of cross-reactive allorecognition to unrelated peptides, which is supported by the literature.

INDIRECT PATHWAY OF ALLORECOGNITION

Indirect refers to T-cell recognition of nonself-MHC-derived peptides (allopeptides) in the context of self-MHC molecules expressed on recipient APCs. In this case, similar to the physiologic pathway of antigen recognition, the peptide sequence determines the response. Indirect presentation could occur through a number of mechanisms: soluble donor MHC molecules are shed from the graft, drain through the bloodstream or lymphatics to the recipient secondary lymphoid organs where they would be processed and/or presented by recipient APCs to recipient T cells. Alternatively, donor graft cells that migrate to recipient secondary secondary lymphoid organs could be endocytosed by recipient APCs. Third, recipient monocyte–macrophages entering the donor graft could endocytose donor antigens and present the peptides to recipient T cells. Interestingly, recent emerging data demonstrate that not only CD4+ T cells, as traditionally thought, but also CD8+ T cells can be primed through the indirect pathway of allorecognition and contribute to graft destruction [38].

Unlike the direct pathway, the indirect pathway requires previous priming to antigen. Moreover, the precursor frequency of T cells that can recognize a specific antigen through the indirect pathway is relatively low; 100–1000 times lower than that for directly alloreactive T cells. Until recently, most investigations in transplantation only addressed the direct pathway of allorecognition and very little was known about the contribution of the indirect pathway in graft rejection. The existence of the indirect pathway of allorecognition was originally suggested by Lechler and Batchelor [39,40] in the early 1980s based on rodent studies with passenger cell