Dennis A. Smith, Han van de Waterbeemd, and Don K. Walker

Pharmacokinetics and Metabolism in Drug Design

Second Revised Edition
Dennis A. Smith,
Han van de Waterbeemd,
and Don K. Walker

Pharmacokinetics and
Metabolism in Drug Design
Methods and Principles in Medicinal Chemistry
Edited by R. Mannhold, H. Kubinyi, G. Folkers

Editorial Board
H.-D. Höljtje, H. Timmerman, J. Vacca, H. van de Waterbeemd, T. Wieland

Previous Volumes of this Series:

Th. Dingermann, D. Steinhalber, G. Folkers (eds.)
Molecular Biology in Medicinal Chemistry
Vol. 21

H. Kubinyi, G. Müller (ed.)
Chemogenomics in Drug Discovery
Vol. 22

T. I. Oprea (ed.)
Chemoinformatics in Drug Discovery
Vol. 23

R. Seifert, T. Wieland (eds.)
G-Protein Coupled Receptors as Drug Targets
Vol. 24

O. Kappe, A. Stadler
Microwaves in Organic and Medicinal Chemistry
Vol. 25

W. Bannwarth, B. Hinzen (eds.)
Combinatorial Chemistry
Vol. 26, 2nd Ed.

G. Cruciani (ed.)
Molecular Interaction Fields
Vol. 27
2005, ISBN 3-527-31087-8

M. Hamacher, K. Marcus, K. Stühler, A. van Hall, B. Warscheid, H. E. Meyer (eds.)
Proteomics in Drug Design
Vol. 28

D. J. Triggle, M. Gopalakrishnan, D. Rampe, W. Zheng (eds.)
Voltage-Gated Ion Channels as Drug Targets
Vol. 29
2006, ISBN 3-527-31258-7

D. Rognan
Ligand Design for G Protein-coupled Receptors
Vol. 30
2006, ISBN 3-527-31284-6
Dennis A. Smith, Han van de Waterbeemd, and Don K. Walker

Pharmacokinetics and Metabolism in Drug Design

Second Revised Edition
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by
Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages).
No part of this book may be reproduced in any form – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Typesetting Kühn & Weyh, Satz und Medien, Freiburg
Printing betz-druck GmbH, Darmstadt
Bookbinding Litges & Dopf Buchbinderei GmbH, Heppenheim

ISBN-10: 3-527-31368-0
Contents

Preface IX

Abbreviations and Symbols XIII

<table>
<thead>
<tr>
<th>1</th>
<th>Physicochemistry</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Physicochemistry and Pharmacokinetics</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Partition and Distribution Coefficient as Measures of Lipophilicity</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Limitations on the Use of 1-Octanol</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Further Understanding of Log P</td>
<td>6</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Unravelling the Principal Contributions to Log P</td>
<td>6</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Hydrogen Bonding</td>
<td>6</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Molecular Size and Shape</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Alternative Lipophilicity Scales</td>
<td>10</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Different Solvent Systems</td>
<td>10</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Chromatographic Approaches</td>
<td>10</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Liposome Partitioning</td>
<td>10</td>
</tr>
<tr>
<td>1.6</td>
<td>Computational Approaches to Lipophilicity</td>
<td>11</td>
</tr>
<tr>
<td>1.7</td>
<td>Membrane Systems to Study Drug Behaviour</td>
<td>12</td>
</tr>
<tr>
<td>1.8</td>
<td>Dissolution and Solubility</td>
<td>13</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Why Measure Solubility?</td>
<td>13</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Calculated Solubility</td>
<td>14</td>
</tr>
<tr>
<td>1.9</td>
<td>Ionisation (pKₐ)</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Pharmacokinetics</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Setting the Scene</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Intravenous Administration: Volume of Distribution</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Intravenous Administration: Clearance</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Intravenous Administration: Clearance and Half-life</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Intravenous Administration: Infusion</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Oral Administration</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Repeated Doses</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>Development of the Unbound (Free) Drug Model</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Unbound Drug and Drug Action</td>
<td>28</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>Unbound Drug Model and Barriers to Equilibrium</td>
<td>31</td>
</tr>
<tr>
<td>2.11</td>
<td>Slow Offset Compounds</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>Factors Governing Unbound Drug Concentration</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Absorption</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>The Absorption Process</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Dissolution</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Membrane Transfer</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Barriers to Membrane Transfer</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Models for Absorption Estimation</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Estimation of Absorption Potential</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Computational Approaches</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>Distribution</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Membrane Transfer Access to the Target</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Brain Penetration</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Volume of Distribution and Duration</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Distribution and T_{max}</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>Clearance</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>The Clearance Processes</td>
<td>67</td>
</tr>
<tr>
<td>5.2</td>
<td>Role of Transport Proteins in Drug Clearance</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Interplay Between Metabolic and Renal Clearance</td>
<td>70</td>
</tr>
<tr>
<td>5.4</td>
<td>Role of Lipophilicity in Drug Clearance</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Renal Clearance</td>
<td>83</td>
</tr>
<tr>
<td>6.1</td>
<td>Kidney Anatomy and Function</td>
<td>83</td>
</tr>
<tr>
<td>6.2</td>
<td>Lipophilicity and Reabsorption by the Kidney</td>
<td>84</td>
</tr>
<tr>
<td>6.3</td>
<td>Effect of Charge on Renal Clearance</td>
<td>85</td>
</tr>
<tr>
<td>6.4</td>
<td>Plasma Protein Binding and Renal Clearance</td>
<td>85</td>
</tr>
<tr>
<td>6.5</td>
<td>Balancing Renal Clearance and Absorption</td>
<td>87</td>
</tr>
<tr>
<td>6.6</td>
<td>Renal Clearance and Drug Design</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>Metabolic (Hepatic) Clearance</td>
<td>91</td>
</tr>
<tr>
<td>7.1</td>
<td>Function of Metabolism (Biotransformation)</td>
<td>91</td>
</tr>
<tr>
<td>7.2</td>
<td>Cytochrome P450</td>
<td>92</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Catalytic Selectivity of CYP2D6</td>
<td>94</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Catalytic Selectivity of CYP2C9</td>
<td>97</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Catalytic Selectivity of CYP3A4</td>
<td>98</td>
</tr>
<tr>
<td>7.3</td>
<td>Other Oxidative Metabolism Processes</td>
<td>104</td>
</tr>
<tr>
<td>7.4</td>
<td>Oxidative Metabolism and Drug Design</td>
<td>107</td>
</tr>
<tr>
<td>7.5</td>
<td>Non-Specific Esterases</td>
<td>109</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Function of Esterases</td>
<td>109</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Ester Drugs as Intravenous and Topical Agents</td>
<td>110</td>
</tr>
<tr>
<td>7.6</td>
<td>Prodrugs to Aid Membrane Transfer</td>
<td>111</td>
</tr>
</tbody>
</table>
7.7 Enzymes Catalysing Drug Conjugation 112
7.7.1 Glucuronyl and Sulpho-Transferases 112
7.7.2 Methyl Transferases 115
7.7.3 Glutathione S-Transferases 115
7.8 Stability to Conjugation Processes 116
7.9 Pharmacodynamics and Conjugation 117

8 Toxicity 121
8.1 Toxicity Findings 121
8.1.1 Pharmacophore-induced Toxicity 121
8.1.2 Structure-related Toxicity 123
8.1.3 Metabolism-induced Toxicity 125
8.2 Importance of Dose Size 126
8.3 Epoxides 126
8.4 Quinone Imines 128
8.5 Nitrenium Ions 133
8.6 Iminium Ions 134
8.7 Hydroxylamines 136
8.8 Thiophene Rings 137
8.9 Thioureas 139
8.10 Chloroquinolines 139
8.11 Stratification of Toxicity 140
8.12 Toxicity Prediction: Computational Toxicology 141
8.13 Toxicogenomics 141
8.14 Enzyme Induction (CYP3A4) and Drug Design 142
8.15 Enzyme Inhibition and Drug Design 146

9 Inter-Species Scaling 153
9.1 Objectives of Inter-Species Scaling 153
9.2 Allometric Scaling 153
9.2.1 Volume of Distribution 154
9.2.2 Clearance 156
9.3 Species Scaling: Adjusting for Maximum Life Span Potential 157
9.4 Species Scaling: Incorporating Differences in Metabolic Clearance 158
9.5 Inter-Species Scaling for Clearance by Hepatic Uptake 159
9.6 Elimination Half-Life 161
9.7 Scaling to Pharmacological Effect 161
9.8 Single Animal Scaling 163

10 High(er) Throughput ADME Studies 165
10.1 The High-Throughput Screening (HTS) Trend 165
10.2 Drug Metabolism and Discovery Screening Sequences 165
10.3 Physicochemistry 167
10.3.1 Solubility 168
10.3.2 Lipophilicity 168
10.4 Absorption/Permeability 169
10.5 Pharmacokinetics 169
10.6 Metabolism and Inhibition 170
10.7 The Concept of ADME Space 171
10.8 Computational Approaches in PK and Metabolism 173
10.8.1 QSPR and QSAR 173
10.8.2 PK Predictions Using QSAR and Neural Networks 173
10.8.3 Is In Silico Meeting Medicinal Chemistry Needs in ADME Prediction? 174
10.8.4 Physiologically-Based Pharmacokinetic (PBPK) Modelling 175
10.9 Outlook 175

Index 179
A Personal Foreword to the First Edition

The concept of this book is simple. It represents the distillation of my experiences over 25 years within drug discovery and drug development, and in particular how the science of drug metabolism and pharmacokinetics impacts medicinal chemistry. Hopefully it will be a source of some knowledge, but more importantly, a stimulus for medicinal chemists wanting to understand as much as possible about the chemicals they make. As the work grew I realised it was impossible to fulfil the concept of this book without involving others. I am extremely grateful to my co-authors Don Walker and Han van de Waterbeemd for helping turn a skeleton into a fully clothed body, and in the process, contributing a large number of new ideas and directions. Upon completion of the book I realise how little we know and how much there is to do. Medicinal chemists often refer to the magic methyl. This term covers the small synthetic addition, which almost magically solves a discovery problem of transforming a mere ligand into a potential drug, beyond the scope of existing structure–activity relationships. A single methyl can disrupt crystal lattices, break hydration spheres, modulate metabolism, enhance chemical stability, displace water in a binding site and turns the sometimes weary predictable plod of methyl, ethyl, propyl, futile into methyl, ethyl, another methyl magic! This book has no magical secrets unfortunately, but time and time again the logical search for solutions is eventually rewarded by unexpected gains.

January 2001,

Sandwich

Dennis A. Smith
A Personal Foreword to the Second Edition

I took great personal satisfaction in seeing our thoughts turned into a book, and sat back to relax. Very soon as I glanced at the book I saw gaps, missing links, things I wish we had said better or included. Pride turned gradually to frustration and provided the catalysis for a second edition. The experience spans 29 years, but my wonder and admiration for the magic of medicinal chemistry and those that practice it remain undimmed.

July 2005

Dennis A. Smith
Abbreviations and Symbols

Chapter 1

Abbreviations

CPC Centrifugal partition chromatography
CoMFA Comparative field analysis
3D-QSAR Three-dimensional quantitative structure–activity relationships
HDM Hexadecane membrane
IUPAC International Union of Pure and Applied Chemistry
MLP Molecular lipophilicity potential
RP-HPLC Reversed-phase high-performance liquid chromatography
PAMPA Parallel artificial membrane permeability assay
PGDP Propylene glycol dipelargonate
PSA Polar surface area
SF Shake flask, referring to traditional method to measure log P or log D
TPSA Topological polar surface area

Symbols

AP_{SUV} Absorption potential measured in small unilamellar vesicles (SUV)
$\Delta \log D$ Difference between log D in octanol/water and log D in alkane/water
$\Delta \log P$ Difference between log P in octanol/water and log P in alkane/water
f Rekker or Leo/Hansch fragmental constant for log P contribution
K_a Ionisation constant
A Polarity term, mainly related to hydrogen bonding capability of a solute
$log P$ Logarithm of the partition coefficient (P) of neutral species
$log D$ Logarithm of the distribution coefficient (D) at a selected pH, usually assumed to be measured in octanol/water
Abbreviations and Symbols

$\log D_{\text{oct}}$ Logarithm of the distribution coefficient (D) at a selected pH, measured in octanol/water
$\log D_{\text{chex}}$ Logarithm of the distribution coefficient (D) at a selected pH, measured in cyclohexane/water
$\log D_{7.4}$ Logarithm of the distribution coefficient (D) at pH 7.4
MW Molecular weight
π Hansch constant; contribution of a substituent to log P
pK_a Negative logarithm of the ionisation constant K_a

Chapter 2

Abbreviations

ADME Absorption, distribution, metabolism and excretion
AUC Area under plasma concentration time curve
CNS Central nervous system
CYP2D6 Cytochrome P450 2D6 enzyme
GIT Gastrointestinal tract
IV Intravenous
PET Positive emission tomography

Symbols

A_{av} Average amount of drug in the body over a dosing interval
A_{max} Maximum amount of drug in the body over a dosing interval
A_{min} Minimum amount of drug in the body over a dosing interval
C_o Initial concentration after IV dose
C_{avss} Average plasma concentration at steady state
$C_{\text{p(f)}}$ Free (unbound) plasma concentration
$C_{\text{p(fo)}}$ Initial free (unbound) plasma concentration
C_{ss} Steady state concentration
Cl Clearance
Cl_u Unbound clearance
Cl_H Hepatic clearance
Cl_i Intrinsic clearance
Cl_{iu} Intrinsic clearance of unbound drug
Cl_o Oral clearance
Cl_p Plasma clearance
Cl_R Renal clearance
Cl_S Systemic clearance
D Dose
E Extraction
E_{F} Fractional response
E_{M} Maximum response
F Fraction of dose reaching systemic circulation (bioavailability)
F_{da} Fraction dose absorbed
Abbreviations

AUC Area under plasma concentration time curve
Caco-2 Human colon adenocarcinoma cell line used as absorption model
GI Gastrointestinal
MDCK Madin–Darby canine kidney cell line used as absorption model
PSA Polar surface area

Symbols

A% Percentage of dose absorbed as measured in portal vein
CLOGP MedChem/Biobyte log \(P \) estimation program
F% Percentage of dose bioavailable
\(F_a \) Fraction absorbed
\(F_{\text{non}} \) Fraction non-ionised at pH of 6.5
IFV Intestinal fluid volume (250 mL)
\(k_a \) Absorption rate constant in rats (min\(^{-1}\))
\(\log D \) Logarithm of distribution coefficient
Abbreviations and Symbols

\(\log P \) Logarithm of partition coefficient
\(\log S \) Logarithm of solubility in water
\(RT \) Average residence time in the small intestine (270 min)
\(S_{6.5} \) Solubility in phosphate buffer at pH of 6.5
\(S_0 \) Intrinsic solubility of the neutral species at 37 °C
\(V_L \) Volume of the luminal contents
\(X_0 \) Dose administered

Chapter 4

Abbreviations

CNS Central nervous system
CSF Cerebrospinal fluid

Symbols

\(Cl_p \) Plasma clearance
\(Cl_u \) Unbound clearance of free drug
\(\Delta \log P \) Difference in \(\log P \) values in octanol and cyclohexane
\(H\text{-bond} \) Hydrogen bond
\(k_e \) Elimination rate constant
\(\log D_{7.4} \) Distribution coefficient at pH 7.4 (usually octanol/water)
\(\log P \) Partition coefficient (usually octanol)
\(pK_a \) Ionisation constant
\(T_{\text{max}} \) Time to maximum observed plasma concentration
\(V_{d(f)} \) Unbound volume of distribution of the free drug

Chapter 5

Abbreviations

ATP Adenosine triphosphate
BTL Bilitranslocase
CYP450 Cytochrome P450
MOAT Multiple organic acid transporter
MRP Multi-drug resistance protein
Natp Sodium dependent acid transporter protein
OATP Organic acid transport protein
OCT1 Organic cation transporter 1
OCT2 Organic cation transporter 2
P-gp P-glycoprotein
TxRA Thromboxane receptor antagonist
TxSI Thromboxane synthase inhibitor
Chapter 8

Symbols

Cl
Clearance

$log \, D_{7.4}$
Distribution coefficient (octanol-buffer) at pH 7.4

$t_{1/2}$
Elimination half-life

V_d
Volume of distribution

Chapter 6

Abbreviations

GFR
Glomerular filtration rate

Symbols

$C_{p(f)}$
Free (unbound) plasma concentration

$log \, D_{7.4}$
Logarithm of distribution coefficient (octanol-buffer) at pH 7.4

Chapter 7

Abbreviations

COMT
Catechol-O-methyl transferase

CYP
Cytochrome P450

CYP2D6
2D6 isoenzyme of the cytochrome P450 enzyme family

CYP2C9
2C9 isoenzyme of the cytochrome P450 enzyme family

CYP3A4
3A4 isoenzyme of the cytochrome P450 enzyme family

FMO
Flavin mono-oxygenase

GST
Glutathione S-transferase

MAO
Monoamine oxidase

NEP
Neutral endopeptidase

P450
Cytochrome P450

PAPS
3’-Phosphoadenosine-5-phosphosulfate

UGT
UDP-glucuronosyltransferases

Symbols

$log \, D_{7.4}$
Logarithm of the octanol/water distribution coefficient at pH 7.4

K_m
Affinity constant (concentration at 50% V_{max})

Chapter 8

Abbreviations

ANF
Atrial natriuretic factor (also ANP: atrial natriuretic peptide)

COX
Cyclooxygenase

ENCC
Electroneutral Na-Cl cotransporter

hFGF
Human fibroblast growth factor
Abbreviations and Symbols

- **GSH**: Glutathione
- **HMG-CoA**: 3-Hydroxy-3-methylglutaryl coenzyme A
- **LH**: Luteinizing hormone
- **5-LPO**: 5-Lipoxygenase
- **NK**: Neurokinin
- **NKCC**: Old name for ENCC
- **PBPK/PD**: Physiologically-based pharmacokinetic/pharmacodynamic (modelling)
- **PCNA**: Proliferating cell nuclear antigen
- **PPAR-γ**: Peroxisome proliferator-activated receptor γ
- **TA2**: Thromboxane
- **VEGF**: Vascular endothelial growth factor

Chapter 9

Abbreviations

- **BW**: Body weight
- **CYP2C9**: Cytochrome P450 2C9 enzyme
- **GFR**: Glomerular filtration rate
- **IV**: Intravenous
- **MLP**: Maximum life span potential
- **P450**: Cytochrome P450
- **TxRAs**: Thromboxane receptor antagonists

Symbols

- C_{max}: Maximum plasma concentration observed
- Cl: Clearance
- Cl_i: Intrinsic clearance
- Cl_{iu}: Intrinsic clearance of unbound (free) drug
- Cl_{ou}: Oral unbound clearance (i.e. oral clearance correct for free fraction)
- Cl_s: Systemic clearance
- f_b: Fraction of plasma bound drug
- f_u: Fraction of drug unbound (to plasma proteins)
- f_{ut}: Fraction of unbound drug in tissues
- ln: Natural logarithm
- Q: Organ blood flow
- R: Ratio of binding proteins in extracellular fluid (except plasma) to binding proteins in plasma
- r^2: Correlation coefficient
- $t_{1/2}$: Elimination half-life
- V_d: Volume of distribution
- V_e: Volume of extracellular fluid
- V_p: Volume of plasma
- V_r: Volume of remaining fluid
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADME</td>
<td>Absorption, distribution, metabolism, excretion</td>
</tr>
<tr>
<td>CYP3A4</td>
<td>Cytochrome P450 3A4</td>
</tr>
<tr>
<td>DMPK</td>
<td>Drug metabolism and pharmacokinetics</td>
</tr>
<tr>
<td>HTS</td>
<td>High-throughput screening</td>
</tr>
<tr>
<td>IAM</td>
<td>Immobilised artificial membrane</td>
</tr>
<tr>
<td>LC/MS</td>
<td>Liquid chromatography/mass spectrometry</td>
</tr>
<tr>
<td>MDR1</td>
<td>Gene coding for P-glycoprotein (P-gp); newer coding as ABCB1</td>
</tr>
<tr>
<td>MTS</td>
<td>Medium throughput screening</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>PAMPA</td>
<td>Parallel artificial membrane permeability assay</td>
</tr>
<tr>
<td>PBPK</td>
<td>Physiologically-based pharmacokinetics</td>
</tr>
<tr>
<td>P-gp</td>
<td>P-glycoprotein</td>
</tr>
<tr>
<td>PK</td>
<td>Pharmacokinetics</td>
</tr>
<tr>
<td>PK/PD</td>
<td>Pharmacokinetics/pharmacodynamics</td>
</tr>
<tr>
<td>PSA</td>
<td>Polar surface area</td>
</tr>
<tr>
<td>QSAR</td>
<td>Quantitative structure–activity relationships</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure–activity relationship</td>
</tr>
<tr>
<td>7TMs</td>
<td>Seven transmembrane loop receptors</td>
</tr>
<tr>
<td>UHTS</td>
<td>Ultra-high-throughput screening</td>
</tr>
</tbody>
</table>

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \log P$</td>
<td>Difference between octanol/water and alkane/water log P as a measure for hydrogen bonding capacity</td>
</tr>
<tr>
<td>K_i</td>
<td>Binding constant (to receptor or metabolising enzyme)</td>
</tr>
<tr>
<td>$\log D_{7.4}$</td>
<td>Logarithm of the octanol/water distribution coefficient at pH 7.4</td>
</tr>
<tr>
<td>$\log P$</td>
<td>Logarithm of the octanol/water partition coefficient for the neutral species</td>
</tr>
<tr>
<td>$\log S_w$</td>
<td>Logarithm of the aqueous solubility</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
</tbody>
</table>