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Foreword

Carbon-carbon bond-forming reactions are arguably the most important processes in
chemistry, as they represent key steps in the building of more complex molecules from
simple precursors. In the past 50100 years, organic chemists have developed a plethora of
reactions for carbon-carbon bond formation between molecules with saturated sp* C-atoms.
However, until the discovery and development of metal-mediated cross-coupling reactions,
starting in the 1970s, there were no simple, general direct methodologies known for carbon-
carbon bond formation between unsaturated species such as vinyl, aryl, and alkynyl
moieties. In other words, carbon-carbon bond formation between sp and sp? C-atom centers
was often difficult and tedious. In the intervening 25 years, a wide variety of cross-coupling
methodologies have been developed and cross-coupling reactions have emerged among the
most powerful and useful synthetic tools in chemistry.

Metal-catalyzed cross-coupling reactions are extensively employed in a wide range of
areas of preparative organic chemistry, from the synthesis of complex natural products to
supramolecular chemistry and materials science. For example, the formation of new carbon-
rich polymers and networks by acetylenic molecular scaffolding, the development of many
abiotic receptors, and the preparation of many dendrimers depends heavily on modern
cross-coupling methodologies. In fact, in the 1990s one can hardly open a chemical journal
in the broad area of organic chemistry or materials science that does not contain several
examples of cross-coupling reactions.

Many of the metal-mediated cross-coupling reactions discussed in this book follow a
similar mechanistic scheme. The general features of the catalytic cycles are currently quite
well understood and involve an oxidative addition-transmetallation-reductive elimination
sequence. The reaction is initiated by the oxidative addition of the electrophile to the zero-
valent metal. The most widely used active catalysts are diverse Ni(0) and Pd(0) complexes
with organic triflates or halides (mostly iodides or bromides; rarely chlorides) as the
electrophilic partners. A wide variety of organometallic reagents (organo-boron-aluminum,
-copper, -zirconium, -silicon, -tin, etc.) serve as nucleophiles. However, the details of the
individual steps, and in particular the transmetallation process, are less well understood and
the reaction pathways are highly dependent upon the specific organometallic nucleophiles
as well as reaction conditions.

In this multi-authored monograph, a dozen experts and leaders in the field bring the
reader up to date by documenting and critically analyzing current developments and uses of
metal-catalyzed cross-coupling reactions. The various methodologies involving organo-
silicon, -copper, -tin, -zinc, -zirconium, -aluminum, and -boron reagents, as well as the
diverse uses of 1,4-additions to 1,3-dienes, carbometallations, and carbonylations, in natural
product synthesis are covered. Emphasis is placed upon key developments and important
advances, which are illustrated with attractive and useful examples. Carefully chosen
references guide the reader through the extensive literature in the field. A particularly
attractive and useful feature, that enhances the practical value of this monograph, is the



viii Foreword

inclusion of key synthetic protocols, in experimental format, chosen for broad utility and
application.

We anticipate that this monograph will be of value to both expert and novice
practitioners in the area of metal-catalyzed cross-coupling reactions. We hope that it will
further stimulate both the development and applications of this enormously useful and
already widely employed reactivity principle in all fields of chemistry involving synthesis
depending upon carbon-carbon bond formation.

Frangois Diederich
ETH Ziirich Peter J. Stang
Salt Lake City, Utah
February 1997
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1 Palladium- or Nickel-catalyzed Cross-
coupling with Organometals
Containing Zinc, Magnesium,
Aluminum, and Zirconium

Ei-ichi Negishi, Fang Liu

1.1 Introduction

The cross-coupling reaction of organometallic reagents with organic halides and related
electrophiles represents one of the most straightforward methods for carbon-carbon bond
formation (Scheme 1-1). Despite its inherent simplicity and significance, however, its
synthetic utility was very limited until the mid-1960s. Mainly Grignard reagents and
organolithiums were used in earlier examples. In such cases, organic halides are mostly
limited to alkyl (C3) halides. Furthermore, the use of organometals containing Mg and Li
is often complicated and limited by their generally low chemoselectivity. Although
advances in organocopper chemistry [1] over the past three decades have solved many of
the difficulties associated with the use of Grignard reagents and organolithiums, a number
of other problems have remained unsolved.

RI-M + R2—-X R'—R? + M-X

Scheme 1-1

In 1972, Kumada [2] and Corriu [3] independently reported that the reaction of Grignard
reagents with alkenyl or aryl halides could be markedly catalyzed by Ni-phosphine
complexes, e.g., Cl,Ni(PPh,),. Although many other transition-metal-catalyzed reactions of
Grignard reagents with organic halides without the use of phosphines were known, the so-
called Kharasch-type reactions [4], with the exception of the Cu-catalyzed procedures {5,6],
were not well suited for cross-coupling due to various complications, including extensive
cross-homo scrambling.

The discovery of Pd-catalyzed cross-coupling was somewhat more subtle and
evolutionary. During the 1975-1976 period, several groups of workers including the present
authors’ group published various results involving Pd-phosphine complexes. Thus, Cassar
[7] reported the Pd-catalyzed cross-coupling reaction of aryl bromides and iodides with
sodium acetylides generated in situ by mixing terminal alkynes with NaOMe in DMF
(Scheme 1-2). The corresponding reaction using a Ni-phosphine complex did not proceed
catalytically. Similar reactions of alkynes, where the countercations in active species were
most probably ammonium and/or Cu*, were also reported by Heck [8] and Sonogashira [9]
(Scheme 1-2).
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cat. Pd(PPh;),

NaOMe, DMF
PhC=CH + RX —[7]_—’ PhC=CR

RX = Phi (95%), H;C=CHBr (52%), PACH=CHBr (89%)

cat. PA(OAc)»(PPhs),

Et;N
RIC=CH + RXX 8] RIC=CR2
R! R2X yield (%)
Ph Phl 73
H,C=C(Me) PhI 7
Ph H,yC=C(Me)Br 88
t-Bu p-NO,C¢HyBr 88

cat. Pd(PPh;),
cat. Cul, Et;NH

RICECH + RX 9] R!C=CR2
R! RZX yield (%)
Ph Phl 90
HOCH, Phl 80
Ph H,C=CHBr 91
HOCH, H,C=CHBr 40
Scheme 1-2

Murahashi [10,11] reported the Pd-catalyzed version of the Kumada-Corriu reaction of
Grignard reagents, and demonstrated highly stereospecific transformations of (E)- and (Z)-
bromostyrenes into methyl-, vinyl-, and aryl-substituted derivatives (Scheme 1-3). Similar
Pd-catalyzed reactions of methyl-, aryl-, and benzylmagnesium bromides were also
reported by Fauvarque [12] and Ishikawa [13]. In these three studies Grignard reagents
were the only organometals used catalytically, and organolithiums appeared to be
unsatisfactory in the catalytic sense [10,11].

cat. Pd(PPhs),

PhCH=CHBr + RMgX PhCH=CHR
RMgX = MeMgl (100%), H,C=CHMgBr (81%), p-MePhMgBr (86%)

Scheme 1-3

The authors’ group reported that alkenylalanes generated in situ by hydroalumination of
alkynes could be employed in the Ni-catalyzed alkenyl-aryl coupling [14}, demonstrating, for
the first time, (i) a hydrometallation cross-coupling tandem process and (ii) the use of
countercations other than highly electropositive alkaline metals or Mg in the cross-coupling-
catalyzed by Ni-phosphine complexes (Scheme 1-4). The Ni-catalyzed alkenylalane cross-
coupling was shown to be applicable to the synthesis of conjugated dienes as well [15]
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(Scheme 1-5). In this study, however, it was discovered that Pd-phosphine catalysts were more
highly stereospecific and hence distinctly superior to the corresponding Ni-phosphine catalysts.
This reaction provided some prototypical examples of efficient, general, and highly
stereospecific synthesis of various types of conjugated dienes. In the studies mentioned above,
alkenylboranes and alkenylborates were used initially, but the results were unsatisfactory, even
though later studies by the authors’ group showed that alkenylborates were, in fact, satisfactory
in some cases [16]. However, the widespread use of alkenylboron derivatives in the Pd-
catalyzed cross-coupling is based on the ]ater development of the Suzuki protocol [17,18].

ArX
HAI(Bu-i), R . H cat. Ni(PPhj)4 R - H
poscn DRGNS NER Ty
H Al(Bu-i); H Ar
R ArX yield (%)
n-Bu PhBr 85
n-Bu 1-NaphBr 93
Cyclohexyl p-MeC¢H,Br 75
Scheme 1-4
1 H
H CHyn nCHy H
5% ML, — H
o __
H C4H9-n
n-CsHiy H M=Ni  70%,95%E, E
— M=Pd 74%, 99% E, E
H Al(Bl.l—i)z I _ C4Ho-n
H H n-CsHyp  H
5% ML, — C4H9-n
o —
H H
M=Ni 55%,90% E, Z
M=Pd 55%, 9% E, Z
Scheme 1-5

Collectively, the above-mentioned studies reported during 1975 and 1976 not only
established the feasibility of the Pd-catalyzed cross-coupling but also suggested the
potential superiority of Pd catalysts over Ni catalysts in many instances. In this chapter,
some noteworthy aspects of the Pd- or Ni-catalyzed cross-coupling reactions of
organometals containing Zn, Mg, Al, and Zr will be discussed with emphasis on the Pd-
catalyzed cross-coupling reactions of organozincs, sometimes referred to as the Negishi
cross-coupling. In so doing, the authors will have to severely and unduly curtail discussion
of the Ni-catalyzed cross-coupling, especially the pioneering and systematic investigation,
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mainly in the 1970s, by Kumada, Tamao, and their co-workers [19,20] as well as studies of
the Pd-catalyzed cross-coupling reactions of Grignard reagents, most notably a systematic
investigation by Linstrumelle since 1978 [21-25]. It should be noted that the carly
investigations mentioned above have paved the way to later developments of the Pd-
catalyzed cross-coupling reactions of other organometals containing B [17,18], Sn [26-31],
Cu [32,33], and even Si [34-37], as discussed in other chapters in this book.

1.2 Systematic Survey of Palladium- or Nickel-catalyzed Cross-
coupling

1.2.1 Scope with Respect to Metal Counterions and Inhibition of Catalysis by
Organolithiums

In several papers {2,7,8,10,14,15] published by 1976 the following generic three-step
mechanism for the Pd- or Ni-catalyzed cross-coupling was suggested, although few
supporting mechanistic and structural data were provided (Scheme 1-6).

RIX
>
ML, — RIR2MIL,
RIR?
MIL, = Pd or Ni complex

RIMIL,X RAM2

Scheme 1-6

According to this mechanism, the only role of organometallic reagents is to transfer an
organic group onto organopalladium or organonickel intermediates. Once diorganylpalladium
or diorganylnickel intermediates are formed, their reductive elimination to produce the desired
cross-coupling products with the regeneration of active Pd or Ni complexes as well as their
subsequent oxidative addition with organic halides should proceed essentially independently
of the organometals used. This, in turn, suggested that the Pd- or Ni-catalyzed cross-coupling
should be quite general with respect to metal counterions. Indeed, the above discussed shift
from Mg to Al was made with this simplistic notion in mind. With encouragement from the
findings shown in Schemes 1-4 and 1-5, a systematic screening of metal counterions was then
undertaken. To this end, the cross-coupling reaction between alkynylmetals and aryl halides
was chosen, as these classes of compounds were widely and readily available. Some of the
favourable results are summarized in Table 1-1 [38].

The results indicate the following.

1. 1-Heptynylmetals containing Zn, B, and Sn led to the desired products in excellent
yields. Under the conditions used, their relative reactivity order was Zn>Sn>B.
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Table 1-1 Pd-catalyzed reaction of 1-heptynylmetals with o-tolyl iodides
5% Pd(PPh,),

n-PentC=CM + o-Tol-l ———TH—F——) n-PentC=CTol-o
M Time (h)® Product Starting
yield (%) material (%)

Li 24 3 80
Na 240 58 a1
MgBr 24 49 33
ZnCl1 1 91 8
B(n-Bu), 3 10 76
B(n-Bu); 1® 92 5
Al(i-Bu), 3 49 46
Al(i-Bu),(n-Bu) 1 38 10
Sn(n-Bu), 6 83 6

® The reaction was run at 20-22 °C unless otherwise stated. ® Reflux.

2 1-Heptynyllithium was unsatisfactory, while 1-heptynylmetals containing Na, Mg, and
Al led to moderate yields of the desired products. However, more recent results [39]
indicate that those containing Mg can be satisfactorily employed.

3. Although not listed in Table 1-1, 1-heptynylmetals containing HgCl and SiMe, did not
produce the desired products in detectable yields. The latter appeared to be totally
unreactive under the reaction conditions.

The results obtained with 1-heptynylmetals containing Zn, B, and Sn provided some
prototypical examples of the Pd-catalyzed cross-coupling involving these metals. To our
knowledge, the reaction of 1-heptynylborate represents the first example of the Pd-
catalyzed cross-coupling reaction of organoboron compounds. It is interesting to note that
Zn, B, and Sn are currently the three most widely used and satisfactory metals. It should
also be emphasized that organometals containing Zn, B, and Sn are by themselves relatively
unreactive towards common electrophiles, making their Pd-catalyzed cross-coupling
chemoselective in the usual sense. For further discussions of the Pd-catalyzed cross-
coupling of organometals containing B [17,18] and Sn [26-31], readers are referred to the
corresponding chapters in this book and reviews cited above. In addition to the three metals
mentioned above, Mg, Al, Zr (vide infra), and Cu have also been successfully employed in
Pd-catalyzed cross-coupling. Thus, synthetic chemists have at their disposal at least seven
metals to be considered for this purpose, and selection of the most appropriate metal for a
given synthetic task has become very important. For the application of organocoppers,
readers are referred to Chapter 5 in this book. In view of the low ionic nature of the C—Si
bond, it is not surprising that 1-heptynyl(trimethyl)silane was unreactive. However, later
studies by other workers, notably Kikukawa [34-36] and Hiyama [37], have shown that
even organosilanes can be successfully used in Pd-catalyzed cross-coupling. In cases where
some unique advantages associated with the organosilane-based procedures can be found,
they may prove useful. For this subject, Chapter 10 in this book should be consulted.
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Although their causes are unclear, the difficulties associated with Hg compounds may be
attributable to undesirable redox reactions with Pd. Initially more puzzling was the inability
of 1-heptynyllithium to participate in Pd-catalyzed cross-coupling. Similar difficulties were
encountered in an earlier study by Murahashi {10,11], and it appears that organolithiums as
a class, are generally unsatisfactory, although some exceptions are known {11]. The reasons
for the difficulties associated with organolithiums are still not very clear. In a limited
number of cases, however, they have been attributed to the excessively high reactivity of
organolithiums leading to inhibition of Pd catalysts. Specifically, the stoichiometric reaction
of C1,Pd(PPh,), with two equivalents of LiC=CR, where R = t-Bu, proceeds at least as fast
as the corresponding reaction of BrZnC=CR to give RC=CC=CR in >95% yield. Yet,
the use of eight equivalents of LiC=CR to simulate catalytic conditions leads to the
formation of a Pd complex best represented by Li,[Pd(C=CR),] in >95% yield with
concomitant release of PPh, but without the production of RC=CC=CR in more than a
trace amount [40) (Scheme-7).

2 LiC=CR

o, - RC=C-C=CR + (LiCI)Pd(PPhs),
o rElo >95%

Cl,Pd(PPh3),

8 LiC=CR CI:ECR
N~ L RC=C-—Pd-C=CR | + 2 PPhy + LICSCR

R =1¢Bu C=CR
>95%

Scheme 1-7

1.2.2 Cross-coupling between Two Unsaturated Carbon Groups

1.2.2.1 Palladium-catalyzed cross-coupling involving alkynylmetals and related
alkynyl nucleophiles: alkynyl-aryl, alkynyl-alkenyl, and alkynyl-alkynyl
coupling

Several studies discussed earlier [7-9,38] as well as others published in the 1970s [42,43]
have firmly established that the Pd-catalyzed alkynyl-aryl and alkynyl-alkenyl coupling
reactions involving several counterions, especially Cu* [9] and Zn?* [38,41,42], are the
methods of choice for the synthesis of arylated alkynes and conjugated enynes [43]. For
convenience, the first of the two hyphenated organic groups to form the adjective refers to
the organometal or nucleophile, while the second one corresponds to the electrophile. The
Sonogashira protocol [9] involving both Cu and Pd catalysts offers a highly convenient
procedure. On the other hand, the use of alkynylzincs provides a direct route to terminal
alkynes that has not been readily achieved by other methods (Scheme 1-8). It has been
repeatedly observed that the corresponding reactions using similarly structured Ni
complexes, e.g., [NiClL,(PPh;),], are complicated by side reactions, such as alkyne
oligomerization, and that they tend not to permit clean and high-yielding synthesis of the
desired alkynes.



