Dairy Powders and Concentrated Products

Edited by

A. Y. Tamime
Dairy Science and Technology Consultant
Ayr, UK
Dairy Powders and Concentrated Products
The Society of Dairy Technology (SDT) has joined with Wiley-Blackwell to produce a series of technical dairy-related handbooks providing an invaluable resource for all those involved in the dairy industry, from practitioners to technologists, working in both traditional and modern large-scale dairy operations.

For information regarding the SDT, please contact Maurice Walton, Executive Director, Society of Dairy Technology, P.O. Box 12, Appleby in Westmorland, CA16 6YJ, UK. email: execdirector@sdt.org

Other volumes in the Society of Dairy Technology book series:

- Probiotic Dairy Products (ISBN 978 1 4051 2124 8)
- Fermented Milks (ISBN 978 0 6320 6458 8)
- Brined Cheeses (ISBN 978 1 4051 2460 7)
- Structure of Dairy Products (ISBN 978 1 4051 2975 6)
- Cleaning-in-Place (ISBN 978 1 4051 5503 8)
- Milk Processing and Quality Management (ISBN 978 1 4051 4530 5)
- Dairy Fats and Related Products (ISBN 978 1 4051 5090 3)
Dairy Powders and Concentrated Products

Edited by

A. Y. Tamime
Dairy Science and Technology Consultant
Ayr, UK
Contents

Preface to the Technical Series
Preface
Contributors

1 Chemistry of Milk – Role of Constituents in Evaporation and Drying
H.C. DEETH AND J. HARTANTO

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Chemical components of liquid, concentrated and dried milk products</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1 Protein</td>
<td>1</td>
</tr>
<tr>
<td>1.2.2 Fat</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3 Carbohydrate</td>
<td>8</td>
</tr>
<tr>
<td>1.2.4 Minerals</td>
<td>9</td>
</tr>
<tr>
<td>1.2.5 Water</td>
<td>11</td>
</tr>
<tr>
<td>1.2.6 Air</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Surface composition of powders</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Quality issues</td>
<td>14</td>
</tr>
<tr>
<td>1.4.1 Heat stability</td>
<td>14</td>
</tr>
<tr>
<td>1.4.2 Fouling</td>
<td>18</td>
</tr>
<tr>
<td>1.4.3 Age thickening</td>
<td>19</td>
</tr>
<tr>
<td>1.4.4 Maillard reactions</td>
<td>19</td>
</tr>
<tr>
<td>1.4.5 Oxidation</td>
<td>20</td>
</tr>
<tr>
<td>1.5 Conclusions</td>
<td>22</td>
</tr>
<tr>
<td>References</td>
<td>22</td>
</tr>
</tbody>
</table>

2 Current Legislation on Concentrated and Dried Milk Products
M. HICKEY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>28</td>
</tr>
<tr>
<td>2.2 European Union legislation</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1 Access to EU legislation</td>
<td>31</td>
</tr>
<tr>
<td>2.2.2 Vertical–legislation on concentrated and dried milk products</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3 Horizontal–hygiene and food safety requirements</td>
<td>41</td>
</tr>
<tr>
<td>2.2.4 Horizontal–food additives legislation</td>
<td>45</td>
</tr>
<tr>
<td>2.2.5 Horizontal–labelling requirements for foods</td>
<td>52</td>
</tr>
<tr>
<td>2.2.6 Horizontal–packaging legislation</td>
<td>53</td>
</tr>
</tbody>
</table>
Contents

2.3 United Kingdom legislation 54
 2.3.1 Legislative basis 54
 2.3.2 Background 54
 2.3.3 Present legislation on composition 56
 2.3.4 Present legislation on hygiene 58
 2.3.5 The Dairy UK Code of Practice for HTST pasteurisation 58
2.4 Irish legislation 59
 2.4.1 Introduction 59
 2.4.2 Present legislation on hygiene 60
 2.4.3 Present legislation on specific products 60
2.5 United States legislation 61
 2.5.1 Introduction and background to US legislation 61
 2.5.2 The ‘Code of Federal Regulations’ 63
 2.5.3 Hygiene requirements for milk and certain milk products 64
 2.5.4 US standards of identity and labelling 66
 2.5.5 The USDA specifications and grading schemes for certain milk products 71
 2.5.6 Food additives in US legislation 72
2.6 Legislation in Australia and New Zealand 73
 2.6.1 Introduction 73
 2.6.2 The ‘Joint Food Standards Code’ 73
 2.6.3 New Zealand-specific legislation 74
2.7 The international perspective–Codex Alimentarius 75
 2.7.1 What is Codex Alimentarius? 75
 2.7.2 Codex Alimentarius Commission membership and structure 76
 2.7.3 Codex Alimentarius standards 76
 2.7.4 Codex Alimentarius–general standards 79
 2.7.5 Codex Alimentarius standards for concentrated and dried milks 84
2.8 Private standards and specifications 87
2.9 Conclusions and possible future developments 88

References 88

3 Technology of Evaporators, Membrane Processing and Dryers 99

M. CARIĆ, J.C. AKKERMAN, S. MILANOVIĆ, S.E. KENTISH AND A.Y. TAMIME

3.1 Introduction 99
3.2 Evaporators 100
 3.2.1 Principles of evaporation 100
 3.2.2 Evaporation techniques and systems 101
 3.2.3 Plant design of evaporator configuration 104
 3.2.4 Heat economy in evaporator installation 104
 3.2.5 Cleaning of evaporators 105
 3.2.6 Evaporation versus membrane filtration 106
Contents

5.3 Microbial quality 182
 5.3.1 Raw milk 182
 5.3.2 Effects of milk processing 186
5.4 Functionality and certain technical aspects 189
 5.4.1 Heat treatment 189
 5.4.2 Whey protein denaturation 191
 5.4.3 Agglomeration and instantisation 194
5.5 Specific processes 203
 5.5.1 Ordinary milk powders 203
 5.5.2 Instant milk powders 204
 5.5.3 Other types of milk powders 209
5.6 Quality assessment 212
 5.6.1 Introduction 212
 5.6.2 Milk 212
 5.6.3 Concentrate 215
 5.6.4 Powder 216
5.7 Conclusions 233
References 233

6 Casein and Related Products 235
H.S. ROLLEMA AND D.D. MUIR

 6.1 Introduction 235
 6.2 Products—definitions and structure 236
 6.2.1 Acid casein 236
 6.2.2 Caseinates 236
 6.2.3 Phosphocasein 237
 6.2.4 Rennet casein 237
 6.2.5 Co-precipitate 238
 6.2.6 Milk protein concentrates and isolates 238
 6.2.7 Isolated and enriched casein fractions 238
 6.2.8 Casein fragments 239
 6.3 Methods of manufacture 240
 6.3.1 Introduction 240
 6.3.2 Acid casein—conventional treatment 241
 6.3.3 Rennet casein 243
 6.3.4 Caseinate 243
 6.3.5 Co-precipitate 244
 6.3.6 Acid casein—supercritical fluid processing 244
 6.3.7 Fractionation of casein 245
 6.3.8 Total milk protein 247
 6.3.9 Casein-derived peptides 247
 6.4 Functionality 249
 6.4.1 Solubility 249
 6.4.2 Heat and alcohol stability 249
 6.4.3 Viscosity 249
6.4.4 Formation of protein-stabilised emulsions 249
6.4.5 Functionality of peptides derived from casein 250
6.5 Quality control 250
References 252

7 Dried Whey, Whey Proteins, Lactose and Lactose Derivative Products 255
P. JELEN

7.1 Introduction 255
7.2 Types and composition of raw whey and main whey-based powders 255
 7.2.1 Standard and modified whey powders 256
 7.2.2 Whey protein 256
 7.2.3 Lactose and modified lactose products 257
 7.2.4 Other whey-based powdered products 259
7.3 Unit operations in the production of concentrated and dried whey and
 whey-based products 259
7.4 Technological complexities in the production and storage of whey-based
 products 261
 7.4.1 Heat sensitivity of whey protein 261
 7.4.2 Low solubility and hygroscopicity of lactose 262
 7.4.3 Content of lactic acid 262
 7.4.4 Propensity for non-enzymatic Maillard browning reaction 263
 7.4.5 Foam formation and its potential detrimental effects during dry-
 ing 263
 7.4.6 Free moisture in lactose powders 263
7.5 Modified whey-based products and their uses 264
7.6 Future trends 264
7.7 Sources of further information 265
References 266

8 Specialised and Novel Powders 268
P. HAVEA, A.J. BALDWIN AND A.J. CARR

8.1 Introduction 268
8.2 Principles 268
 8.2.1 Moisture content 268
 8.2.2 Carbohydrate content 269
 8.2.3 High-fat content 269
 8.2.4 Oxidation 269
 8.2.5 Processing control 270
 8.2.6 Particle solubility 270
8.3 Coffee whitener powders 270
 8.3.1 Chemical composition 270
 8.3.2 Manufacturing process 271
 8.3.3 Functional properties 271
 8.3.4 Recent developments 272
8.4 Novel whey products
8.4.1 Whey protein in nutraceutical applications 273
8.4.2 Heat-denatured whey protein 274
8.4.3 Cold gelling WPCs 276
8.4.4 Co-precipitation of whey protein with casein 277
8.5 Milk mineral 278
8.6 Cheese powder 280
8.7 Hydrolysates 280
8.8 Cream powders 284
8.8.1 Why dried cream powders? 284
8.8.2 Emulsion stability 284
8.8.3 Processing of cream powders 285
8.8.4 Physicochemical properties of dairy cream powders 286
8.9 Concluding remarks 287

References 288

9 Infant Formulae – Powders and Liquids 294
D.-H. MONTAGNE, P. VAN DAEL, M. SKANDERBY AND W. HUGELSHOFER

9.1 Introduction 294
9.2 Historical background 294
9.3 Definition and classification of infant formula 296
9.4 An overview of the world market of infant formulae 297
9.4.1 Annual production figures 297
9.4.2 Worldwide manufacturers of infant formulae 299
9.5 Regulations governing infant formulae 301
9.5.1 General background 301
9.5.2 Cultural and religious aspects 301
9.5.3 Labelling 302
9.5.4 Procedures for placing infant food product on the market 303
9.6 Essential composition 303
9.6.1 Introduction 303
9.6.2 Proteins 305
9.6.3 Lipids 309
9.6.4 Carbohydrates 309
9.6.5 Minerals 310
9.6.6 Vitamins 311
9.7 Food safety 311
9.7.1 Food additives 311
9.7.2 Hygiene and microbiological standards 311
9.8 Raw materials/ingredients 312
9.8.1 General aspects 312
9.8.2 Milk 312
9.8.3 Oils 313
9.8.4 Carbohydrates 313
Contents

10.9 Spray dryer control 341
 10.9.1 Controlling the evaporative demand 341
 10.9.2 Controlling the energy input 342
 10.9.3 Controlling powder moisture content 342
 10.9.4 Concentrate flow rate in disc atomising dryers 342
 10.9.5 Concentrate flow rate in nozzle atomising dryers 342
 10.9.6 Inlet air flow rate 343
 10.9.7 Air-flow stability in spray dryers 343
 10.9.8 Inlet air temperature 344
 10.9.9 Chamber pressure 344
 10.9.10 Outlet temperature in dryers without static fluid beds 344
 10.9.11 Outlet temperature in spray dryers with integrated fluid beds 345
 10.9.12 ‘Dummy’ outlet temperature 346
 10.9.13 Moisture control 347
 10.9.14 A model-predictive approach to the control of a spray dryer 347
 10.9.15 The influence of the protein content of the powder 347
 10.9.16 Cleaning system control in spray drying 348

10.10 Conclusion 349
References 349

11 Hazards in Drying 351

C.G. BLOORE AND D.J. O’CALLAGHAN

11.1 Background 351

11.2 Combustion 351
 11.2.1 Smouldering combustion 352
 11.2.2 Flaming combustion 352
 11.2.3 Deflagrations 352
 11.2.4 Detonations 353
 11.2.5 Secondary explosions 353

11.3 Dust characteristics 353
 11.3.1 Combustibility/explosibility 353
 11.3.2 Upper and lower explosible limits 353
 11.3.3 Minimum ignition temperature 354
 11.3.4 Minimum ignition energy 354
 11.3.5 Maximum explosion pressure and the rate of pressure rise 355
 11.3.6 Particle size 356
 11.3.7 Moisture content 356

11.4 Ignition sources 356
 11.4.1 Flames 356
 11.4.2 Hot surfaces 357
 11.4.3 Mechanical friction 358
 11.4.4 Impact sparks 358
 11.4.5 Electrical sparks 359
 11.4.6 Electrostatic discharge sparks 359
Preface to the Technical Series

For more than 60 years, the Society of Dairy Technology (SDT) has sought to provide education and training in the dairy field, disseminating knowledge and fostering personal development through symposia, conferences, residential courses, publications and its journal, the *International Journal of Dairy Technology* (previously known as the *Journal of the Society of Dairy Technology*).

In recent years, there have been significant advances in our understanding of milk systems, probably the most complex natural food available to man. Improvements in process technology have been accompanied by massive changes in the scale of many milk processing operations, and the manufacture of a wide range of dairy and other related products.

The Society has now embarked on a project with Blackwell Publishing to produce a Technical Series of dairy-related books to provide an invaluable source of information for practising dairy scientists and technologists, covering the range from small enterprises to modern large-scale operation. This latest volume in the series, *Dairy Powders and Concentrated Products*, under the editorship of Dr A.Y. Tamime, provides a timely and comprehensive update on the principles and practices involved in producing these concentrated milk and milk fractions. Though the final products are often shelf stable, the milder methods now used to aid the retention of the nutritional and functional properties have led to a further increase in hygiene standards within the industry. While some products, for instance infant formulae, provide a complete food, a new sector has developed within the dairy industry to provide specialised ingredients to the food industry. This book provides a valuable review of the progress being made in the provision of these products.

Andrew Wilbey
Chairman of the Publications Committee, SDT
September 2008
Preface

Given the recent developments in dairy technology, it has become apparent that the revision of the Society of Dairy Technology publication (Milk and Whey Powders – published in 1980) is overdue. Although there have been some technological developments in the manufacture of these products, including concentrated and sweetened condensed milk, over the past couple of decades, the total world production figures in 2005 (×1000 tonnes; as reported by the International Dairy Federation of the main dairy-producing countries) of condensed products and dairy powders are 1777.6 and 3025.8, respectively. The economic importance of these products to dairy-producing countries is very significant, and there is a large demand for them in countries where milk production is low or non-existent. In these markets, dairy products are made locally to meet the demand of consumers from recombined powders, anhydrous milk fat and concentrated dairy ingredients (evaporated and sweetened condensed milk).

Dairy Powders and Concentrated Products is the latest book in the Technical Series of The Society of Dairy Technology. Numerous scientific data are available in journals and books that have been published since the early 1990s, and the primary aim of this text is to detail in one publication the manufacturing methods, scientific aspects and properties of milk powders (full-fat, skimmed and high-protein powders made from milk retentates), whey powders including whey powder concentrates, lactose, caseinates, sweetened condensed milk, evaporated milk and infant baby feed. The book also covers the international standards relating to these products for trading purposes, as well as the hazards such as explosion and fire that may occur during the manufacture of dairy powders.

The authors, who are all specialists in these products, have been chosen from around the world. The book will be of interest to dairy scientists, students, researchers and dairy operatives around the world and will become an important volume in the Technical Series of Society of Dairy Technology.

A.Y. Tamime
Technical Series Editor
September 2008
This book is dedicated to the memory of Dr Richard Robinson, who generously devoted much time and effort to checking the text of the volumes in the SDT technical series prior to publication.
Contributors

Dr A.Y. Tamime
Dairy Science & Technology Consultant
24 Queens Terrace
Ayr KA7 1DX
Scotland
United Kingdom
Tel: +44 (0)1292 265498
Fax: +44 (0)1292 265498
Mobile: +44 (0)7980 278950
E-mail: adnan@tamime.fsnet.co.uk

Dr H.C. Deeth
School of Land and Food Sciences
The University of Queensland
Brisbane, Qld 4072
Australia
Tel: +61 (0)7 3346 9191
Fax: +61 (0)7 3365 1171
E-mail: h.deeth@uq.edu.au

Mr J. Hartanto
School of Land, Crop and Food Sciences
University of Queensland
Brisbane, Qld 4072
Australia
Tel: +61 (0)7 33469191
Fax: +61 (0)7 3365 1177
Email: juwono_h@yahoo.com

Dr M. Hickey
Derryreigh
Creggane
Charleville
Co. Cork
Ireland
Tel: +353 (0)63 89392
Mobile: +353 (0)87 2385653
E-mail: mfhickey@oceanfree.net

Professor M. Carić
University of Novi Sad
Faculty of Technology
21000 Novi Sad
Serbia and Montenegro
Tel: +381 21 485 3712, 3705 or 3719
Mobile: +381 63 857 51 62
E-mail: caricom@uns.ns.ac.yu

Dr Ir. J.C. Akkerman
NIZO Food Research B.V.
Division Manager Processing
P.O. Box 20
6710 BA Ede
The Netherlands
or
Kernhemseweg 2
6718 ZB Ede
The Netherlands
Tel: +31 (0)318 659 638
Fax: +31 (0)318 650 400
E-mail: coen.akkerman@nizo.nl

Professor S. Milanović
University of Novi Sad
Faculty of Technology
21000 Novi Sad
Serbia and Montenegro
Tel: +381 21 485 3712, 3705 or 3719
E-mail: senadm@uns.ns.ac.yu
Dr S.E. Kentish
University of Melbourne
Particulate Fluids Processing Centre
Department of Chemical and Biomolecular Engineering
Victoria 3010
Australia
Tel: +61 (0)3 8344 6682
Fax: +61 (0)3 8344 4153
E-mail: sandraek@unimelb.edu.au

Professor M. Nogueira de Oliveira
Universidade de São Paulo
Departamento de Tecnologia Bioquímico-Farmacêutica
Avenue Prof. Lineu Prestes 580, Bloco 16
Sao Paulo 05508-900
Brazil
Tel: +55 (0)11 3091 3690
Fax: +55 (0)11 3815 6386
E-mail: monolive@usp.br

Dr A.L.B. Penna
Universidade Estadual Paulista
Departamento de Engenharia e Tecnologia de Alimentos
Rua Cristóvão Colombo, 2265
15054-000 São José do Rio Preto – SP
Brazil
Tel: +55 (0)17 3221-2266
Fax: +55 (0)17 3221-2299
E-mail: analucia@ibilce.unesp.br

Professor H. Garcia Nevarez
Universidad Autonoma de Chihuahua
Facultad de Zootecnia
Dallas 5920
Residencial Campestre III
Chihuahua
State of Chihuahua
Mexico
Tel: +52 614 4340303 (office)
Tel: +52 614 4230991 (home)
Fax: (614) 4293300 Ext. 23926
E-mail: hgarcia@yahoo.com or hgarcia@uach.mx

Dr M. Skanderby
GEA Process Engineering Division
Niro A/S
Denmark
Tel: +45 3954 5305
Fax: +45 3954 5876
E-mail: martin.skanderby@geagroup.com

Dr V. Westergaard
GEA Process Engineering Division
Niro A/S
Denmark
E-mail: vagn.westergaard@geagroup.com

Mr A. Partridge
Niro
GEA Process Engineering Ltd
GEA Process Engineering Division
Tel: +44 (0) 1235 557810 or s/board + 44 (0) 1235 555559
Fax: +44 (0) 1235 554140
E-mail: anthony.partridge@geagroup.com

Professor D.D. Muir
DD Muir Consultants
26 Pennyvenie Way
Girdle Toll
Irvine KA11 1QQ
Scotland – United Kingdom
Tel: +44 (0)1294 213137
E-mail: Donald@ddmuir.com

Dr H.S. Rollema
NIZO Food Research B.V.
Project Manager
P.O. Box 20
6710 BA Ede
The Netherlands
or
Kernhemseweg 2
6718 ZB Ede
The Netherlands
Tel: +31 318 659 536
Fax: +31 318 650 400
E-mail: h rollema@chello.nl
Dr P. Jelen
Jelen & Jelen Food Technology and Fitness Consulting
6219 - 128th Street
Edmonton
Alberta T6H 3X2
Canada
Tel: +1 (0)780 435 8817 (home)
Tel: +1 (0)780 492 2480 (business)
Fax: +1 (0)780 492 8914
E-mail: paul.jelen@ualberta.ca (work) or idj.jelen@interbaun.com (home)

Dr P. Havea
Fonterra Research Centre
Private Bag 11029
Palmerston North 4442
New Zealand
Tel: +64 6 350 4649 Ext. 7413
Fax: +64 6 356 1476
E-mail: palatasa.havea@fonterra.com

Mr A.J. Baldwin
Fonterra Research Centre
Private Bag 11029
Palmerston North 4442
New Zealand
Tel: +64 6 350 4649 (Ext. 66571)
Tel: +64 6 350 6571 (direct)
Fax: +64 6 356 1476
E-mail: alan.baldwin@fonterra.com

Dr A.J. Carr
Food Science and Technology Division
Institute of Food, Nutrition and Human Health
Massey University
Private Bag 11 222
Palmerston North 4442
New Zealand
Tel: +64 6 356 9099 (Ext. 81434)
Fax: +64 6 350-5657
E-mail: a.j.carr@massey.ac.nz

Ir D.-H. Montagne
Senior Technical Adviser
Nestlé PTC-Konolfingen
Nestlé-Strasse 3
CH-3510 Konolfingen
Switzerland
Tel: +41 31 7901545
Fax: +41 31 7901552
E-mail: dirk.montagne@rdko.nestle.com
dirk.montagne@netplus.ch (private)

Dr P. Van Dael
Mead Johnson Nutritionals
Regulatory Affairs Specialist
2400 West Lloyd Expressway
47721 Evansville
Indiana
USA
Tel: +1 (0)812 429 5185
E-mail: peter.vandael@bms.com

W. Hugelshofer
Aseptic Technology Specialist (retired)
Alpenstr. 15
3510 Konolfingen
Switzerland
Tel: +41 31 79114 57
E-mail: hugelshofer@solnet.ch

Dr C.G. Bloore
Dairy Industry Systems Consultant
P.O. Box 5150
Dunedin 9058
New Zealand
Tel./fax: +64 3 477 2827
E-mail: cbloore@es.co.nz

Dr D.J. O’Callaghan
Moorepark Food Research Centre
Teagasc
Fermoy
Co. Cork
Irish Republic
Tel: +353 25 42205
Fax: +353 25 42340
E-mail: Donal.Ocallaghan@teagasc.ie
1 Chemistry of Milk – Role of Constituents in Evaporation and Drying

H.C. Deeth and J. Hartanto

1.1 Introduction

This chapter discusses the relevance of major milk components to concentrated and dried products, the chemical composition of the various products and some of the quality issues of the products associated with the various components. Knowledge of the chemical composition of these products is essential for understanding their manufacture, applications, nutritional attributes, essential chemical differences and functional properties, as well as the changes that occur during their manufacture and storage. Several comprehensive reviews of the chemical composition of milk are available in dairy chemistry texts and other publications (e.g. Walstra & Jenness, 1984; Wong et al., 1988; Fox & McSweeney, 1998; Varnam & Sutherland, 2001; Anonymous, 2003; Walstra et al., 2006).

Many factors affect the composition of milk. These include the species and breed of animal from which the milk is derived, the stage of lactation, the season and the nutritional status and health of the animal. In addition, changes to the milk occur after it is harvested and before it is processed, which may affect its processibility. Therefore, it is impossible to provide accurate compositional data. In Table 1.1, ‘textbook values’ of the major constituents, water, fat, protein, carbohydrate (lactose) and minerals or ash are given for whole milk and skimmed milk, that is, milk from which fat has been removed. Table 1.1 also gives compositional data for a range of concentrated and dried milk products selected from a range of sources. As for the composition of milk, several factors affect the composition of these products also. These include the factors that affect the unprocessed milk and also many processing and storage variables. Therefore, the data in Table 1.1 should be used as a guide only to the composition of particular products. Figure 1.1 shows a graphical comparison of the proximate compositions of the major dried products. For the sake of this illustration, the water content of the powders is assumed to be zero. In practice, however, the water content is approximately 3–5 g 100 g$^{-1}$.

Table 1.1 and Figure 1.1 illustrate a wide range of compositions of the concentrated and dried milk products. In the following sections, these aspects are discussed in relation to the composition and quality aspects of the concentrated and dried products.

1.2 Chemical components of liquid, concentrated and dried milk products

1.2.1 Protein

Both the protein content and protein composition are important in milk concentrates and powders, with some products being characterised by their protein content. For example,
Table 1.1 Proximate composition (g 100 g\(^{-1}\)) of liquid, concentrated and dried milk products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Water</th>
<th>Fat</th>
<th>Protein</th>
<th>Carbohydrate</th>
<th>Ash/minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid milks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole milk</td>
<td>87</td>
<td>3.7</td>
<td>3.3</td>
<td>4.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Skimmed milk</td>
<td>90</td>
<td><0.1</td>
<td>3.4</td>
<td>4.9</td>
<td>0.75</td>
</tr>
<tr>
<td>Concentrated milks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaporated whole milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American standard</td>
<td>72.7–74.7</td>
<td>7.5–8.0</td>
<td>6.5–7.1</td>
<td>9–10</td>
<td>1.3–1.6</td>
</tr>
<tr>
<td>British standard</td>
<td>67–69</td>
<td>9–10</td>
<td>8–9</td>
<td>11.0–12.5</td>
<td>1.9–2.1</td>
</tr>
<tr>
<td>Evaporated skimmed milk</td>
<td>79.5</td>
<td>0.3</td>
<td>7.6</td>
<td>11</td>
<td>1.6</td>
</tr>
<tr>
<td>Sweetened condensed milk</td>
<td>27</td>
<td>9</td>
<td>8</td>
<td>55</td>
<td>1.8</td>
</tr>
<tr>
<td>Sweetened condensed skimmed milk</td>
<td>28</td>
<td>0.3</td>
<td>10</td>
<td>59</td>
<td>2.3</td>
</tr>
<tr>
<td>Milk powders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skimmed milk powder</td>
<td>3–5</td>
<td>0.7–1.3</td>
<td>35–37</td>
<td>49–52</td>
<td>7.5–8.0</td>
</tr>
<tr>
<td>Buttermilk powder</td>
<td>2.8–3.8</td>
<td>3–6</td>
<td>33–36</td>
<td>47–49</td>
<td>7–8</td>
</tr>
<tr>
<td>Cream powder</td>
<td>2.6–3.0</td>
<td>55–70</td>
<td>12–15</td>
<td>13–24</td>
<td>2.0–3.5</td>
</tr>
<tr>
<td>Milk and whey protein powders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPC 42</td>
<td>3.5</td>
<td>1.0</td>
<td>42</td>
<td>46.0</td>
<td>7.5</td>
</tr>
<tr>
<td>MPC 70</td>
<td>4.2</td>
<td>1.4</td>
<td>70</td>
<td>16.2</td>
<td>8.2</td>
</tr>
<tr>
<td>MPC 75</td>
<td>5.0</td>
<td>1.5</td>
<td>75</td>
<td>10.9</td>
<td>7.6</td>
</tr>
<tr>
<td>MPC 80</td>
<td>3.9</td>
<td>1.8</td>
<td>80</td>
<td>4.1</td>
<td>7.4</td>
</tr>
<tr>
<td>MPC 85</td>
<td>4.9</td>
<td>1.6</td>
<td>85</td>
<td>1.0</td>
<td>7.1</td>
</tr>
<tr>
<td>High milk protein powder</td>
<td>5.3</td>
<td>2.3</td>
<td>88</td>
<td>0.7</td>
<td>7</td>
</tr>
<tr>
<td>Caseinate (Ca, K, Na)</td>
<td>3–5</td>
<td>0.9–1.5</td>
<td>89–95</td>
<td>0.2</td>
<td>3.3–5</td>
</tr>
<tr>
<td>Casein (acid)</td>
<td>9.5</td>
<td>0.8</td>
<td>97</td>
<td>0.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Casein (rennet)</td>
<td>9.5</td>
<td>0.8</td>
<td>90.5</td>
<td>0.1</td>
<td>8.5</td>
</tr>
<tr>
<td>Low-protein WPC</td>
<td>4.6</td>
<td>2–4</td>
<td>34–36</td>
<td>44–53</td>
<td>7–8</td>
</tr>
<tr>
<td>Medium-protein WPC</td>
<td>4.3</td>
<td>5</td>
<td>53</td>
<td>35</td>
<td>7</td>
</tr>
<tr>
<td>High-protein WPC</td>
<td>3–4</td>
<td>4–6</td>
<td>59–65</td>
<td>21–22</td>
<td>3.5–4</td>
</tr>
<tr>
<td>Very high-protein WPC</td>
<td>4–5</td>
<td>0.3–7.0</td>
<td>72–81</td>
<td>2–13</td>
<td>2.5–6.5</td>
</tr>
<tr>
<td>Whey protein isolate</td>
<td>2.5–6</td>
<td>0.1–0.7</td>
<td>89–93</td>
<td>0.1–0.8</td>
<td>1.4–3.8</td>
</tr>
<tr>
<td>Fractionated whey proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-fraction</td>
<td>4.5</td>
<td>1.0</td>
<td>81.5</td>
<td>7</td>
<td>3.4</td>
</tr>
<tr>
<td>β-fraction</td>
<td>4.5</td>
<td>0.4</td>
<td>87</td>
<td>0.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Table 1.1 Continued.

<table>
<thead>
<tr>
<th>Product</th>
<th>Water</th>
<th>Fat</th>
<th>Protein</th>
<th>Carbohydrate</th>
<th>Ash/minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk/whey protein hydrolysate</td>
<td>4</td>
<td>5</td>
<td>81.5</td>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>Whey powders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whey powder (acid)</td>
<td>≤3.5</td>
<td>0.8</td>
<td>9–12</td>
<td>65–69</td>
<td>11–12</td>
</tr>
<tr>
<td>Whey powder (sweet)</td>
<td>3–6</td>
<td>0.8–1.5</td>
<td>12–13</td>
<td>70–73</td>
<td>7.5–8.5</td>
</tr>
<tr>
<td>Whey powder (demineralised)</td>
<td>≤3</td>
<td>≤1.5</td>
<td>≥11</td>
<td>78–82</td>
<td>≤4</td>
</tr>
<tr>
<td>Whey powder (demineralised)</td>
<td>≤3</td>
<td>≤1.5</td>
<td>≥11</td>
<td>80–84</td>
<td>≤1.5</td>
</tr>
<tr>
<td>Whey powder (deproteinised)</td>
<td>3</td>
<td>0.2–1</td>
<td>2.5</td>
<td>80–85.5</td>
<td>8.5–10</td>
</tr>
<tr>
<td>Whey powder (lactose-reduced)</td>
<td>2–3</td>
<td>1–4</td>
<td>18–25</td>
<td>40–60</td>
<td>11–27</td>
</tr>
<tr>
<td>Miscellaneous products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactose (food grade)</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>99</td>
<td>0.1–0.3</td>
</tr>
<tr>
<td>Infant formula</td>
<td>2–3</td>
<td>26–39</td>
<td>10–18</td>
<td>40–60</td>
<td>8</td>
</tr>
</tbody>
</table>

MPC = milk protein concentrate; WPC = whey protein concentrate.

Fig. 1.1 Proximate composition of major milk-derived powders.

WMP = whole milk powder; SMP = skimmed milk powder; MPC = milk protein concentrate; WP = whey powder; WPC = whey protein concentrate; WPI = whey protein isolate; numbers following abbreviations denote approximate protein percentages.
milk protein concentrates (MPC) and whey protein concentrates (WPC) are marketed on the basis of their protein content, for example, WPC80 contains 80 g 100 g⁻¹ protein powder. In most cases, the nominal protein content is a crude protein figure, not a true protein figure. The non-protein nitrogen components, such as urea, represent the difference between these two values.

The proteins in milk consist of two broad types, the caseins that are insoluble at pH 4.6 and the whey proteins that are soluble at this pH. About 80 g 100 g⁻¹ of the protein is casein and the remainder is whey proteins. Hence, the casein: whey protein ratio in milk is ∼4:1. A third minor class is the membrane proteins that form part of both the milk fat globule membrane and the skimmed milk membrane material. The membrane proteins have only a minor role in the properties of most concentrates and powders.

Table 1.1 and Figure 1.1 also show the difference in the protein contents of different powders. Four types of powder stand out as having a high protein content – casein (both acid and rennet), high-protein MPC such as MPC85, high protein WPC such as WPC80 and whey protein isolate. However, the type of protein differs considerably, with caseins being almost entirely casein, MPC containing both casein and whey protein in the same proportion as the original milk and the whey protein products containing mostly whey protein with only a minor amount of casein. Fractionated whey proteins, such as the alpha and beta fractions contain predominantly the whey proteins α-lactalbumin and β-lactoglobulin, respectively.

In Table 1.1 and Figure 1.1, the compositions of two different caseins are shown. This is a good example of a product with the same name produced by different methods having different compositions. Rennet casein produced by coagulation of casein by the action of chymosin (in rennet) is depleted in the glycomacropeptide or casein-derived peptide of κ-casein that remains in the whey, while acid casein, produced by the acid precipitation of casein, contains the complete caseins. This also means that the corresponding rennet and acid wheys differ also with rennet whey containing a substantial amount of the glycomacropeptide (∼15 g 100 g⁻¹ of the protein), which is not present in acid whey.

In milk, most of the casein exists in the form of casein micelles that contain the four major caseins, αs₁-, αs₂-, β- and κ-caseins in the ratio of approximately 40:10:35:12. In addition, about 6 g 100 g⁻¹ of the solid material in the micelle is colloidal calcium phosphate that acts as ‘glue’ to help maintain the integrity of the micelle. If the calcium phosphate is removed from the micelle, for example by acidification, the micelles are disrupted and the casein coagulates into curd. Therefore, the form in which the caseins exist in milk products is determined by the processing procedures used. For example, caseins that are produced by acid precipitation are largely in non-micellar form, while the casein in skimmed milk powder (SMP) or MPC is largely ‘micellar’ (Mulvihill & Ennis, 2003). However, it should be noted that though micelles in milk contain 4–5 g water g⁻¹, the dried micelles in powders contain little water and, hence, are quite different from native micelles.

The micelles in milk range in size from 30 to 300 nm diameter (Varnam & Sutherland, 2001). However, after heat treatment they increase in size. Martin et al. (2007) found that the size of the micelles increased on average by ∼3, 6 and 39 nm after low-heat (79°C for <5 s), medium-heat (90°C for 30 s) and high-heat (120°C for 4 min) treatment of skimmed milk. This increase is due to the attachment of denatured whey proteins onto the micelles (Oldfield et al., 2005). Removal of water by evaporation resulted in much larger