Dairy Powders and Concentrated Products

Edited by

A. Y. Tamime Dairy Science and Technology Consultant Ayr, UK

A John Wiley & Sons, Ltd., Publication

Dairy Powders and Concentrated Products

The Society of Dairy Technology (SDT) has joined with Wiley-Blackwell to produce a series of technical dairy-related handbooks providing an invaluable resource for all those involved in the dairy industry, from practitioners to technologists, working in both traditional and modern large-scale dairy operations.

For information regarding the SDT, please contact Maurice Walton, Executive Director, Society of Dairy Technology, P.O. Box 12, Appleby in Westmorland, CA16 6YJ, UK. email: execdirector@sdt.org

Other volumes in the Society of Dairy Technology book series:

Probiotic Dairy Products (ISBN 978 1 4051 2124 8) Fermented Milks (ISBN 978 0 6320 6458 8) Brined Cheeses (ISBN 978 1 4051 2460 7) Structure of Dairy Products (ISBN 978 1 4051 2975 6) Cleaning-in-Place (ISBN 978 1 4051 5503 8) Milk Processing and Quality Management (ISBN 978 1 4051 4530 5) Dairy Fats and Related Products (ISBN 978 1 4051 5090 3)

Dairy Powders and Concentrated Products

Edited by

A. Y. Tamime Dairy Science and Technology Consultant Ayr, UK

A John Wiley & Sons, Ltd., Publication

This edition first published 2009 © 2009 Blackwell Publishing Ltd

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

Editorial office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data:

Dairy powders and concentrated milk products / edited by Adnan Tamime. - 1st ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4051-5764-3 (hardback : alk. paper) 1. Concentrated milk. 2. Dried milk. I. Tamime, A. Y. SF259.D323 2009
637'.142 - dc22

2008045264

A catalogue record for this book is available from the British Library.

Typeset in 10/12.5 Times-Roman by Laserwords Private Limited, Chennai, India Printed and bound in Singapore by Fabulous Printers Pte Ltd

Contents

Pre	face t	o the Tech	unical Series	XV	
Pre	face			xvii	
Cor	ntribu	tors		xxi	
1	Chemistry of Milk – Role of Constituents in Evaporation and Drying H.C. DEETH AND J. HARTANTO				
	1.1	Introduc	tion	1	
	1.2	Chemica	l components of liquid, concentrated and dried milk products	1	
		1.2.1 P	Protein	1	
		1.2.2 F	łat	6	
		1.2.3 C	Carbohydrate	8	
		1.2.4 N	Ainerals	9	
		1.2.5 V	Vater	11	
		1.2.6 A	Air	11	
	1.3	Surface	composition of powders	12	
	1.4	Quality i	issues	14	
		1.4.1 H	Heat stability	14	
		1.4.2 F	Pouling	18	
		1.4.3 A	Age thickening	19	
		1.4.4 N	Maillard reactions	19	
		1.4.5 C	Dxidation	20	
	1.5	Conclusi	ions	22	
	Refe	erences		22	
2	Cur M. I	rent Legi HICKEY	slation on Concentrated and Dried Milk Products	28	
	2.1	Introduc	tion	28	
	2.2	European	n Union legislation	31	
		2.2.1 A	Access to EU legislation	31	
		2.2.2 V	/ertical-legislation on concentrated and dried milk products	31	
		2.2.3 H	Iorizontal-hygiene and food safety requirements	41	
		2.2.4 H	Iorizontal-food additives legislation	45	
		2.2.5 H	Iorizontal-labelling requirements for foods	52	
		2.2.6 H	Iorizontal-packaging legislation	53	

3

2.3	United Kingdom legislation	54
	2.3.1 Legislative basis	54
	2.3.2 Background	54
	2.3.3 Present legislation on composition	56
	2.3.4 Present legislation on hygiene	58
	2.3.5 The Dairy UK Code of Practice for HTST pasteurisation	58
2.4	Irish legislation	59
	2.4.1 Introduction	59
	2.4.2 Present legislation on hygiene	60
	2.4.3 Present legislation on specific products	60
2.5	United States legislation	61
	2.5.1 Introduction and background to US legislation	61
	2.5.2 The 'Code of Federal Regulations'	63
	2.5.3 Hygiene requirements for milk and certain milk products	64
	2.5.4 US standards of identity and labelling	66
	2.5.5 The USDA specifications and grading schemes for certain milk	
	products	71
	2.5.6 Food additives in US legislation	72
2.6	Legislation in Australia and New Zealand	73
	2.6.1 Introduction	73
	2.6.2 The 'Joint Food Standards Code'	73
	2.6.3 New Zealand-specific legislation	74
2.7	The international perspective-Codex Alimentarius	75
	2.7.1 What is Codex Alimentarius?	75
	2.7.2 Codex Alimentarius Commission membership and structure	76
	2.7.3 Codex Alimentarius standards	76
	2.7.4 Codex Alimentarius-general standards	79
	2.7.5 Codex Alimentarius standards for concentrated and dried milks	84
2.8	Private standards and specifications	87
2.9	Conclusions and possible future developments	88
Ref	erences	88
Tec	hnology of Evaporators, Membrane Processing and Dryers	99
М.	CARIĆ, J.C. AKKERMAN, S. MILANOVIĆ, S.E. KENTISH AND	
A.Y	7. TAMIME	
3.1	Introduction	99
3.2	Evaporators	100
	3.2.1 Principles of evaporation	100
	3.2.2 Evaporation techniques and systems	101
	3.2.3 Plant design of evaporator configuration	104
	3.2.4 Heat economy in evaporator installation	104
	3.2.5 Cleaning of evaporators	105
	3.2.6 Evaporation versus membrane filtration	106

	3.3	Memb	brane filtration technology	108
		3.3.1	Principles of membrane filtration	108
		3.3.2	Membrane filtration techniques and systems	112
		3.3.3	Membrane filtration configurations	114
		3.3.4	Heat economy in membrane filtration	115
		3.3.5	Application of membrane filtration in the dairy industry	115
		3.3.6	Cleaning of membrane filtration systems	116
	3.4	Spray	drying technology	123
		3.4.1	Principles of spray drying	123
		3.4.2	Spray drying techniques and systems	127
		3.4.3	Plant design of spray drying configuration	130
		3.4.4	Heat economy of spray drying	132
		3.4.5	Cleaning of dryers	133
	3.5	Concl	usions	142
	Refe	erences		143
4	Pro	duction	of Evaporated Milk, Sweetened Condensed Milk and 'Dulce	
	de I	Leche'		149
	M.N	I. OLIV	EIRA, A.L.B. PENNA AND H. GARCIA NEVAREZ	
	4.1	Backg	round	149
	4.2	Evapo	brated milk	151
		4.2.1	Introduction	151
		4.2.2	Evaporated milk production	154
		4.2.3	Product properties	154
	4.3	Sweet	ened condensed milk	156
		4.3.1	Introduction	156
		4.3.2	Production stages	156
	4.4	'Dulce	e de leche'	158
		4.4.1	Background	158
		4.4.2	'Dulce de leche' production	160
		4.4.3	Product properties	164
		4.4.4	Rheological parameters	165
		4.4.5	Results of a research on 'dulce de leche' using the UF process	166
	4.5	Concl	usions	176
	Refe	erences		177
5	Drie	ed Milk	Products	180
	M. S	SKAND	DERBY, V. WESTERGAARD, A. PARTRIDGE	
	ANI	D D.D.	MUIR	
	5.1	Introd	uction	180
	5.2	Defini	tions	180
		5.2.1	Composition	180
		5.2.2	Heat classification	182
		5.2.3	Dispersion properties	182

	5.3	Micro	bial quality	182
		5.3.1	Raw milk	182
		5.3.2	Effects of milk processing	186
	5.4	Functi	ionality and certain technical aspects	189
		5.4.1	Heat treatment	189
		5.4.2	Whey protein denaturation	191
		5.4.3	Agglomeration and instantisation	194
	5.5	Specif	fic processes	203
		5.5.1	Ordinary milk powders	203
		5.5.2	Instant milk powders	204
		5.5.3	Other types of milk powders	209
	5.6	Qualit	ty assessment	212
		5.6.1	Introduction	212
		5.6.2	Milk	212
		5.6.3	Concentrate	215
		5.6.4	Powder	216
	5.7	Concl	usions	233
	Refe	erences		233
6	Cas	ein and	I Related Products	235
	H.S.	ROLL	EMA AND D.D. MUIR	
	6.1	Introd	uction	235
	6.2	Produ	cts-definitions and structure	236
		6.2.1	Acid casein	236
		6.2.2	Caseinates	236
		6.2.3	Phosphocasein	237
		6.2.4	Rennet casein	237
		6.2.5	Co-precipitate	238
		6.2.6	Milk protein concentrates and isolates	238
		6.2.7	Isolated and enriched casein fractions	238
		6.2.8	Casein fragments	239
	6.3	Metho	ods of manufacture	240
		6.3.1	Introduction	240
		6.3.2	Acid casein-conventional treatment	241
		6.3.3	Rennet casein	243
		6.3.4	Caseinate	243
		6.3.5	Co-precipitate	244
		6.3.6	Acid casein-supercritical fluid processing	244
		6.3.7	Fractionation of casein	245
		6.3.8	Total milk protein	247
		6.3.9	Casein-derived peptides	247
	6.4	Functi	ionality	249
		6.4.1	Solubility	249
		6.4.2	Heat and alcohol stability	249
		6.4.3	Viscosity	249

		6.4.4 Formation of protein-stabilised emulsions	249
		6.4.5 Functionality of peptides derived from casein	250
	6.5	Quality control	250
	Refe	erences	252
7	Dri e P. J.	ed Whey, Whey Proteins, Lactose and Lactose Derivative Products ELEN	255
	71	Introduction	255
	7.2	Types and composition of raw whey and main whey-based powders	255
		7.2.1 Standard and modified whey powders	256
		7.2.2 Whey protein	256
		7.2.3 Lactose and modified lactose products	257
		7.2.4 Other whey-based powdered products	259
	7.3	Unit operations in the production of concentrated and dried whey and	
		whey-based products	259
	7.4	Technological complexities in the production and storage of whey-based	261
		products	201
		7.4.2 Low colubility and hygrogeopicity of lastese	201
		7.4.2 Low solubility and hygroscopicity of factose	262
		7.4.4 Propensity for non-enzymatic Maillard browning reaction	262
		7.4.5 Foam formation and its potential detrimental effects during dry-	205
		ing	263
		7.4.6 Free moisture in lactose powders	263
	7.5	Modified whey-based products and their uses	264
	7.6	Future trends	264
	7.7	Sources of further information	265
	Refe	reences	266
8	Spe	ccialised and Novel Powders	268
	P . H	HAVEA, A.J. BALDWIN AND A.J. CARR	
	8.1	Introduction	268
	8.2	Principles	268
		8.2.1 Moisture content	268
		8.2.2 Carbohydrate content	269
		8.2.3 High-fat content	269
		8.2.4 Oxidation	269
		8.2.5 Processing control	270
	0.2	8.2.6 Particle solubility	270
	8.3	Conee writener powders	270
		8.3.1 Chemical composition	270
		6.5.2 Intallulaciuming process	271
		8.3.4 Recent developments	271
			212

	8.4	Novel whey products	273
		8.4.1 Whey protein in nutraceutical applications	273
		8.4.2 Heat-denatured whey protein	274
		8.4.3 Cold gelling WPCs	276
		8.4.4 Co-precipitation of whey protein with casein	277
	8.5	Milk mineral	278
	8.6	Cheese powder	280
	8.7	Hydrolysates	280
	8.8	Cream powders	284
		8.8.1 Why dried cream powders?	284
		8.8.2 Emulsion stability	284
		8.8.3 Processing of cream powders	285
		8.8.4 Physicochemical properties of dairy cream powders	286
	8.9	Concluding remarks	287
	Refe	erences	288
9	Infa	nnt Formulae – Powders and Liquids	294
	DF	H. MONTAGNE, P. VAN DAEL, M. SKANDERBY	
	ANI	D W. HUGELSHOFER	
	9.1	Introduction	294
	9.2	Historical background	294
	9.3	Definition and classification of infant formula	296
	9.4	An overview of the world market of infant formulae	297
		9.4.1 Annual production figures	297
		9.4.2 Worldwide manufacturers of infant formulae	299
	9.5	Regulations governing infant formulae	301
		9.5.1 General background	301
		9.5.2 Cultural and religious aspects	301
		9.5.3 Labelling	302
		9.5.4 Procedures for placing infant food product on the market	303
	9.6	Essential composition	303
		9.6.1 Introduction	303
		9.6.2 Proteins	305
		9.6.3 Lipids	309
		9.6.4 Carbohydrates	309
		9.6.5 Minerals	310
		9.6.6 Vitamins	311
	9.7	Food safety	311
		9.7.1 Food additives	311
		9.7.2 Hygiene and microbiological standards	311
	9.8	Raw materials/ingredients	312
		9.8.1 General aspects	312
		9.8.2 Milk	312
		9.8.3 Oils	313
		9.8.4 Carbohydrates	313

	9.9	Manufa	acture of dried infant formulae (powders)	313
		9.9.1	Introduction	313
		9.9.2	The 'wet mix' processing line	314
		9.9.3	Preparation of the mix	316
		9.9.4	Evaporation	316
		9.9.5	Spray drying	317
		9.9.6	Hygiene and production time between CIP cleaning	318
		9.9.7	Structure of the powder	318
		9.9.8	Drying parameters	319
		9.9.9	Finished powder conveying system	320
		9.9.10	Microbiological examination	320
	9.10	Manu	facture of liquid infant formulae (Ready-To-Feed and concen-	
		trates)		321
		9.10.1	Dissolving of ingredients	321
		9.10.2	First stage of standardisation	321
		9.10.3	Oils and fat addition	321
		9.10.4	First heat treatment and fat emulsification	323
		9.10.5	Second stage of standardisation	323
		9.10.6	Final conditioning	323
		9.10.7	Retort sterilisation	323
		9.10.8	UHT sterilisation and aseptic processing	324
		9.10.9	Intermediate aseptic storage	325
		9.10.10	Aseptic filling machines and packaging materials	325
		9.10.11	Microbiological examination	326
	9.11	Concl	usion	327
	Refe	rences		328
10	Proc	ess Con	trol in Evaporation and Drying	332
	C.G.	BLOO	RE AND D.J. O'CALLAGHAN	
	10.1	Backg	ground	332
	10.2	Contr	ol technology	333
	10.3	Measu	arement technology	334
	10.4	Actua	tor technology	335
	10.5	Comn	nunication technology	335
	10.6	Contr	ol philosophies	336
	10.7	Proces	ss dynamics	337
	10.8	Evapo	orator control	337
		10.8.1	Feed flow rate	337
		10.8.2	Pre-heat temperature	337
		10.8.3	Energy input	337
		10.8.4	Condenser water flow rate	338
		10.8.5	Level of total solids in the concentrate	338
		10.8.6	Modelling approaches for evaporator control	340
		10.8.7	Control of evaporator cleaning systems	341

	10.9 Spray	dryer control	341
	10.9.1	Controlling the evaporative demand	341
	10.9.2	Controlling the energy input	342
	10.9.3	Controlling powder moisture content	342
	10.9.4	Concentrate flow rate in disc atomising dryers	342
	10.9.5	Concentrate flow rate in nozzle atomising dryers	343
	10.9.6	Inlet air flow rate	343
	10.9.7	Air-flow stability in spray dryers	343
	10.9.8	Inlet air temperature	344
	10.9.9	Chamber pressure	344
	10.9.10	Outlet temperature in dryers without static fluid beds	344
	10.9.11	Outlet temperature in spray dryers with integrated fluid beds	345
	10.9.12	'Dummy' outlet temperature	346
	10.9.13	Moisture control	347
	10.9.14	A model-predictive approach to the control of a spray dryer	347
	10.9.15	The influence of the protein content of the powder	347
	10.9.16	Cleaning system control in spray drying	348
	10.10 Conc	lusion	349
	References		349
11	Hozorda in 1	Drying	351
11		PF AND D L O'CALLAGHAN	551
	C.G. D LOOI		
	11.1 Backg	round	351
	11.2 Comb	ustion	351
	11.2.1	Smouldering combustion	352
	11.2.2	Flaming combustion	352
	11.2.3	Deflagrations	352
	11.2.4	Detonations	353
	11.2.5	Secondary explosions	353
	11.3 Dust c	haracteristics	353
	11.3.1	Combustibility/explosibility	353
	11.3.2	Upper and lower explosible limits	353
	11.3.3	Minimum ignition temperature	354
	11.3.4	Minimum ignition energy	354
	11.3.5	Maximum explosion pressure and the rate of pressure rise	355
	11.3.6	Particle size	356
	11.3./	Moisture content	356
	11.4 Ignitio	n sources	356
	11.4.1	Flames List surfaces	336
	11.4.2	not surfaces	357
	11.4.3	wiechanical friction	358
	11.4.4	Impact sparks	358
	11.4.5	Electrical sparks	339
	11.4.6	Electrostatic discharge sparks	339

11.4.7 Hot work	359
11.4.8 Self-ignition	360
11.5 Hazards of dust explosions	362
11.6 Fire detection	362
11.6.1 Fast-acting temperature sensors	362
11.6.2 Infra-red optical detectors	362
11.6.3 Carbon monoxide detectors	363
11.6.4 Pressure sensors	363
11.6.5 Operator observation	364
11.7 Explosion suppression	364
11.7.1 Dry powder suppression	364
11.7.2 Chlorinated fluorocarbon compounds	365
11.7.3 Pressurised hot water	365
11.8 Explosion venting	365
11.8.1 Venting principles	365
11.8.2 Vent ducts	366
11.8.3 Vent doors and panels	366
11.9 Containment	367
11.10 Isolation	367
11.11 Inerting	367
11.12 Fire fighting	367
11.13 Conclusion	368
References	368
Index	370

Preface to the Technical Series

For more than 60 years, the Society of Dairy Technology (SDT) has sought to provide education and training in the dairy field, disseminating knowledge and fostering personal development through symposia, conferences, residential courses, publications and its journal, the *International Journal of Dairy Technology* (previously known as the *Journal of the Society of Dairy Technology*).

In recent years, there have been significant advances in our understanding of milk systems, probably the most complex natural food available to man. Improvements in process technology have been accompanied by massive changes in the scale of many milk processing operations, and the manufacture of a wide range of dairy and other related products.

The Society has now embarked on a project with Blackwell Publishing to produce a Technical Series of dairy-related books to provide an invaluable source of information for practising dairy scientists and technologists, covering the range from small enterprises to modern large-scale operation. This latest volume in the series, *Dairy Powders and Concentrated Products*, under the editorship of Dr A.Y. Tamime, provides a timely and comprehensive update on the principles and practices involved in producing these concentrated milk and milk fractions. Though the final products are often shelf stable, the milder methods now used to aid the retention of the nutritional and functional properties have led to a further increase in hygiene standards within the industry. While some products, for instance infant formulae, provide a complete food, a new sector has developed within the dairy industry to provide specialised ingredients to the food industry. This book provides a valuable review of the progress being made in the provision of these products.

Andrew Wilbey Chairman of the Publications Committee, SDT September 2008

Preface

Given the recent developments in dairy technology, it has become apparent that the revision of the Society of Dairy Technology publication (Milk and Whey Powders – published in 1980) is overdue. Although there have been some technological developments in the manufacture of these products, including concentrated and sweetened condensed milk, over the past couple of decades, the total world production figures in 2005 (×1000 tonnes; as reported by the International Dairy Federation of the main dairy-producing countries) of condensed products and dairy powders are 1777.6 and 3025.8, respectively. The economic importance of these products to dairy-producing countries is very significant, and there is a large demand for them in countries where milk production is low or non-existent. In these markets, dairy products are made locally to meet the demand of consumers from recombined powders, anhydrous milk fat and concentrated dairy ingredients (evaporated and sweetened condensed milk).

Dairy Powders and Concentrated Products is the latest book in the Technical Series of The Society of Dairy Technology. Numerous scientific data are available in journals and books that have been published since the early 1990s, and the primary aim of this text is to detail in one publication the manufacturing methods, scientific aspects and properties of milk powders (full-fat, skimmed and high-protein powders made from milk retentates), whey powders including whey powder concentrates, lactose, caseinates, sweetened condensed milk, evaporated milk and infant baby feed. The book also covers the international standards relating to these products for trading purposes, as well as the hazards such as explosion and fire that may occur during the manufacture of dairy powders.

The authors, who are all specialists in these products, have been chosen from around the world. The book will be of interest to dairy scientists, students, researchers and dairy operatives around the world and will become an important volume in the Technical Series of Society of Dairy Technology.

> A.Y. Tamime Technical Series Editor September 2008

This book is dedicated to the memory of Dr Richard Robinson, who generously devoted much time and effort to checking the text of the volumes in the SDT technical series prior to publication.

Contributors

Dr A.Y. Tamime

Dairy Science & Technology Consultant 24 Queens Terrace Ayr KA7 1DX Scotland United Kingdom Tel: +44 (0)1292 265498 Fax: +44 (0)1292 265498 Mobile: +44 (0)7980 278950 E-mail: adnan@tamime.fsnet.co.uk

Dr H.C. Deeth

School of Land and Food Sciences The University of Queensland Brisbane, Qld 4072 Australia Tel: +61 (0)7 3346 9191 Fax: +61 (0)7 3365 1171 E-mail: h.deeth@uq.edu.au

Mr J. Hartanto

School of Land, Crop and Food Sciences University of Queensland Brisbane, Qld 4072 Australia Tel: +61 (0)7 33469191 Fax: +61 (0)7 3365 1177 Email: juwono_h@yahoo.com

Dr M. Hickey

Derryreigh Creggane Charleville Co. Cork Ireland Tel: +353 (0)63 89392 Mobile: +353 (0)87 2385653 E-mail: mfhickey@oceanfree.net

Professor M. Carić

University of Novi Sad Faculty of Technology 21000 Novi Sad Serbia and Montenegro Tel: +381 21 485 3712, 3705 or 3719 Mobile: +381 63 857 51 62 E-mail: caricom@uns.ns.ac.yu

Dr Ir. J.C. Akkerman

NIZO Food Research B.V. Division Manager Processing P.O. Box 20 6710 BA Ede The Netherlands or Kernhemseweg 2 6718 ZB Ede The Netherlands Tel: +31 (0)318 659 638 Fax: +31 (0)318 650 400 E-mail: coen.akkerman@nizo.nl

Professor S. Milanović

University of Novi Sad Faculty of Technology 21000 Novi Sad Serbia and Montenegro Tel: +381 21 485 3712, 3705 or 3719 E-mail: senadm@uns.ns.ac.yu

Dr S.E. Kentish

University of Melbourne Particulate Fluids Processing Centre Department of Chemical and Biomolecular Engineering Victoria 3010 Australia Tel: +61 (0)3 8344 6682 Fax: +61 (0)3 8344 4153 E-mail: sandraek@unimelb.edu.au

Professor M. Nogueira de Oliveira

Universidade de São Paulo Departamento de Tecnologia Bioquimico-Farmacêutica Avenue Prof. Lineu Prestes 580, Bloco 16 Sao Paulo 05508-900 Brazil Tel: +55 (0)11 3091 3690 Fax: +55 (0)11 3815 6386 E-mail: monolive@usp.br

Dr A.L.B. Penna

Universidade Estadual Paulista Departamento de Engenharia e Tecnologia de Alimentos Rua Cristóvão Colombo, 2265 15054-000 São José do Rio Preto – SP Brazil Tel: +55 (0) 17 3221-2266 Fax: +55 (0) 17 3221-2299 E-mail: analucia@ibilce.unesp.br

Professor H. Garcia Nevarez

Universidad Autonoma de Chihuahua Facultad de Zootecnia Dallas 5920 Residencial Campestre III Chihuahua State of Chihuahua Mexico Tel: +52 614 4340303 (office) Tel: +52 614 4230991(home) Fax: (614) 4293300 Ext. 23926 E-mail: hgarcia@yahoo.com or hgarcia@uach.mx

Dr M. Skanderby

GEA Process Engineering Division Niro A/S Denmark Tel: +45 3954 5305 Fax: +45 3954 5876 E-mail: martin.skanderby@geagroup.com

Dr V. Westergaard

GEA Process Engineering Division Niro A/S Denmark E-mail: vagn.westergaard@geagroup.com

Mr A. Partridge

Niro GEA Process Engineering Ltd GEA Process Engineering Division Tel: +44 (0) 1235 557810 or s/board + 44 (0) 1235 55559 Fax: +44 (0) 1235 554140 E-mail: anthony.partridge@geagroup.com

Professor D.D. Muir

DD Muir Consultants 26 Pennyvenie Way Girdle Toll Irvine KA11 1QQ Scotland – United Kingdom Tel: +44 (0)1294 213137 E-mail: Donald@ddmuir.com

Dr H.S. Rollema

NIZO Food Research B.V. Project Manager P.O. Box 20 6710 BA Ede The Netherlands or Kernhemseweg 2 6718 ZB Ede The Netherlands Tel: +31 318 659 536 Fax: +31 318 650 400 E-mail: h.rollema@chello.nl

Dr P. Jelen

Jelen & Jelen Food Technology and Fitness Consulting 6219 - 128th Street Edmonton Alberta T6H 3X2 Canada Tel: +1 (0)780 435 8817 (home) Tel: +1 (0)780 492 2480 (business) Fax: +1 (0)780 492 8914 E-mail: paul.jelen@ualberta.ca (work) or idj.jelen@interbaun.com (home)

Dr P. Havea

Fonterra Research Centre Private Bag 11029 Palmerston North 4442 New Zealand Tel: +64 6 350 4649 Ext. 7413 Fax: +64 6 356 1476 E-mail: palatasa.havea@fonterra.com

Mr A.J. Baldwin

Fonterra Research Centre Private Bag 11029 Palmerston North 4442 New Zealand Tel: +64 6 350 4649 (Ext. 66571) Tel: +64 6 350 6571 (direct) Fax: +64 6 356 1476 E-mail: alan.baldwin@fonterra.com

Dr A.J. Carr

Food Science and Technology Division Institute of Food, Nutrition and Human Health Massey University Private Bag 11 222 Palmerston North 4442 New Zealand Tel: +64 6 356 9099 (Ext. 81434) Fax: +64 6 350-5657 E-mail: a.j.carr@massey.ac.nz

Ir D.-H. Montagne

Senior Technical Adviser Nestlé PTC-Konolfingen Nestlé-Strasse 3 CH-3510 Konolfingen Switzerland Tel: +41 31 7901545 Fax: +41 31 7901552 E-mail: dirk.montagne@rdko.nestle.com dirk.montagne@netplus.ch (private)

Dr P. Van Dael

Mead Johnson Nutritionals Regulatory Affairs Specialist 2400 West Lloyd Expressway 47721 Evansville Indiana USA Tel: +1 (0)812 429 5185 E-mail: peter.vandael@bms.com

W. Hugelshofer

Aseptic Technology Specialist (retired) Alpenstr. 15 3510 Konolfingen Switzerland Tel: +41 31 79114 57 E-mail: hugelshofer@solnet.ch

Dr C.G. Bloore

Dairy Industry Systems Consultant P.O. Box 5150 Dunedin 9058 New Zealand Tel./fax: +64 3 477 2827 E-mail: cbloore@es.co.nz

Dr D.J. O'Callaghan

Moorepark Food Research Centre Teagasc Fermoy Co. Cork Irish Republic Tel: +353 25 42205 Fax: +353 25 42340 E-mail: Donal.Ocallaghan@teagasc.ie

1 Chemistry of Milk – Role of Constituents in Evaporation and Drying

H.C. Deeth and J. Hartanto

1.1 Introduction

This chapter discusses the relevance of major milk components to concentrated and dried products, the chemical composition of the various products and some of the quality issues of the products associated with the various components. Knowledge of the chemical composition of these products is essential for understanding their manufacture, applications, nutritional attributes, essential chemical differences and functional properties, as well as the changes that occur during their manufacture and storage. Several comprehensive reviews of the chemical composition of milk are available in dairy chemistry texts and other publications (e.g. Walstra & Jenness, 1984; Wong *et al.*, 1988; Fox & McSweeney, 1998; Varnam & Sutherland, 2001; Anonymous, 2003; Walstra *et al.*, 2006).

Many factors affect the composition of milk. These include the species and breed of animal from which the milk is derived, the stage of lactation, the season and the nutritional status and health of the animal. In addition, changes to the milk occur after it is harvested and before it is processed, which may affect its processibility. Therefore, it is impossible to provide accurate compositional data. In Table 1.1, 'textbook values' of the major constituents, water, fat, protein, carbohydrate (lactose) and minerals or ash are given for whole milk and skimmed milk, that is, milk from which fat has been removed. Table 1.1 also gives compositional data for a range of concentrated and dried milk products selected from a range of sources. As for the composition of milk, several factors affect the composition of these products also. These include the factors that affect the unprocessed milk and also many processing and storage variables. Therefore, the data in Table 1.1 shows a graphical comparison of the proximate compositions of the major dried products. For the sake of this illustration, the water content of the powders is assumed to be zero. In practice, however, the water content is approximately $3-5 \ge 100 \ g^{-1}$.

Table 1.1 and Figure 1.1 illustrate a wide range of compositions of the concentrated and dried milk products. In the following sections, these aspects are discussed in relation to the composition and quality aspects of the concentrated and dried products.

1.2 Chemical components of liquid, concentrated and dried milk products

1.2.1 Protein

Both the protein content and protein composition are important in milk concentrates and powders, with some products being characterised by their protein content. For example,

Product	Water	Fat	Protein	Carbohydrate	Ash/minerals
Liquid milks					
Whole milk	87	3.7	3.3	4.8	0.7
Skimmed milk	90	< 0.1	3.4	4.9	0.75
Concentrated milks					
Evaporated whole milk					
American standard	72.7-74.7	7.5-8.0	6.5-7.1	9-10	1.3-1.6
British standard	67-69	9-10	8-9	11.0-12.5	1.9-2.1
Evaporated skimmed milk	79.5	0.3	7.6	11	1.6
Sweetened condensed milk	27	9	8	55	1.8
Sweetened condensed skimmed milk	28	0.3	10	59	2.3
Milk powders					
Whole milk powder	2-4	25-28	25-27	37-38	6-7
Skimmed milk powder	3-5	0.7-1.3	35-37	49-52	7.5-8.0
Buttermilk powder	2.8-3.8	3-6	33-36	47-49	7-8
Cream powder	2.6-3.0	55-70	12-15	13-24	2.0-3.5
Milk and whey protein powders					
MPC 42	3.5	1.0	42	46.0	7.5
MPC 70	4.2	1.4	70	16.2	8.2
MPC 75	5.0	1.5	75	10.9	7.6
MPC 80	3.9	1.8	80	4.1	7.4
MPC 85	4.9	1.6	85	1.0	7.1
High milk protein powder	5.3	2.3	88	0.7	7
Caseinate (Ca, K, Na)	3-5	0.9-1.5	89-95	0.2	3.3-5
Casein (acid)	9.5	0.8	97	0.1	1.8
Casein (rennet)	9.5	0.8	90.5	0.1	8.5
Low-protein WPC	4.6	2-4	34-36	44-53	7-8
Medium-protein WPC	4.3	5	53	35	7
High-protein WPC	3-4	4-6	59-65	21-22	3.5-4
Very high-protein WPC	4-5	0.3-7.0	72-81	2-13	2.5-6.5
Whey protein isolate	2.5-6	0.1 - 0.7	89-93	0.1 - 0.8	1.4-3.8
Fractionated whey proteins					
α-fraction	4.5	1.0	81.5	7	3.4
β-fraction	4.5	0.4	87	0.5	3.0

 Table 1.1
 Proximate composition (g 100 g⁻¹) of liquid, concentrated and dried milk products.

Product	Water	Fat	Protein	Carbohydrate	Ash/minerals
Milk/whey protein hydrolysate	4	5	81.5	3	4.5
Whey powders					
Whey powder (acid)	≤3.5	0.8	9-12	65-69	11-12
Whey powder (sweet)	3-6	0.8-1.5	12-13	70-73	7.5-8.5
Whey powder (demineralised)	<u>≤</u> 3	≤1.5	≥11	78-82	<u>≤</u> 4
Whey powder (demineralised)	≤3	≤1.5	≥11	80-84	≤1.5
Whey powder (deproteinised)	3	0.2 - 1	2.5	80-85.5	8.5-10
Whey powder (lactose-reduced)	2-3	1 - 4	18-25	40-60	11-27
Miscellaneous products					
Lactose (food grade)	0.5	0.1	0.1	99	0.1-0.3
Infant formula	2-3	26-39	10-18	40-60	8

Table 1.1 Continued.

MPC = milk protein concentrate; WPC = whey protein concentrate.

Data compiled from Hargrove & Alford (1974), Posati & Orr (1976), Walstra & Jenness (1984), Morr (1984), Bassette & Acosta (1988), Jensen (1990), Morr & Foegeding (1990), Morr & Ha (1993), Caric (1993), Haylock (1995), Huffman (1996), Early (1998), Australian Dairy Corporation (1999), Pintado *et al.* (1999), Holt *et al.* (1999), O'Malley *et al.* (2000), Mistry (2002), Fox (2002, 2003), Mleko *et al.* (2003), Thomas *et al.* (2004), Kim *et al.* (2005), FSANZ (2006), Walstra *et al.* (2006), Millqvist-Fureby & Smith (2007) and Sinha *et al.* (2007).

WMP = whole milk powder; SMP = skimmed milk powder; MPC = milk protein concentrate; WP = whey powder; WPC = whey protein concentrate; WPI = whey protein isolate; numbers following abbreviations denote approximate protein percentages.

milk protein concentrates (MPC) and whey protein concentrates (WPC) are marketed on the basis of their protein content, for example, WPC80 contains 80 g 100 g^{-1} protein powder. In most cases, the nominal protein content is a crude protein figure, not a true protein figure. The non-protein nitrogen components, such as urea, represent the difference between these two values.

The proteins in milk consist of two broad types, the caseins that are insoluble at pH 4.6 and the whey proteins that are soluble at this pH. About 80 g 100 g⁻¹ of the protein is casein and the remainder is whey proteins. Hence, the casein: whey protein ratio in milk is ~4:1. A third minor class is the membrane proteins that form part of both the milk fat globule membrane and the skimmed milk membrane material. The membrane proteins have only a minor role in the properties of most concentrates and powders.

Table 1.1 and Figure 1.1 also show the difference in the protein contents of different powders. Four types of powder stand out as having a high protein content – casein (both acid and rennet), high-protein MPC such as MPC85, high protein WPC such as WPC80 and whey protein isolate. However, the type of protein differs considerably, with caseins being almost entirely casein, MPC containing both casein and whey protein in the same proportion as the original milk and the whey protein products containing mostly whey protein with only a minor amount of casein. Fractionated whey proteins, such as the alpha and beta fractions contain predominantly the whey proteins α -lactalbumin and β -lactoglobulin, respectively.

In Table 1.1 and Figure 1.1, the compositions of two different caseins are shown. This is a good example of a product with the same name produced by different methods having different compositions. Rennet casein produced by coagulation of casein by the action of chymosin (in rennet) is depleted in the glycomacropeptide or casein-derived peptide of κ -casein that remains in the whey, while acid casein, produced by the acid precipitation of casein, contains the complete caseins. This also means that the corresponding rennet and acid wheys differ also with rennet whey containing a substantial amount of the glycomacropeptide (~15 g 100 g⁻¹ of the protein), which is not present in acid whey.

In milk, most of the casein exists in the form of casein micelles that contain the four major caseins, α_{s1} -, α_{s2} -, β - and κ -caseins in the ratio of approximately 40:10:35:12. In addition, about 6 g 100 g⁻¹ of the solid material in the micelle is colloidal calcium phosphate that acts as 'glue' to help maintain the integrity of the micelle. If the calcium phosphate is removed from the micelle, for example by acidification, the micelles are disrupted and the casein coagulates into curd. Therefore, the form in which the caseins exist in milk products is determined by the processing procedures used. For example, caseins that are produced by acid precipitation are largely in non-micellar form, while the casein in skimmed milk powder (SMP) or MPC is largely 'micellar' (Mulvihill & Ennis, 2003). However, it should be noted that though micelles in milk contain 4–5 g water g⁻¹, the dried micelles in powders contain little water and, hence, are quite different from native micelles.

The micelles in milk range in size from 30 to 300 nm diameter (Varnam & Sutherland, 2001). However, after heat treatment they increase in size. Martin *et al.* (2007) found that the size of the micelles increased on average by \sim 3, 6 and 39 nm after low-heat (79°C for <5 s), medium-heat (90°C for 30 s) and high-heat (120°C for 4 min) treatment of skimmed milk. This increase is due to the attachment of denatured whey proteins onto the micelles (Oldfield *et al.*, 2005). Removal of water by evaporation resulted in much larger