Organic Pollutants in the Water Cycle

Properties, Occurrence, Analysis and Environmental Relevance of Polar Compounds

Edited by
Thorsten Reemtsma and Martin Jekel
Organic Pollutants
in the Water Cycle

Edited by
Thorsten Reemtsma and
Martin Jekel
Related Titles

Chiou, CT
Partition and Adsorption of Organic Contminants in Environmental Systems
2002
ISBN 0-471-23325-0

Refractory Organic Substances in the Environment
2002
ISBN 3-527-30173-9
Organic Pollutants in the Water Cycle

Properties, Occurrence, Analysis and Environmental Relevance of Polar Compounds

Edited by
Thorsten Reemtsma and Martin Jekel
Contents

Preface XIII

1 Analytical Methods for Polar Pollutants 1
Thorsten Reemtsma and José Benito Quintana
1.1 Introduction 1
1.2 The Analytical Process 1
1.3 Sample Pretreatment and Analyte Extraction 2
1.3.1 Sample Pretreatment 2
1.3.2 Solid Samples 3
1.3.3 Aqueous Samples 6
1.3.3.1 Solid Phase Extraction 6
1.3.3.2 Microextractions 10
1.4 Gas Chromatographic Methods 14
1.4.1 Derivatization 14
1.4.1.1 Alkylation and Esterification 15
1.4.1.2 Acylation 16
1.4.1.3 Silylation 16
1.4.2 Separation and Detection 17
1.4.2.1 Separation 17
1.4.2.2 Detection 17
1.5 Liquid Chromatography-Mass Spectrometry 19
1.5.1 Liquid Chromatography 20
1.5.1.1 Ionic Analytes 20
1.5.1.2 Non-Ionic Analytes 23
1.5.1.3 Amphoteric Compounds 25
1.5.1.4 Multiresidue Methods 26
1.5.1.5 Chiral Separation 26
1.5.2 Mass Spectrometry 27
1.5.2.1 Ionization 27
1.5.2.2 Mass Spectrometers and Modes of Operation 29
1.5.2.3 Quantitation Strategies and Matrix Effects 32
1.6 Conclusions 33
References 34
2 Residues of Pharmaceuticals from Human Use 41

Thomas Heberer and Thomas Ternes

2.1 Introduction 41
2.2 Routes into the Environment 42
2.3 Wastewater 43
2.3.1 Occurrence 43
2.3.2 Removal in Municipal STPs 46
2.4 Surface Water 50
2.4.1 Occurrence 50
2.4.2 Degradation in Surface Waters 52
2.4.3 Sediments 52
2.5 Groundwater and Underground Passage 53
2.6 Drinking Water Treatment 56
2.6.1 Sorption and Flocculation 56
2.6.1.1 Flocculation 56
2.6.2 Oxidation 56
2.6.2.1 Ozonation 56
2.6.2.2 Ozonation Products 57
2.6.3 Membrane Filtration 58
2.6.4 Evaluation of the Treatment Processes 59
References 59

3 Antibiotics for Human Use 65

Radka Alexy and Klaus Kümmerer

3.1 Introduction 65
3.2 Use of Antibiotics 65
3.3 Emissions into the Environment 69
3.4 Occurrence and Fate of Antibiotics 70
3.4.1 Wastewater and Wastewater Treatment 70
3.4.1.1 Hospital Wastewater 70
3.4.1.2 Municipal Wastewater 71
3.4.2 Surface Water 74
3.4.3 Groundwater 75
3.5 Elimination and Degradation in the Aquatic Environment 76
3.5.1 Elimination by Sorption 76
3.5.2 Non-biotic Degradation 78
3.5.2.1 Photolysis 78
3.5.2.2 Hydrolysis 79
3.5.3 Biodegradation 79
3.6 Effects on Aquatic Organisms 80
3.6.1 Effects on Aquatic Bacteria and Resistance 80
3.6.2 Effects on Higher Aquatic Organisms 82
3.7 Conclusion 82
Acknowledgments 83
References 83
9.6 Surfactants and Metabolites in Drinking Waters 241
9.6.1 Alkylphenol Ethoxylates (APEO) and their Degradation Products 241
9.6.2 Behavior of Sulfophenyl Carboxylates during Drinking Water Production 242
9.7 Risk Assessment 243
9.7.1 Linear Alkylbenzene Sulfonates and their Metabolites 243
9.7.2 Alkylphenol Ethoxylates and their Metabolites 244
9.8 Conclusions 244
References 245

10 Trihalomethanes (THMs), Haloacetic Acids (HAAs), and Emerging Disinfection By-products in Drinking Water 251
Christian Zwiener
10.1 Introduction 251
10.1.1 Disinfection – Fields of Application 251
10.1.2 Disinfection in Drinking Water Treatment 253
10.2 Regulations 255
10.2.1 European Union 255
10.2.2 Germany 257
10.2.3 United States 258
10.3 Reactants Leading to DBP Formation 259
10.3.1 Disinfectants 259
10.3.1.1 Chlorine 259
10.3.1.2 Chlorine Dioxide 260
10.3.1.3 Ozone 261
10.3.1.4 Chloramine 261
10.3.2 Organic DBP Precursors 262
10.3.2.1 Natural Organic Matter (NOM) 262
10.3.2.2 Micropolutants 263
10.4 Occurrence of DBPs 264
10.4.1 Trihalomethanes (THMs) and Halogenated Acetic Acids (HAAs) 265
10.4.1.1 German Drinking Water 265
10.4.1.2 European Drinking Water 266
10.4.1.3 Canadian Drinking Water 267
10.4.1.4 United States Drinking Waters 267
10.4.2 Emerging Organic DBPs 268
10.4.2.1 Halonitriles 269
10.4.2.2 Carbonyls 270
10.4.2.3 Halogenated Hydroxyfuranones 271
10.4.2.4 Halonitromethanes 272
10.4.2.5 N-Nitrosamines 273
10.4.2.6 Iodinated THMs and Acids 273
10.4.2.7 Missing DBPs 274
10.4.2.8 Transformation Products of Micropolutants 275
10.4.3 Inorganic Disinfection By-products 277
10.4.3.1 Chlorite and Chlorate 277
10.4.3.2 Bromate 277
10.5 Measures to Control DBPs 278
10.5.1 Source Control 279
10.5.2 Disinfection Control 279
10.6 Conclusions 281
Acknowledgments 281
References 281

11 Toxicology and Risk Assessment of Pharmaceuticals 287
Daniel R. Dietrich, Bettina C. Hitzfeld, and Evelyn O’Brien
11.1 Introduction 287
11.2 A Comparison of International Risk Assessment Procedures 290
11.2.1 The European Union Technical Guidance Document (TGD) 290
11.2.2 US-EPA 295
11.2.3 Japan 296
11.2.4 Canada 297
11.3 The Toxicological Data Set for Environmental Risk Assessment 301
11.3.1 Extrapolation from Acute to Chronic Toxicity 301
11.3.2 QSARs 305
11.3.3 “Omics” 306
11.3.4 Toxicity of Mixtures 307
11.4 Conclusions 307
References 308

12 Assessment and Management of Chemicals – How Should Persistent Polar Pollutants be Regulated? 311
Klaus Günter Steinhäuser and Steffi Richter
12.1 Chemicals Assessment and Management Today 311
12.1.1 Basic Legislation and Current Guidelines for Risk Assessment and Risk Management of Chemicals in Europe and Germany 311
12.1.1.1 Notification of New Substances 311
12.1.1.2 Existing Substances Legislation and Management 313
12.1.1.3 Technical Guidelines for Risk Assessment of Chemicals 314
12.1.2 Problems Impeding Effective Chemicals Management 315
12.1.3 Chemicals Management in the United States of America 318
12.1.4 Management of Specific Chemicals 321
12.1.4.1 Pesticides 321
12.1.4.2 Biocides 323
12.1.4.3 Pharmaceuticals 324
12.1.4.4 Detergents and Cleansing Agents 327
12.1.5 Reflections on Current Chemicals Management of Persistent Polar Pollutants 328
Contents

12.2 Future Chemicals Management in Europa with REACH 329
12.3 Persistent Organic Pollutants (POPs) and Persistent Polar Pollutants (PPPs) – A Comparison 332
12.3.1 Persistent Organic Pollutants (POPs) 332
12.3.2 Persistent Polar Pollutants (PPPs) in the Water Cycle 334
Acknowledgments 335
References 336

Subject Index 341
Preface

The perspective on contamination of aqueous environment by anthropogenic trace pollutants has experienced a remarkable change in the past ten to fifteen years. Traditionally hydrophobic persistent organic pollutants (POP) that may accumulate in sediments and enrich along food chains were studied extensively. Meanwhile the awareness developed that also polar contaminants may pose a significant problem to water quality, especially if they are not well degradable.

This growing awareness of polar pollutants has several reasons, of which only a few may be mentioned here.

• studying the occurrence of polar pollutants requires that these contaminants are analytically accessible. It was only in the second half of the 1990s that the effective coupling of liquid chromatography to mass spectrometry by electrospray ionization offered a highly sensitive approach to determine polar pollutants from water (see Chapter 1). This progress in analytical chemistry was a prerequisite to direct more attention towards such polar pollutants and to study them in more detail.

• Also in the 1990s it was shown, that trace organic pollutants present in municipal wastewater effluents may have severe sub-lethal effects to aquatic biota. It was shown that xeno-estrogens may interfere with the hormone cycle of wildlife at trace level.

• Globally an increasing water demand calls for an increasing portion of indirect potable reuse of treated municipal wastewater. However, such a partial closure of water cycles at local and regional scale urges to consider new criteria for contaminant evaluation. Especially polar and persistent pollutants can be problematic as they may travel along a water cycle from wastewater to raw waters used for drinking water production. The past ten years have seen increasing evidence that such compounds are present.

The Partially Closed Water Cycle

One example of a partially closed water cycle is displayed in Figure 1. In such a cycle a polar and persistent component that is neither removed by sorption nor by
biodegradation could pass all barriers such as wastewater treatment or underground passage and would, then, appear in raw waters used for drinking water production. Polar pollutants may originate from consumer products used in household, pesticides applied in agriculture or chemicals used in industry. Surface runoff may also contribute. The occurrence of trace pollutants in raw waters requires an ever increasing technical effort in drinking water production.

Of the various components of such a water cycle (Fig. 1) the municipal wastewater treatment plants are, certainly, best investigated. Meanwhile, an impressive body of literature is available concerning the occurrence and removal of polar trace pollutants from municipal wastewater by biological treatment. Other processes such as the transport of pesticides applied in agriculture to groundwater are also comparatively well studied. The occurrence of polar pollutants in other compartments of this cycle, however, and their removal in or passage through other barriers than wastewater treatment or soil are less thoroughly investigated. Even less so has the occurrence and behaviour of polar pollutants in all components of a partially closed water cycle been studied systematically.

Therefore this book aims at bringing together results obtained in various studies concerning all compartments and barriers of a (hypothetic) partially closed water cycle.

The Polar Pollutants

As this book focuses on the water cycle the selection of contaminant classes that are covered is, among others, based on polarity. The authors agreed to select an upper limit of the octanol/water partition coefficient (log K_{ow}) of 3 for inclusion into this book. Therefore, the reader may miss certain contaminant classes that he became familiar with in the past years, like endocrine disruptors. Certainly, these compounds would be an issue in a more general book on ‘contaminants in water’ but, due to the comparatively high log K_{ow} values of many of these compounds, they are not relevant as ‘contaminants in the water cycle’.

The production volume is another relevant criterion as a high production volume chemical, even with an almost complete removal in wastewater treatment, could still lead to significant amounts being discharged into surface water. For this rea-
son a number of high production volume chemicals are included in this book. The first to mention are surfactants which are used almost everywhere (Chapter 9). The occurrence of poorly degradable surfactants in surface waters and groundwaters made this class of compounds the first, for which a minimum extent of biodegradability was required by regulations in Western Europe and the United States in the early 1960s. Other important groups of polar high production volume chemicals that are covered in this book are herbicides (Chapter 6), complexing agents (Chapter 7) and amines (Chapter 8).

Also compounds used and released in substantially less amount can be problematic, if their use profile requires a certain level of stability. Pharmaceuticals are an example for this and the occurrence of such compounds in wastewater discharges and surface waters has received significant attention within the last years. Several chapters of this book deal with this ‘dark side’ of the so beneficial development in pharmaceuticals (Chapters 2–5).

Finally, polar pollutants may even be generated in wastewater treatment or drinking water production as it is the case for disinfection byproducts (Chapter 10).

With improved analytical capabilities (Chapter 1) that allow to detect nanogram per litre concentrations of trace pollutants positive findings in virtually all aquatic compartments are almost inevitable. Thus, the need for proper knowledge how the occurrence of low concentrations of polar pollutants has to be evaluated is becoming more urgent. Chapter 11 deals with such aspects of ecotoxicology. A combined evaluation of physico-chemical and ecotoxicological properties of high production volume chemicals is necessary to avoid contamination and to reduce the risk related with the use of chemicals. This is the basis of the chemicals management (REACH) in the European Union (Chapter 12).

Also in the European Union the Water Framework Directive (WFD) has bundled many different regulations concerning the protection of freshwater resources. While the WFD has strengthened biological quality criteria for waters and water bodies, there is growing concern with respect to chemical quality criteria. Inter alia chemicals that may not be harmful to human health or the quality of aquatic ecosystems are not considered pollutants. Thus, the WFD may hamper rather than foster the protection of the water cycle from anthropogenic compounds that are polar and persistent and that may spread in aquatic environment.

We would be pleased if this book contributes to increasing the knowledge on and the awareness of the relevancy of polar pollutants for the quality of waters, not at least those being used as drinking waters.

We are grateful to all the authors that shared this view on polar pollutants and contributed with their expertise, time and effort in preparing the different chapters of this book.

Thorsten Reemtsma
Martin Jekel

Berlin
February 2006
List of Authors

Radka Alexy
Institute of Environmental Medicine and Hospital Epidemiology
Hugstetter Str. 55
79106 Freiburg
Germany

Hilmar Börnick
Institute of Water Chemistry
Dresden University of Technology
Zellescher Weg 40
01217 Dresden
Germany

Heinz-Jürgen Brauch
DVGW-Water Technology Center (TZW)
Chemical Analysis Department
Karlsruher Straße 84
76139 Karlsruhe
Germany

Daniel R. Dietrich
Environmental Toxicology
University of Konstanz
Fach X 918
78457 Konstanz
Germany

Peter Eichhorn
The State University of New York at Buffalo
Chemistry Department
608 Natural Science Complex
Buffalo NY, 14226
United States of America

Rita Fobbe
ISAS-Institute for Analytical Sciences
Bunsen-Kirchhoff-Str. 11
44139 Dortmund
Germany

Gerd Hamscher
Centre for Food Science
Institute for Food Toxicology
University of Veterinary Medicine Hannover Foundation
Bischofsholer Damm 15
30173 Hannover
Germany

Thomas Heberer
Federal Institute for Risk Assessment
Thielallee 88–92
14195 Berlin
Germany
Bettina C. Hitzfeld
Swiss Agency for the Environment
Forests and Landscape
Papiermühle Str. 172
3003 Bern
Switzerland

Martin Jekel
Technical University Berlin
Institute for Environmental Technology
Department of Water Quality Control,
Sekr. KF 4
Straße des 17. Juni 135
10623 Berlin
Germany

Thomas P. Knepper
Europa University of Applied Sciences
Fresenius
Limburger Straße 2
65510 Idstein
Germany

Birgit Kuhlmann
IfW Institut für Wasserforschung GmbH
Zum Kellerbach 46
58239 Schwerte
Germany

Klaus Kümmerer
Institute of Environmental Medicine
and Hospital Epidemiology
Hugstetter Str. 55
79106 Freiburg
Germany

Jürgen Nolte
ISAS-Institute for Analytical Sciences
Bunsen-Kirchhoff-Str. 11
44139 Dortmund
Germany

Evelyn O’Brien
Environmental Toxicology
University of Konstanz
Postfach X 918
78457 Konstanz
Germany

Gudrun Preuß
IfW Institut für Wasserforschung GmbH
Zum Kellerbach 46
58239 Schwerte
Germany

Anke Putschew
Technical University Berlin
Institute for Environmental Technology
Department of Water Quality Control,
Sekr. KF 4
Straße des 17. Juni 135
10623 Berlin
Germany

José Benito Quintana
UIMA-University Institute of Environment
University of A Coruña
Pazo da Lóngora, Liáns
15179 Oleiros (A Coruña)
Spain

Thorsten Reemtsma
Technical University of Berlin
Department of Water Quality Control,
Sekr KF 4
Straße des 17 Juni 135
10623 Berlin
Germany

Steffi Richter
Federal Environment Agency
Wörlitzer Platz 1
06844 Dessau
Germany
Carsten K. Schmidt
DVGW-Water Technology Center (TZW)
Chemical Analysis Department
Karlsruher Straße 84
76139 Karlsruhe
Germany

Torsten C. Schmidt
University Duisburg-Essen
Department of Chemistry
Lotharstrasse 1
47048 Duisburg
Germany

Christian Skark
IfW Institut für Wasserforschung GmbH
Zum Kellerbach 46
58239 Schwerte
Germany

Klaus Günter Steinhäuser
Federal Environment Agency
Wörlitzer Platz 1
06844 Dessau
Germany

Thomas Ternes
Federal Institute of Hydrology (BfG)

Ninette Zullei-Seibert
IfW Institut für Wasserforschung GmbH
Zum Kellerbach 46
58239 Schwerte
Germany

Christian Zwiener
Engler-Bunte-Institut
Bereich Wasserchemie
University of Karlsruhe (TH)
Engler-Bunte-Ring 1
76131 Karlsruhe
Germany
1
Analytical Methods for Polar Pollutants

Thorsten Reemtsma and José Benito Quintana

1.1
Introduction

The last few decades have shown that analytical chemistry and environmental chemistry are “conjoined twins”. Neither can move significantly forward without the contribution and support of the other discipline. But in their conjoined development both disciplines have contributed much to our knowledge of environmental pollution, to the understanding of environmental processes, and to the development of measures and strategies to reduce contamination.

Complementary to the following book chapters that focus on the occurrence and behavior of different classes of polar pollutants in the water cycle, this chapter provides an overview of the recent status of the other half of the “conjoined twins”, the analytical methods to determine these polar pollutants. This subject could easily be the topic of an independent book. Condensing it to one chapter requires considerable selectivity. Therefore, analytical strategies and approaches to the trace analysis of polar pollutants from environmental samples are outlined rather than described in detail.

1.2
The Analytical Process

A scheme of the analytical process for the determination of polar pollutants in water and particulate samples (sludge, sediment and soil) is presented in Fig. 1.1. This scheme excludes sampling, which is outside of the scope of this overview. Obviously not all the steps presented in this scheme are always necessary, and in many cases, for example, clean-up or derivatization prior to GC determination and sometimes even the enrichment step can be skipped.

The most common and important steps will be considered in separate sections, paying special attention to the most relevant techniques and to expected future developments, according to current trends in analytical chemistry: e.g., miniaturization, automation, reduction in solvent consumption, and sample manipulation.
Examples will be presented from different compound classes that are covered in this book and that exhibit different physicochemical properties. The analytical methods for some of these compound classes, namely surfactants \([1, 2]\), herbicides and other pesticides \([3–9]\), pharmaceuticals \([10–13]\), disinfection byproducts \([14]\), and complexing agents \([15, 16]\), have been the subject of specific reviews, which can provide the reader with more detailed information.

1.3 Sample Pretreatment and Analyte Extraction

1.3.1 Sample Pretreatment

Several steps may be required after sampling and before analyte extraction and final determination. These steps include sample preservation, filtration, pH adjustment of aqueous samples, drying and homogenization of solid samples, etc. They

are very straightforward, but if they are not performed properly the original sample composition may be seriously altered by these steps.

Even sample storage and shipping can be a critical step in sample preparation. For instance, significant losses of salicylic acid, acetaminophen, and fenofibrate were observed from a mixture of 12 acidic pharmaceuticals spiked to a treated wastewater that was stored in the dark at 4 ºC [17]. It may be advisable to analyze samples as soon as possible or to store samples in the dark at –20 ºC if they cannot be analyzed immediately. Sample storage may also influence the relative importance of adducts like sulfates and glucoronides as compared to the parent compound [18].

Another common step for sample preservation is acidification, but analytes may not be stable at certain pH values. For example, some fibrate drugs hydrolyze to clofibric acid and fenofibric acid at pH 2 [19], and tetracyclines may undergo epimerization [11]. Furthermore, pH adjustment should be carried out after filtration in order to avoid possible losses during filtration due to the increase in the analyte hydrophobicity.

1.3.2 Solid Samples

To date, the analysis of polar organic contaminants in the water cycle has focused on the aqueous phase, whereas particulate material has not been much considered. Therefore, analytical methods for the determination of polar compounds from solid samples, mainly sediment and sludge, are less developed [20]. Although sorption may not be considered a relevant process for many polar organic compounds, its importance gradually increases with decreasing polarity and increasing solids concentration. Moreover, complexation of ionic and ionizable polar pollutants may occur through inorganic constituents of the matrix, especially in the case of sediments and soils [8, 12]. Thus, in the development of extraction methods for sorbed compounds, one needs to consider their properties, hydrophobicity, and acid-base properties, as well as those of the particulate phase. To develop appropriate extraction conditions that are able to overcome the matrix-analyte interactions, one needs to know whether these interactions are primarily hydrophobic or electrostatic.

In contrast, methods for the determination of pesticides from soil samples are comparatively well developed [8]. Additionally, reviews have appeared recently on the determination of pharmaceuticals [11, 12], surfactants, and their metabolites [1, 2] in environmental solid samples.

The classical extraction method, both for polar and non-polar analytes, was Soxhlet extraction, which consumes large amounts of solvent as well as of the sample, and which is relatively time consuming. Therefore, current methods tend to minimize the consumption of solvents, sample amount, and extraction time by providing additional energy and/or pressure to the mixture of sample and solvent. This supports desorption and diffusion of the analytes from the sample to the solution and enhances their solubility in the extraction media. The different methods are distinguished by the way the energy is supplied to the system and the kind of ex-
tracting fluid employed, namely: microwave assisted extraction (MAE), supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), and ultrasound assisted extraction (USE) [21, 22]. Most of them have been fully automated, which is another major advantage over Soxhlet extraction. For example antibiotics were extracted from agricultural soils by PLE [23] at room temperature and 1000 kPa to avoid tetracycline degradation at high temperatures, but allowing the process to be automated.

A first class of compounds that may be considered is phosphoric acid triesters. They are non-ionic and do not have ionizable groups, so they somewhat resemble classical hydrophobic organic pollutants. However, these compounds cover a broad polarity group, from relatively polar short-chain alkyl phosphates (e.g., triethylphosphate and trichloroethylphosphate; log K_{ow} 0.09 and 1.43 respectively) to quite hydrophobic long-chain alkyl phosphates and aryl phosphates (e.g., triphenylphosphate; log K_{ow} 4.76) [24]. Thus, a typical method designed for extracting PAHs or PCBs based on Soxhlet extraction with hexane or toluene works very well for the non-polar analytes but not for the most polar ones, while choosing an intermediate polarity solvent or a solvent mixture provides acceptable recoveries for the whole group of analytes. In one of the pioneering works on MAE, this was compared to Soxhlet extraction and the shake-flask system using a mixture of ethyl acetate and dichloromethane [25]. Microwave extraction yielded better recoveries except for the very polar trimethylphosphate.

More hydrophobic ionizable compounds can also be extracted by an appropriate solvent. The biocides triclosan and triclocarban have been extracted with dichloromethane [26] or acetone/methanol mixtures [27, 28]. Several pharmaceuticals can be extracted also by acetone and methanol from sediment [29], sludge [30], and suspended particulate material [31]. The clean-up by reextraction from water was achieved by using different SPE sorbents and pH values for the different pharmaceutical classes [29, 30].

In the case of more polar and ionizable analytes, however, pure organic solvents are not adequate extractants. Fluoroquinolones are amphoteric species, and their charge state depends on the pH value. Even when their net charge is zero, they are present in the zwitterionic form. For that reason, best recoveries for PLE of fluoroquinolone antibiotics from sludge and soil were obtained by a mixture of acetonitrile and water (1/1) [32]. Moreover, acidification (pH 2) further improved the extraction efficiency, and this was attributed not only to the enhanced solubility of fluoroquinolones at acidic pH but also to the protonation of the acidic sites of the matrix constituents. Finally, the clean-up of the extracts was accomplished by SPE, employing a mixed-phase cation-exchange disk cartridge, like the method for the extraction of fluoroquinolones from water samples [33]. In a similar way, Crescenzi et al. [34] extracted triazine herbicides from soil by hot water containing a phosphate buffer at pH 7.5 in a fully automated process.

The use of hot (subcritical) water extraction is an innovative way of extracting analytes of different polarity from solid matrices. Though water is a rather polar solvent at 20 °C, its dielectric constant decreases markedly as the temperature is raised to 200 °C, and it is then able to efficiently extract hydrophobic compounds,
e.g., PAHs [35, 36]. Hence, the polarity of water may be matched to the analyte polarity by selecting an optimized extraction temperature. A good example of this is the extraction of surfactants from sludge. Surfactants comprise a broad group of compounds with different chemical properties, including basic, acidic, and neutral compounds. As a result, most analytical methods are dedicated to one or two compound classes [1]. However, the use of subcritical water at pH 9.4 allows the efficient extraction of more than 10 different acidic and neutral chemical groups of surfactants, providing better recoveries than Soxhlet extraction for the nonylphenol ethoxy carboxylates [37]. A clear advantage of using water as a solvent is the ecological aspect and its straightforward application to reverse-phase SPE or SPME clean-up without need for solvent evaporation.

As mentioned previously, the kind of interaction (hydrophilic or hydrophobic) between the analyte and the matrix constituents is another critical point in the extraction. In the case of ionic interactions, the pH of the extraction solution may be shifted or chemicals may be added that can compete with the analytes for the matrix constituents. This technique is used in the case of phenoxyacid herbicide extraction from soils and sediments, where the addition of EDTA to the extracting solvent has been proven to improve recoveries [38–40]. The proposed mechanisms of the simultaneous extraction and derivatization of 2,4-D from soil by PLE are represented in Fig. 1.2 [39]. The same is true for the extraction of tetracycline antibiotics, where a buffer containing EDTA or an acid with chelating properties (e.g., citric acid) is employed to overcome the complexation of these analytes with sample cations [12, 23].

![Fig. 1.2 Suggested mechanisms of the PLE-PFBBBr derivatization of the herbicide 2, 4-D from soil (F atoms not represented): (a) 2,4-D is released while being derivatized with PFBBBr, then EDTA occupies its position at the soil surface (b) EDTA replaces 2,4-D from the active surface site, then the freely dissolved EDTA is derivatized by PFBBBr. Reprinted from [39], with permission from Elsevier.](image-url)
After extraction, the resulting extracts from solid samples, particularly in the case of sludge, normally need to be purified before analysis. This has been done in most cases by SPE of the extracts, either employing normal-phase materials (silica, florisil, etc.) if the analytes are relatively non-polar [26, 31, 41, 42] or by reverse and ion exchange phase sorbents if the analytes are relatively polar or possess ionic groups [23, 27, 29, 30, 32]. In many cases a method developed for the SPE of water samples was employed for this purpose after reconstituting or diluting the extract with water.

1.3.3

Aqueous Samples

The determination of polar contaminants in water samples is normally preceded by an extraction step in order to enrich the analytes of interest. This extraction should be as selective as possible in order to minimize the coextraction of matrix that may interfere with analyte detection.

Several extraction techniques for aqueous samples are available, with SPE being the standard procedure. LLE has remained important for only a few applications, e.g., the determination of haloacetic acids [14]. In fact, the US-EPA has two methods available for their determination: one based on SPE [43] and the other based on LLE [44], where, however, the volume of extracting solvent has been minimized to 4 mL of MTBE. The alternatives to SPE are microextraction techniques, namely SPME and, more recently, LPME, as they consume less organic solvent or sample volume (or virtually none in the case of SPME) [45]. Both SPE and microextractions are discussed in more detail.

Other techniques used for the analysis of volatile compounds, like headspace (HS) and purge and trap (PT), are applicable to very few of the polar target analytes considered here (e.g., some haloacetic acids [46]) because of the often ionic character and high water solubility of many polar compounds.

1.3.3.1 **Solid Phase Extraction**

As already mentioned, SPE is nowadays the most widely used extraction technique for polar organic analytes in water samples. SPE is very convenient; it can be automated and adapted to various analytes by a proper selection from the wide range of sorbent materials available. In the case of polar analytes, the breaking point has been the development of new polystyrene-divinylbenzene (PS/DVB) polymeric sorbent materials [47]. A scheme of the SPE sorbents and retention mechanism as a function of the analyte’s properties is presented in Fig. 1.3. Obviously, some analytes can be extracted using different approaches, and selection of the most suitable extraction must take into account many factors, like experience with the specific SPE technique, simplicity of the procedure, possibilities of extending the method toward other analyte classes, and, of course, cost.

Regarding this last aspect, cost, classical silica-bonded reverse phase (RP) materials (C-18, C-8, etc.) are clearly advantageous. Nevertheless, its application towards
polar species is restricted to weakly acidic or basic compounds, which can be brought into the neutral species by adjusting the sample pH. Thus, C-18 cartridges and disks have been successfully employed for the extraction of acidic drugs [10, 13, 48] and pesticides [3] by adjusting the sample pH to 2–3. However, recoveries of the most polar drugs and their metabolites (e.g., salicylic acid, hydroxy-ibuprofen…) are often incomplete [10, 13, 48]. Furthermore, pH adjustment of samples is limited by the stability of the silica. Therefore, this strategy cannot be applied to strongly acidic or basic analytes or to permanently charged species (e.g., amphoteric or quaternary ammonium compounds). Other problems encountered with silica-based RP materials are the residual silanol groups, which can interact with these analytes even when end-capped cartridges are used, and traces of metals in the silica if compounds with complexing properties (e.g., tetracyclines) are to be determined. In the case of tetracyclines, the problem is solved by adding EDTA to the sample [49].

The first approach to extracting strongly acidic or basic compounds by SPE was the use of ion exchange (IE) SPE [50]. Thus, as mentioned, one of the US-EPA methods for the determination of haloacetic acids is based on anion exchange SPE [43], where the sample pH is adjusted to 5. The extraction of these compounds by an RP SPE employing silica-based materials would not be possible as the sample would need to be acidified to pH 0.5 [44], where the silica bonds would be hydrolyzed. Another official method that relies on IE-SPE is the determination of complexing agents in water samples [51]. Here the International Standards Organization offers two possibilities: either evaporation of the water sample to dryness or IP-SPE before their derivatization and GC determination. Obviously, water evaporation requires a high temperature and is a time-consuming process, while IE-SPE can provide not just preconcentration but also a clean-up that evaporation cannot.

Other applications include quaternary ammonium and acidic herbicides [3, 4]. Yet, IE-SPE has some drawbacks, the major one being that recoveries are strongly affected by the ionic strength of the sample [4]. Therefore, strong matrix effects
may occur in IE-SPE of environmental samples, where this parameter may change from sample to sample. For example, it was observed that the recoveries of the complexing agents NTA and EDTA decreased by 20 and 45%, respectively, when 60 mg L\(^{-1}\) of sulfate was added to the sample [52].

The other way to extract very polar analytes on silica-bonded phases is to use ion-pair (IP) reagents with RP materials (e.g., C-18), avoiding in this way the use of IE materials, facilitating the adaptation of conventional RP methods and allowing the combined extraction of a wide range of polarities. The retention of analytes can be tuned by selecting the chain length of the IP reagent, as a wide range of these are available (Table 1.1) for both basic/cationic and acidic/anionic compounds. Some of these ion-pairing agents are volatile enough to be compatible with LC-MS. Furthermore, the ion-pairing agent can suppress interactions with silanol groups of the sorbent [3]. Applications of IP-SPE in water analyses include the determination of acidic and quaternary ammonium herbicides [3, 4], acidic phosphoric acid mono- and diesters [53], and acidic pharmaceuticals and their microbial metabolites [54]. IP-SPE is the US-EPA official method for the determination of diquat and paraquat in drinking water [55] by using a C-8 disk and sodium 1-hexanesulfonate as IP reagent for retention; the analytes are then eluted by an HCl acidified solution, which breaks the IP. The technique of IP-SPE was reviewed by Carson in 2000 [56], who nevertheless recognized that this approach was seldom used for the SPE of polar compounds, in spite of the common use of IP formation for improvement of HPLC retention of polar compounds. A reason for this may be the fact that polymeric materials have had more success for SPE than for LC and a much wider chemistry is also available for SPE. In any case, IP-SPE can also be combined with polymeric materials, and it proved useful for the reduction of phenol breakthrough.

<table>
<thead>
<tr>
<th>For basic/cationic analytes</th>
<th>For acidic/anionic analytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifluoroacetic acid(^{[a]})</td>
<td>Ammonia(^{[a]})</td>
</tr>
<tr>
<td>Pentafluoroproponic acid(^{[a]})</td>
<td>Triethylamine(^{[a]})</td>
</tr>
<tr>
<td>Heptafluorobutyric acid(^{[a]})</td>
<td>Dimethylbutylamine(^{[a]})</td>
</tr>
<tr>
<td>Propanesulfonic acid salts</td>
<td>Tributylamine(^{[a]})</td>
</tr>
<tr>
<td>Butanesulfonic acid salts</td>
<td>Tetramethylammonium salts</td>
</tr>
<tr>
<td>1-Pentanesulfonic acid salts</td>
<td>Tetraethylammonium salts</td>
</tr>
<tr>
<td>1-Hexanesulfonic acid salts</td>
<td>Tetrapropylammonium salts</td>
</tr>
<tr>
<td>1-Heptanesulfonic acid salts</td>
<td>Tetrabutylammonium salts</td>
</tr>
<tr>
<td>1-Octanesulfonic acid salts</td>
<td>Tetrapentylammonium salts</td>
</tr>
<tr>
<td>1-Nonanesulfonic acid salts</td>
<td>Tetrahexylammonium salts</td>
</tr>
<tr>
<td>1-Decanesulfonic acid salts</td>
<td>Tetraheptylammonium salts</td>
</tr>
<tr>
<td>1-Dodecanesulfonic acid salts</td>
<td>Tetraoctylammonium salts</td>
</tr>
<tr>
<td>Dodecylsulfate, sodium salt</td>
<td>Hexadecyltrimethylammonium salt</td>
</tr>
<tr>
<td>Dioctylsulfosuccinate, sodium salt</td>
<td>Decamethylenbis(trimethylammonium bromide)</td>
</tr>
<tr>
<td>Bis-2-ethylhexylphosphate</td>
<td></td>
</tr>
</tbody>
</table>

\(^{[a]}\) LC-MS compatible