Modern Acetylene Chemistry

Edited by P.J. Stang and F. Diederich

This Page Intentionally Left Blank

Modern Acetylene Chemistry

Edited by P. J. Stang and F. Diederich

Modern Acetylene Chemistry

Edited by P.J. Stang and F. Diederich

Related Titles from VCH

- A.Togni, T. Hayashi: Ferrocenes. VCH, 1995.
- K.C. Nicolaou, E. Sorensen: Classics in Total Synthesis. VCH, 1995.
- J. Fuhrhop, G. Penzlin: Organic Synthesis. Second Edition. VCH, 1994.
- M. Nógrádi: Stereoselective Synthesis. Second Edition. VCH, 1994.

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim (Federal Republic of Germany), 1995

Distribution:

VCH, P.O. Box 101161, D-69451 Weinheim (Federal Republic of Germany) Switzerland: VCH, P.O. Box, CH-4020 Basel (Switzerland) United Kingdom and Ireland: VCH (UK) Ltd., 8 Wellington Court, Cambridge CB1 1HZ (England) USA and Canada: VCH, 220 East 23rd Street, New York, NY 10010-4606 (USA) Japan: VCH, Eikow Building, 10-9 Hongo 1-chome, Bunkyo-ku, Tokyo 113 (Japan)

ISBN 3-527-29084-2

Modern Acetylene Chemistry

Edited by P.J. Stang and F. Diederich

Prof. Dr. Peter J. Stang Department of Chemistry University of Utah Salt Lake City, UT 84112 USA Prof. Dr. François Diederich Laboratorium für Organische Chemie Eidgenössische Technische Hochschule ETH-Zentrum Universitätstrasse 16 CH-8092 Zürich Switzerland

This book was carefully produced. Nevertheless, the authors, editors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may be inadvertently inaccurate.

Published jointly by

VCH Verlagsgesellschaft mbH, Weinheim (Federal Republic of Germany) VCH Publishers, Inc., New York, NY (USA)

Editorial Director: Dr. Thomas Mager Production Manager: Dipl.-Wirt.-Ing. (FH) Bernd Riedel

Library of Congress Card No. applied for.

A catalogue record for this book is available from the British Library.

Deutsche Bibliothek Cataloguing-in-Publication Data:

Modern acetylene chemistry / ed. by P. J. Stang and F. Diederich. – Weinheim; New York; Basel; Cambridge; Tokyo: VCH, 1995 ISBN 3-527-29084-2 NE: Stang, Peter J. [Hrsg.]

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim (Federal Republic of Germany), 1995

Printed on acid-free and chlorine-free paper.

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition: Filmsatz Unger & Sommer GmbH, D-69469 Weinheim Printing: Strauss Offsetdruck, D-69509 Mörlenbach Bookbinding: J. Schäffer GmbH & Co. KG., D-67269 Grünstadt

Printed in the Federal Republik of Germany

Foreword

The carbon-carbon triple bond is one of the oldest and simplest functional groups in chemistry. The reactions and transformations of this humble functionality are intertwined with the history and development of organic chemistry. In the past dozen years, acetylene chemistry has experienced a major renaissance engendered by the incurrence of molecules with $C \equiv C$ bonds in the frontiers of modern organic chemistry – namely biochemistry and materials science. An entire family of powerful antitumor antibiotics with cis-enediynes as reactive fragments was discovered in the mid 1980s, and new members of this family continue to be found. The range and potential of these antitumor antibiotics has been greatly expanded by a family of synthetic enediynes capable, analogously to their natural counterparts, of undergoing the Bergmann cycloaromatization and efficiently nicking and cleaving DNA. On the other hand, acetylenic molecular scaffolding has been employed to prepare multinanometer-sized molecular objects with unprecedented structures, functions, and properties. Some of these materials are being developed into components for molecular electronics; others form crystals with molecular pores for separation, inclusion, and catalysis, and thereby become the organic counterparts of zeolites. Acetylenic two- and three-dimensional carbon allotropes, with structures and functions different from the natural modifications of diamond and graphite, as well as fullerenes, are under construction. New, fully conjugated, acetylenic polymer backbones complement the functional property range of polyacetylenes and polydiacetylenes. The construction of organic ferromagnets based on acetylenic backbones and scaffolds is being explored intensively.

These developments, which offer plenty of fascinating perspectives at the two interfaces to materials science and biology, are efficiently fueled by the invention of powerful new synthetic methodology, based to a large extent on transition metal chemistry. The invention of new synthetic methods has particularly facilitated the cross-coupling between acetylenic sp-C atoms and alkene and arene sp²-C-atoms; reactions crucial to molecular scaffolding. Other important advances have been made in the formation of five-, six-, and higher-membered rings using alkyne transition metal chemistry. Small reactive acetylenes such as iodonium derivatives are increasingly used as reagents in organic synthesis since ways have now been found to control their reactivity and tame their previous tendency for spontaneous decomposition. The chemistry of heteroalkynes such as phosphaalkynes has emerged over the past decade.

Theoretical chemistry has been challenged by the broad new developments in modern acetylene chemistry. Structures and electronic configurations of acyclic and cyclic acetylenic π -systems have attracted the interest of both experimentalists and theoreticians, and much of the current knowledge on homoconjugation, and on through-space orbital interactions between precisely aligned chromophores, has been gained in studies of acetylenic systems. The structures and electronic properties of acetylenic all-carbon rods and rings, which are formed in the laser vaporization of graphite and occur as intermediates in fullerene production processes, have attracted much interest from theoreticians, providing attractive and challenging targets to calibrate and improve computational methods.

VI Foreword

This multi-author monograph documents and critically analyzes these recent developments in contemporary acetylene chemistry in 13 chapters written by leading scientists in the various areas. With emphasis on the above-mentioned modern developments, the monograph does not duplicate previous treatises on alkyne chemistry such as Houben-Weyl-Müller Vol. V/2a (Alkine, Di und Polyine, Allene, Kumulene), the volumes in the Patai series on The Chemistry of the Carbon-Carbon Triple Bond, the pioneering monograph on The Chemistry of Acetylenes by H. G. Viehe, or the book by Brandsma on Preparative Acetylenic Chemistry with a great variety of useful synthetic procedures. Rather, it builds upon these predecessors and complements them by updating the reader on the broad new developments in today's acetylene chemistry. To enhance the practical value of the monograph, most experimental chapters include synthetic protocols which have been chosen for broad utility and application.

We anticipate and hope that this monograph will further stimulate the development and application of acetylene chemistry as one of the key synthetic, structural, and functional tools of future chemistry.

Salt Lake City and Zürich December 1994 Peter J. Stang François Diederich

Contents

Foreword

List of Contributors

1	Modern Computational and Theoretical Aspects of Acetylene Chemistry
	Dietmar A. Plattner, Yi Li, K. N. Houk
1.1	Introduction
1.2	Electronic structures of acetylene and monoacetylenes
1.2.1	Ground-state potential energy surfaces
1.2.2	Excited-state potential energy surfaces
1.2.3	Radical ions
1.3	Reactivities and molecular interactions of acetylenes
1.3.1	Pericyclic reactions
1.3.2	Electrophilic reactions
1.3.3	Nucleophilic additions
1.3.4	Radical additions
1.3.5	Molecular complexes
1.4	Polyacetylenes
1.4.1	Diacetylene
1.4.2	C_n and cyclic C_n
1.4.2.1	C ₂
1.4.2.2	C_3
1.4.2.3	C_4
1.4.2.4	$C_5, C_7, and C_9$
1.4.2.5	$C_6, C_8, and C_{10}$
1.4.2.6	C_{11} to C_{17}
1.4.2.7	C_{18}
1.5	Conclusion
	References

2 Functionalized Acetylenes in Organic Synthesis – The Case of the 1-Cyanoand the 1-Halogenoacetylenes

Henning Hopf, Bernhard Witulski

2.1	Introduction	33
2.2	Synthesis and preparative use of cyanoacetylenes	34
2.2.1	Synthesis	34
2.2.2	Preparative use of cyanoacetylenes	38
2.2.2.1	A short summary of the older literature	38
2.2.2.2	Novel cycloadditions with cyanoacetylenes – simple and efficient methods	
	for the construction of complex carbon frameworks	39
2.2.2.3	Cyanoacetylenes as precursors for reactive and interstellar intermediates . $\ .$	46
2.3	Synthesis and preparative use of 1-halogenoacetylenes	48
2.3.1	Older review of the literature on halogenoacetylenes	48
2.3.2	Synthesis of 1-halogenoacetylenes	48
2.3.2.1	The preparation of the 1-halogeno- and 1,2-dihalogenoethynes	48
2.3.2.2	More highly unsaturated halogenoacetylenes	50
2.3.2.3	Derivatives of 1-halogenoacetylenes	52
2.3.3	Novel preparative uses of 1-halogeno- and 1,2-dihalogenoacetylenes	53
2.4	Experimental procedures	60
2.4.1	Cyanoacetylene (1)	60
2.4.2	Dicyanoacetylene (2)	60
2.4.3	Dicyanodiacetylene (3)	61
2.4.4	Chloroacetylene (93)	61
2.4.5	Dichloroacetylene (100)	62
2.4.6	Diiodoacetylene (105)	62
	References	63

3 Alkynyliodonium Salts: Electrophilic Acetylene Equivalents

Peter J. Stang

3.1	Introduction	7
3.2	Preparation and properties	8
3.2.1	Alkynyliodonium sulfonates	8
3.2.2	Alkynyliodonium tetrafluoroborates	9
3.2.3	Heterocyclic alkynyliodonium species	0
3.2.4	Mechanism of formation	1
3.2.5	Diynyliodonium and dialkynyliodonium triflates	2
3.2.6	Bis-iodonium species	2
3.2.7	Properties of alkynyliodonium salts	3

3.3 3.3.1 3.3.2	Characterization and structure 74 Spectroscopic properties 74 X-ray and molecular structure 75
3.4	Reactions and uses of alkynyliodonium salts
3.4.1	Reaction with nucleophiles
3.4.1.1	Carbon nucleophiles
3.4.1.2	Nitrogen nucleophiles
3.4.1.3	Oxygen nucleophiles
3.4.1.4	Sulfur nucleophiles
3.4.1.5	Phosphorus nucleophiles
3.4.1.6	Halogen nucleophiles
3.4.2	Reaction with organometallic species
3.4.3	Cycloaddition reactions
3.4.3.1	[2 + 4]-Diels-Alder cycloadditions
3.4.3.2	1,3-Dipolar cycloadditions
3.5	Conclusions
3.6	Experimental procedures
3.6.1	(Cyano{[(trifluoromethyl)sulfonyl]oxy}iodo)benzene, 7
3.6.2	General procedure for the preparation of β-alkyl- and β-phenylethynyl(phe-
	nvl)iodonium triflates, 10
3.6.3	General preparation of B-functionalized ethynyl(phenyl)iodonium triflates.
	11
3.6.4	General procedure for the preparation of bis-iodonium divne bis-triflates.
	34 and 35
3.6.5	Prenaration of his(phenyl{[(trif]uoromethyl)sulfonyl]oxy]iodo)ethyne, 30 , 94
3.6.6	General procedure for the Diels-Alder reaction of alkynyl(phenyl)iodonium
	salts. 11. with 1.3-dienes: formation of cycloadducts 118-120
3.6.7	General procedure for the preparation of cyclopentenones and y-lactams
	References

4 The Chemistry of Metal-Alkyne Complexes

Gagik G. Melikyan, Kenneth M. Nicholas

4.1	Introduction						•											99
4.2	Bonding and structure							•				•				•		99
4.2.1	Alkyne complexes	•									•	•					•	99
4.2.2	Propargylium-metal complexes	•	•	•	•	•	•	•	•			•	•		•	•		101
4.3	Complexes of novel alkynes	•	•	•	•	•	•				•	•	•				•	104
4.4	Reactions of metal-alkyne complexes											•	•					107
4.4.1	Reactions at the $C-C$ triple bond .	·	·	•	·	•	·	·	·	•	·	•	•	·		•	•	107

4.4.1.1	Nucleophilic addition	107
4.4.1.2	Electrophilic addition	108
4.4.1.3	M – H addition/hydrogenation	109
4.4.1.4	M-C addition	110
4.4.1.5	Coupling reactions with unsaturated substrates	110
4.4.1.6	Alkyne scission/metathesis/polymerization	114
4.4.1.7	Cluster substitution/expansion	115
4.4.1.8	Demetalation	115
4.4.1.9	Nucleophilic addition to mononuclear η^3 -propargylium-M complexes .	116
4.4.2	Reactions at the complexed acetylenic $C-X$ bond	116
4.4.2.1	Alkyne-vinylidene isomerization	116
4.4.2.2	Reactions of complexed terminal alkynes with base	117
4.4.3	Reactions at the propargylic (α) carbon	118
4.4.3.1	Alkyne/allene isomerization	118
4.4.3.2	Reactions of dinuclear propargylium complexes with nucleophiles	118
4.4.3.2.1	General reaction features	118
4.4.3.2.2	Proton loss/elimination	120
4.4.3.2.3	Coupling with noncarbon nucleophiles	121
4.4.3.2.4	Coupling with carbon nucleophiles	122
4.4.4	Reactions remote from the complexed triple bond	128
4.4.5	Reaction summary	128
4.5	Special applications of metal-alkyne complexes	128
4.6	Selected experimental procedures	130
4.6.1	μ -[(η^2 , η^2 -1-Methyl-2-propynylium)dicobalthexacarbonyl] tetrafluoroborate	
	(126)	130
4.6.2	2-(1-Methyl-2-propynyl)cyclohexanone (127)	131
4.6.3	μ -[η^2 , η^2 -dl-3,4-Diphenyl-1,5-cyclooctadiyne]-bis-hexacarbonyldicobalt (128).	131
	References	132

5 Organometallic Cycloaddition Reactions of Acetylenes

Joseph A. Casalnuovo, Neil E. Schore

5.1	Introduction	139
5.2	Cycloadditions of acetylenes with Fischer carbenes	139
5.2.1	Naphthols – the Dötz reaction	140
5.2.2	Indenes	147
5.2.3	Cyclobutenones	149
5.2.4	Cyclopentenones	150
5.2.5	Cycloheptadienones	151
5.2.6	Cyclopropanes	151
5.2.7	Heterocyclic ring systems	153

5.3	The Pauson-Khand reaction: cycloadditions of olefins, acetylenes, and CO 1	54
5.3.1	Background and mechanism	55
5.3.2	Intermolecular Pauson-Khand reaction	57
5.3.3	Intramolecular Pauson-Khand reaction	61
	References	67

6	Phosphaalkynes - Starting Point for the Synthesis of Phosphorus-Carbon
	Cage Compounds

Manfred Regitz, A. Hoffmann, U. Bergsträßer

6.1	Introduction	173
6.2	Syntheses of phosphaalkynes	174
6.3	Reactivity of phosphaalkynes	175
6.4	The history of phosphorus-carbon cage compounds from phosphaalkynes	176
6.5	Synthesis of phosphorus-carbon cage compounds	177
6.5.1	Construction by cycloaddition reactions	177
6.5.1.1	Diphosphatetracyclodecenes	177
6.5.1.2	Phosphaprismanes and phosphabenzvalenes	178
6.5.1.3	Diphosphatricyclooctenes	180
6.5.1.4	Diphosphatetracycloundecadienones and oxadiphosphapentacyclononade-	
	capentaenones (the tropone reaction of phosphaalkynes)	182
6.5.1.5	Diphosphirenes as intermediates for phosphorus-carbon cage compounds	183
6.5.1.6	Thermal cyclotetramerization	184
6.5.2	Construction by extrusion of Cp ₂ Zr from phosphaalkyne dimer complexes	185
6.5.2.1	Cp ₂ Zr-phosphaalkyne dimer complexes	186
6.5.2.2	Tetraphosphacubanes and isomeric cage compounds	186
6.5.2.3	P-functionalization of the tetraphosphacubane system	188
6.5.3	Cyclooligomerization with the aid of Lewis acids	189
6.5.3.1	Spirocvclotrimerization	189
6.5.3.2	Phosphaalkyne tetramers from the spirocyclotrimer 71a	190
6.5.3.3	Hexaphosphapentaprismane from the spirocyclotrimer 71a	192
6.5.3.4	Phosphorus-carbon-aluminum cage compounds	194
6.6	Outlook	195
6.7	Experimental procedures	196
6.7.1	2,2-Dimethyl-1-(trimethylsiloxy)propylidene(trimethylsilyl)phosphane (10a)	196
6.7.2	(2,2-Dimethylpropylidyne)phosphane (9a)	196
6.7.3	Bis(η ⁵ -cyclopentadienyl)(2,4-di-tert-	
•	butyl-1,3-diphosphabicyclo[1.1.0]butan-2,4-diyl)zirconium (59a)	1 9 7
6.7.4	2,4,6,8-Tetra-tert-butyl-1,3,5,7-tetraphosphapentacyclo[4.2.0.0 ^{2,5} .0 ^{3,8} .0 ^{4,7}]oc-	
	tane (53a)	197

XII	Contents
6.7.5	2,4,6-Tri- <i>tert</i> -butyl-1,5-diphospha-3-phosphoniaspiro[3.4]hexa-1,4-diene-6-t-richloroaluminate (71a)
6.7.6	2,5,6,8-Tetra- <i>tert</i> -butyl-1,3,4,7-tetraphosphatetracyclo[3.3.0.0 ^{2,4} .0 ^{3,6}]oct-7-ene (76)
6. 7.7	1,4,6-Tri- <i>tert</i> -butyl-2,5,7,7,8,8-hexaethyl-5,8-dialuminato-3-phospha- 2,7-diphosphoniatetracyclo[$3.3.0.0^{2,4}.0^{3,6}$]octane (80)
6.7.8	$2,5,7,9$ -Tetra- <i>tert</i> -butyl- $3,3,4$ -triethyl- 4 -aluminato- $3,6,8$ -triphospha-1-phosphoniatetracyclo[$4.2.1.0^{1,5}.0^{4,9}$]octane (81)
	References

197

198

198

198

199

7 The Enediyne Antibiotics

K. C. Nicolaou, Adrian L. Smith

7.1	Introduction	203
7.2	The aromaticity era	205
7.2.1	The cycloaromatization of conjugated polyenyne systems	205
7.2.2	Application to the synthesis of aromatic systems	206
7.3	The discovery of the enediyne antibiotics	207
7.3.1	Neocarzinostatin	208
7.3.2	The calicheamicins	212
7.3.3	The esperamicins	216
7.3.4	The dynemicins	217
7.3.5	The chromoprotein enediyne antibiotics	221
7.3.5.1	Kedarcidin	221
7.3.5.2	C-1027	223
7.3.5.3	Maduropeptin	224
7.4	Theoretical and synthetic studies on the enediyne antibiotics	224
7.4.1	Neocarzinostatin chromophore model systems	224
7.4.1.1	Theoretical considerations	224
7.4.1.2	Synthetic studies	226
7.4.2	Calicheamicin/esperamicin theoretical and synthetic studies	238
7.4.2.1	Synthetic and theoretical studies on the Bergman cycloaromatization of	
	cyclic enediynes	238
7.4.2.2	Synthetic approaches to the calicheamicin aglycone	241
7.4.2.3	Synthetic approaches to the calicheamicin/esperamicin carbohydrate frag-	240
7 4 2 4		249
7.4.2.4	Total synthesis of cancelamicin γ_1	208
7.4.5	The characteristic and line antibiotics	201
/.4.4	The chromoprotein energy antibiotics	273
7.5	Medical applications of the enediyne antibiotics	273
7.6	Concluding remarks	274
	References	276

0		
a		

Cyclic Alkynes: Preparation and Properties

Rolf Gleiter, Roland Merger

8.1	Introduction	285
8.2	Synthesis of cyclic acetylenes	286
8.2.1	Cyclic alkynes from ring-closure reactions	286
8.2.1.1	Using acetylenic reactivity: nucleophilic substitution with metal acetylides and related reactions	286
8212	Employing propagavic cations anions and radicals	288
822	Cyclic alkynes from elimination reactions	292
8221	12-Flimination	292
8222	Cycloelimination reactions	293
8223	Ring contraction	294
823	Ring-enlargement reactions	295
0.2.5		275
8.3	Structural and spectroscopic properties	296
8.3.1	Structures of cyclic mono- and dialkynes	296
8.3.2	Photoelectron spectra of cyclic diacetylenes	301
8.4	Organic reactions of cyclic alkynes	303
8.4.1	Rearrangement of cyclic alkynes	303
8.4.2	Transannular reactions	305
8.4.3	Addition reactions of cyclic alkynes	308
8.4.3.1	Homonuclear addition reactions	308
8.4.3.2	Heteronuclear addition reactions	309
8.4.3.3	Cycloaddition reactions	309
8.5	Reactions of cyclic alkynes with metal compounds	311
8.6	Conclusions	314
8.7	Experimental procedures	314
8.7.1	Preparation of cyclic dialkynes of ring size C_{12} - C_{16}	314
8.7.1.1	General procedure	314
8.7.1.2	1,7-Cyclododecadiyne (3)	314
8.7.1.3	1,8-Cyclotetradecadiyne (120)	314
8.7.2	General procedure for Dewar benzenes 181 and 182	315
8.7.2.1	Dimethyl tetracyclo[12.2.0.0 ^{1,7} .0 ^{8,14}]hexadeca-7,15-diene-15,16-dicarboxylate	
	(182; n = 5)	315
8.7.2.2	Dimethyl tetracyclo[7.5.2.0.0 ^{2,8}]hexadeca-2,15-diene-15,16-dicarboxylate (181;	
	n = 5)	315
8.7.3	Cyclonon-2-ynone (91) and bicyclo[6.1.0]non-1(8)-en-9-one (92)	315
	References	316

9	Macrocyclic Homoconjugated Polyacetylenes	
	Lawrence T. Scott, Mark J. Cooney	
9.1	Introduction	321
9.2	Pericyclynes	322
9.3	"Exploded" pericyclynes	330
9.4	Homoconjugated mixed polyalkyne/diyne macrocycles	337
9.5	Heterocyclic cognates of pericyclynes	340
9.6 9.6.1 9.6.2	Experimental procedures \dots Experimental procedures \dots Conversion of a methyl ketone to a terminal acetylene (28 \rightarrow 30) \dots Conversion of a terminal acetylene to a bromoalkyne using tosyl bromide	345 345
9.6.3	$(30 \rightarrow 50)$	347
	tylide with a bromoalkyne $-2:1$ example $(49 + 50 \rightarrow 51)$	347
9.6.4	Oxidative cyclization of a long-chain α, ω -diyne (53 \rightarrow 44)	348
9.6.5	Coupling of a terminal acetylene with a tertiary propargylic chloride – 2:1 example $(47 \rightarrow 69)$	348
9.6.6	Conversion of a 2,2-dibromovinyl compound to a bromoalkyne – two-fold example $(75 \rightarrow 74)$	349 349

10 Polyacetylene

Eric J. Ginsburg, Christopher B. Gorman, Robert H. Grubbs

10.1	Introduction	3
10.2	Syntheses and properties	3
10.2.1	Routes from alkynes	3
10.2.1.1	Acetylene polymerization	3
10.2.1.2	Polymerization of substituted alkynes)
10.2.2	Routes from alkene precursors	3
10.2.2.1	Nonmetathetic routes	3
10.2.2.2	Routes using olefin metathesis	5
10.2.3	Ring-opening of cyclooctatetraene	3
10.3	Conclusions	5
10.4	Experimental procedures	5
10.4.1	Synthesis of substituted polycyclooctatetraenes	5
10.4.2	Cis/trans isomerization of soluble polycyclooctatetraenes	7
10.4.3	A precursor route to polyacetylene	1

10.4.3.1	Synthesis of poly(diethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxy-	
	late)	377
10.4.3.2	Solid-state production of polyacetylene from poly(diethyl 7-oxabicyclo	
	[2.2.1]hepta-2,5-diene-2,3-dicarboxylate)	378
10.4.3.3	Solution production of polyacetylene from poly(diethyl 7-oxabicyclo[2.2.1]	
	hepta-2,5-diene-2,3-dicarboxylate)	378
	References	379

11 Acetylenic Compounds as Building Blocks for High-Spin Molecules and Molecular Assemblies

Hiizu Iwamura, Kenji Matsuda

11.1	Introduction	385
11.2 11.2.1 11.2.2 11.2.3	Alkynyl compounds carrying unpaired electrons	385 385 387 389
11.3 11.3.1 11.3.2	Molecular crystals of organic free radicals that carry alkynyl substituents. What makes acetylenic compounds unique in assembling their molecules? Guiding principles on aligning electron spins in parallel between two neigh-	391 391
11.3.3	boring molecules	392 393
11.4 11.4.1	Spin alignments in poly(phenylacetylenes) and poly(1,3-butadiynes)	395
11.4.2	diynes	395
11.4.3	Attempts at introducing stoichiometric amounts of spins in poly(phenylace- tylenes) and poly(phenyldiacetylenes)	3 9 8 400
11.4.3.1 11.4.3.2	Poly(phenylacetylenes)	400 402
11.5	Cyclotrimerization reaction of benzoylacetylenes in the presence of a secon- dary amine	403
11.6	Conclusions	409
11.7 11.7.1 11.7.2	Experimental procedures	409 409 410
11.7.2.1	1-(3,5-Dibenzoylbenzoyl)-3-(3-trimethylsilyl-2-propynoyl)benzene (52)	410

11.7.2.2	1-(3,5-Dibenzoylbenzoyl)-3-(2-propynoyl)benzene (56) .					410
11.7.2.3	1,3,5-Tris[3-(3,5-dibenzoylbenzoyl)benzoyl]benzene (49).					410
	References					411

12 Acetylenes in Nanostructures

James K. Young, Jeffrey S. Moore

12.1	Introduction	415
12.1.1	Structural parameters of phenylacetylenes	416
12.2	Phenylacetylene dendrimers	418
12.2.1	Synthetic considerations for phenylacetylene dendrimer construction	419
12.2.1.1	The divergent and convergent synthetic approaches	420
12.2.1.2	Convergent synthesis of phenylacetylene dendrimers	421
12.2.1.3	Effect of varying focal point functionality on the convergent synthesis of phenylacetylene dendrimers	423
12.2.1.4	Synthesis of dendrimers by repetition of monomer enlargement (SYN-	
	DROME method)	423
12.2.1.5	"Double exponential" dendrimer growth	424
12.3	Phenylacetylene macrocycles	426
12.3.1	Phenylacetylene macrocyclic framework	428
12.3.2	Synthetic considerations for phenylacetylene macrocycle construction	430
12.3.2.1	The double cyclization of branched phenylacetylene oligomers	430
12.3.2.2	Tandem bimolecular coupling followed by intramolecular cyclization to	
	form a foldable phenylacetylene macrotetracycle	431
12.4	Synthesis of sequence-specific phenylacetylene oligomers and dendrimers	
	on an insoluble solid support	433
12.5	Conclusions	436
12.6	Experimental procedures	437
12.6.1	48-Cascade: benzene[3-1,3,5]: (5-ethynyl-1,3-phenylene)G: 5-ethynyl-	
	1,3-di(<i>tert</i> -butyl)benzene (8)	437
12.6.2	General procedure for double cyclization	437
12.6.3	Sample preparation for mass spectrometry	437
12.6.4	Procedures for solid-supported phenylacetylene chemistry	438
12.6.4.1	General procedure A: Pd(0)-catalyzed coupling reactions (except for trime-	
	thylsilylacetylene)	438
12.6.4.2	General procedure B: Pd(0)-catalyzed coupling with trimethylsilylacetylene	438
12.6.4.3	General procedure C: trimethylsilyl deprotection	438
12.6.4.4	General procedure D: liberation of the oligomeric sequence from the sup-	1.00
	port	439
12.6.5	Peptide linkage to aminomethylated polystyrene (26)	439
12.6.6	Ether linkage to chloromethylated polystyrene (28)	439

12.6.7	Propylaminomethylated polystyrene (29)	439
12.6.8	Direct triazene linkage to propylaminomethylated polystyrene (31)	440
	References	441

13 Oligoacetyle	enes
-----------------	------

François Diederich

13.1	Introduction	443
13.2 13.2.1 13.2.2 13.2.3	Synthetic approaches to the cyclocarbons	443 445 446 448
13.3	Tetraethynylethenes, fully cross-conjugated π -electron chromophores, and other perethynylated molecules	449
13.3.1	Synthesis of tetraethynylethene (20) and geminally bisdeprotected deriva-	
12 2 2	tives	449
13.3.2	Synthesis of <i>trans</i> -bis(triisopropylsilyl)-protected and <i>trans</i> -bisdeprotected	431
	tetraethynylethenes	451
13.3.4	Synthesis of cis-bisdeprotected tetraethynylethenes	452
13.3.5	Other perethynylated compounds as potential monomers for carbon net-	
	works	453
13.4	Perethynylated dehydroannulenes and expanded radialenes: large carbon	
	cores on the way to all-carbon sheets	456
13.4.1	Perethynylated dehydroannulenes	450
13.4.2		439
13.5	Molecular wires: from polytriacetylenes to carbyne	461
13.5.1	Linear polyynes: short oligomers of elusive carbyne	461
13.5.2	Stable soluble conjugated carbon rods with a polytriacetylene backbone.	463
13.6	Conclusions	46 4
13.7	Experimental procedures	464
13.7.1	3,4-Bis[triisopropylsilyl)ethynyl]-3-cyclobutene-1,2-dione (12 f)	464
13.7.2	Oxidative Hay coupling of 14 to the cyclobutene-fused dehydroannulenes	
	15-17	465
13.7.3	3-Dibromomethylene-1,5-bis(trimethylsilyl)-1,4-pentadiyne (23)	465
13.7.4	(E)-1,2-Diethynyl-1,2-bis[(triisopropylsilyl)ethynyl]ethene (30a)	466
13.7.5	Eglinton-Glaser coupling of 54 to the expanded radialenes 51 and 53	466
13.7.6	General procedure for solution-spray flash vacuum pyrolysis (SS-FVP)	466
	References	469

This Page Intentionally Left Blank

List of Contributors

U. Bergstraße Fachbereich Chemie der Universität Erwin-Schrödinger-Straße D-67663 Kaiserslautern Germany

Joseph A. Casalnuovo Department of Chemistry California Polytechnic University Pomona CA 91768, USA

Mark J. Cooney Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02167, USA

François Diederich Laboratorium für Organische Chemie ETH Zentrum Universitätsstraße 16 CH-8092 Zürich Switzerland

Eric J. Ginsburg Research Laboratories Eastman Kodak Company Rochester NY 14650, USA

Rolf Gleiter Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 270 D-69120 Heidelberg Germany Christopher B. Gorman Department of Chemistry North Carolina State University Raleigh NC 27695, USA

Robert H. Grubbs Arnold and Mabel Beckman Laboratories of Chemical Synthesis California Institute of Technology Pasadena CA 91125, USA

A. Hoffmann
Fachbereich Chemie der Universität
Erwin-Schrödinger-Straße
D-67663 Kaiserslautern
Germany

Henning Hopf Institute of Organic Chemistry Technical University of Braunschweig Hagenring 30 D-38106 Braunschweig Germany

K. N. Houk Department of Chemistry and Biochemistry University of California Los Angeles CA 90024, USA

Hiizu Iwamura Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113 Japan Yi Li Bristol-Myers Squibb Pharmaceutical Research Institute 5 Research Parkway P.O. Box 5100 Wallingford, CT 06492-7660 USA

Kenji Matsuda Department of Chemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113 Japan

Gagik G. Melikyan Department of Chemistry and Biochemistry University of Oklahoma Norman OK 73019, USA

Roland Merger Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 270 D-69120 Heidelberg and Farbenlabor der BASF AG D-67056 Ludwigshafen Germany

Jeffrey S. Moore Departments of Chemistry and Materials Science & Engineering Roger Adams Laboratory Box 55 600 S. Mathews Urbana IL 61801, USA

Kenneth M. Nicholas Department of Chemistry and Biochemistry University of Oklahoma Norman OK 73019, USA K. C. Nicolaou Department of Chemistry The Scripps Research Institute La Jolla, CA 92037 and Department of Chemistry University of California San Diego, CA 92093 USA

Dietmar A. Plattner Department of Chemistry and Biochemistry University of California Los Angeles CA 90024, USA

Manfred Regitz Fachbereich Chemie der Universität Erwin-Schrödinger-Straße D-67663 Kaiserslautern Germany

Neil E. Schore Department of Chemistry University of California Davis CA 95616, USA

Lawrence T. Scott Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02167, USA

Adrian L. Smith Merck Sharpe & Dohme Research Laboratories Terlings Park Harlow Essex CM20 2QR, UK

Peter J. Stang Department of Chemistry University of Utah Salt Lake City UT 84112, USA Bernhard Witulski¹ Institute of Organic Chemistry Technical University of Braunschweig Hagenring 30 D-38106 Braunschweig Germany James K. Young Department of Chemistry Roger Adams Laboratory Box 55 600 S. Mathews Urbana IL 61801, USA

¹ Present address: Department of Chemistry, Stanford University, Stanford, CA 94305, USA

1 Modern Computational and Theoretical Aspects of Acetylene Chemistry

Dietmar A. Plattner, Yi Li, K. N. Houk

1.1 Introduction

Few organic molecules have been the object of more intensive physicochemical and theoretical scrutiny in recent years than acetylene. The focus of modern experimental, theoretical, and computational studies has been the characterization and elucidation of transition states and reactive intermediates, reaction potential energy surfaces and reaction dynamics of acetylene. The reason for this attention is clear. Acetylene is a simple polyatomic molecule only slightly more complex than a diatomic molecule, yet it has a variety of uses and undergoes a host of reactions like those of polyfunctional molecules. The rich and diverse chemical properties are amenable to high-level computational treatment, state-of-the-art spectroscopic measurements, and detailed theoretical interpretations of experimental data. Although acetylene is one of the most common molecules, its most fundamental properties such as bond strength are still subject to refinement, both experimentally and computationally. The rapid growing number of studies on the structures and stabilities of carbon clusters and rods have renewed interest in the bonding character of the acetylenic bond. Concepts of bonding in acetylene continue to evolve, and the understanding of complex varities of acetylenes will aid in the design of new molecules and materials.

In this chapter, we review some recent developments in the theoretical and computational aspects of acetylenes. There are several detailed reviews covering various aspects of the early work [1, 2]. It will become self-evident in this review that modern experimental and computational studies of acetylene constitute a paradigm for the rivalry and interplay between theory and experiment. As the theoretical treatments become increasingly sophisticated, and as the experimental design becomes more and more ingenious and precise, the better is our understanding.

1.2 Electronic Structures of Acetylene and Monoacetylenes

Historically, the application of molecular orbital theory to the electronic structures of isoelectronic 14-electron molecules such as acetylene, HCN, N₂, and O₂ was an excellent pioneering demonstration of the value of quantum chemistry. Within the framework of molecular orbital theory, the C - C bond in acetylene is a triple bond involving one σ -bond, and two orthogonal π -bonds. The σ -bond is formed by two sp-hybrid orbitals from each carbon, and the two π bonds are formed from the perpendicular p-orbitals. Alternatively, the so-called "bent" or "banana" bonds have been invoked to describe the multiple C - C bonds in acetylene (Fig. 1-1) [3-5]. This creates a conceptual dilemma, though one bonding model can be transformed to the other by appropriate linear combinations. It is now realized that both models are useful for describing various aspects of bonding and reactivity [6], but neither approach is perfect in describing the electronic structure of acetylene. Due to the electron correlation effects, a multiconfiguration wavefunction is necessary to describe fully the electronic structure of a molecule. The separation of σ - and π -orbitals in the molecular orbital treatment is an approximation, and thus has limitations. A generalized valence-bond theory was developed by the introduction of Pauling's resonance theory, which took both models into the consideration [7]. For acetylene, the descriptions of σ - π bonds or "banana" bonds comprise merely one configuration that contributes to the multiconfiguration wavefunction.

Figure 1-1 The σ - π and bent bond models for bonding in acetylene.

To address the question of which single-configuration bond description is a better starting point for the treatment of correlation effects, Karadakov et al. [8] examined the spin-coupled wavefunctions generated, respectively, from the Hartree-Fock molecular orbitals and the generalized valence-bond wavefunction with perfect-pairing and strong-orthogonality constraints. The results using these wavefunctions were than compared with the calculations using a multiconfiguration wavefunction consisting of a complete-active space self-consistent field. From an energetic point of view, they found that both approaches were equally good for the treatment of correlation effects beyond the one-configuration approximation. The spincoupled wavefunction from σ - π orbitals recovers 63% of the CASSCF correlation energy, as compared with a 66% recovery of correlation energy using the equivalent bent orbitals. Other computational studies demonstrated the superiority of banana bonds for a variety of systems containing multiple bonds [9-12]. The superiority of one bond description over the other may depend upon the extent of conjugation of the multiple bonds [13].

In spite of the shortcomings of the single-configuration approach, the σ - π concept has played an indispensable role in bridging theoretical understanding and chemical relevance. The HOMO-LUMO interactions in the frontier molecular orbital theory, the orbital energies either calculated by theory or measured from ionization potentials, the electron distribution and density of π -orbitals and bond orders, all have been used to understand and predict the molecular structural features, chemical stabilities, reactivities, regioselectivities, and stereoselectivities of acetylenes. Classical chemical concepts such as bond orders, the HOMO-LUMO energies, and electron densities have also been defined quantitatively and have been calculated for acetylene numerically from ab-initio calculations [14-20].

1.2.1 Ground-state Potential Energy Surfaces

On the singlet potential energy surface, acetylene ($HC \equiv CH$) may undergo isomerization to vinylidene ($H_2C=C$:). Whether singlet vinylidene exists as a bound intermediate has been the subject of extensive studies, both experimentally and theoretically [1, 21-35]. The simplest unsaturated carbene has been proposed to be involved in many chemical reactions, and is of great value in preparative organic chemistry [36-39]. Because vinylidene is highly reactive, there has been limited direct experimental characterization of this species, and much debate about whether vinylidene is a minimum on the potential energy surface or a transition state for the degenerate hydrogen shift in acetylene. On the other hand, numerous computational studies have only recently provided a clear consensus on the classical barrier height for the isomerization process [26].

The lowest singlet state of vinylidene is an extremely shallow minimum on the potential energy surface. The best estimate of the classical barrier of isomerization to acetylene made by Gallo et al. is $\sim 3 \text{ kcal/mol}$ (1 kcal = 4.184 kJ) using large basis sets and the coupled cluster method including single and double excitations [26]. The energy of isomerization of acetylene is predicted to be \sim 43 kcal/mol at the same level of theory. Although an artifact at the MP2 level was noted, calculations at the high Møller-Plesset perturbation levels also predicted a diminishingly small barrier for the vinylidene isomerization [29, 31]. Such a small barrier of 2-4 kcal/mol also led to a prediction of a lifetime of about 1 ps for the ground-state vinylidene [30, 32]. The first direct observation of singlet vinylidene came from a photodetachment experiment involving the vinylidene radical anion [23]. Ervin et al. studied in detail the photoelectron spectra of the vinylidene anion and observed the vibrational structure of vinylidene [22]. The observed $2 \leftarrow 0$ CH₂ rock transition (450 cm⁻¹) indicated that the singlet vinylidene is a minimum with a barrier to rearrangement of >1.3 kcal/mol. Its lifetime was estimated from these experiments to be 0.04-0.2 ps. Chen et al. also observed vinylidene in the high-resolution stimulated emission pumping spectrum of acetylene [24]. Although they were unable to determine the barrier height for vinylidene isomerization, a value of

Scheme 1-1 Energetics of the vinylidene-acetylene rearrangement [25, 40].

44 kcal/mol was determined for the vinylidene-acetylene isomerization energy. This is in good agreement with the results of other measurements [21], and is consistent with the prediction by calculations.

One surprising feature in the transition structure obtained at various levels of theory for the acetylene-vinylidene isomerization is the extent of hydrogen migration (Scheme 1-1). For a low-barrier, highly exothermic reaction like the vinylidene rearrangement, an early transition state is expected according to the Hammond postulate. In other words, the transition structure should resemble vinylidene rather than displaying the reaction progressed halfway in terms of hydrogen transfer. This contradiction was first observed by Dykstra and Schaefer [40], and was apparently not due to the level of theory used. Petersson et al. offered a plausible explanation [25]. They considered two distinct processes that are involved in the isomerization: one corresponding to the hydrogen transfer and the other corresponding to the conversion of the carbene lone-pair electron to the π bonding electrons. The hydrogen transfer process, which breaks one C-H bond but creates another, is nearly thermoneutral, forming a species which is essentially a twisted zwitterion. The transition state for such a thermoneutral reaction should be midway according to the Hammond postulate. The second part of vinylidene isomerization is the electron reorganization from the twisted zwitterion to form acetylene, a very exothermic process. Therefore, in terms of the C-C bond length in the transition structure, the transition state closely resembles vinylidene, obeying the Hammond postulate. Petersson et al. suggested that the Hammond postulate should be applied to the energetics of individual processes, not to the total energy directly.

Besides the acetylene-vinylidene isomerization, other topological regions of the lowest singlet potential energy surface have been explored in a limited number of studies to date. The stimulated-emission pumping technique has been used to probe the potential energy surface up to 28000 cm^{-1} [24, 41, 42]. These studies indicated that acetylene at energy around 26500 cm⁻¹ undergoes the transition from the regular to the chaotic regime. Sibert and Mayrhofer carried out a variational calculation on highly excited vibrational states up to 8770 cm^{-1} [43]. Binkley reported geometries and frequencies for two additional stationary points, bridged acetylene and planar bridged acetylene [33]. Halvick et al. investigated thoroughly the singlet acetylene energy surface up to 43000 cm^{-1} using high level ab initio calculations [34]. They located eight stationary points and characterized the minimum energy paths connecting them. This information was then used to build a topologically consistent and complete configuration space, which included all three isomerization coordinates among acetylene, vinylidene, bridged acetylene, and planar bridged acetylene (Fig. 1-2).

Finally, calculations of potential energy surfaces involving bond dissociation reactions of acetylene are highly demanding on the level of theory, and have often been used as the testing ground for the development of the latest theoretical methods. Recent examples include the G2 theory by Pople and co-workers [44, 45], the coupled cluster methods [46], and the density functional theory [47-51]. Several authors investigated in great detail the C-H bond dissociation [52-56], and the C-C bond dissociation as well [53, 57, 58]. For the C-H bond dissociation of acetylene, high-level calculations, which range from 126 to 132 kcal/mol after zero-point energy correction, are in agreement with the upper end of the experimentally measured values. The C-C bond energy of acetylene is predicted to be 206 kcal/mol by the GVB method [58], or 226 kcal/mol by G2 theory [45], as compared with 229 kcal/mol derived indirectly from experiments [21]. Table 1-1 summarizes the C-H and C-C bond dissociation energies obtained at various levels of theory and by experimental measurements.

Figure 1-2 Stationary points on the potential energy surface of C_2H_2 . TS = transition structure.

Method	HCC-H	HC = CH	Reference
G-1	133.4	226.9	[44]
G-2	133.4	226.3	[45]
GVB-CCCI/DZP	129.7	206.3	[58]
DFT-LDA/DN	131.1		[51]
DFT-LDA/DNP	129.9		[51]
Exptl.	126-132	(228.8 ± 0.7)	See text

Table 1-1 Calculated bond dissociation energies for acetylene $(D_0, \text{ kcal/mol})^{(a)}$

^(a) 1 kcal = 4.184 kJ.

1.2.2 Excited-state Potential Energy Surfaces

The lowest triplet potential energy surface of acetylene has also been studied by experiments and theory [59-62]. The lowest excited state of acetylene is a *cis*-bent triplet state which was predicted theoretically and confirmed experimentally [62, 63]. Although subsequent experimental studies by Lisy and Klemperer cast some doubts on this conclusion [64], more recent studies have resolved the apparent contradiction between the two experimental findings [59]. Theoretical work by several groups also extended to the *trans*-bent triplet acetylene and its isomerization to the *cis*-bent triplet state [62, 65]. In the case of triplet vinylidene, the energy gap between the lowest and first excited triplet state was determined to be 15 kcal/mol [22], in good agreement with the theoretical predications [32, 40]. In contrast to the singlet vinylidene, there is a significant barrier of ~54 kcal/mol predicted for the isomerization of the triplet vinylidene to the triplet acetylene [60], involving a nonplanar transition structure (Scheme 1-2). This is in agreement with the experimental evidence that the lifetime of the triplet vinylidene (>0.4 μ s) is much longer than that of the singlet state [66, 67].

Scheme 1-2 Computed structures of triplet C₂H₂ and transition structures for interconversions.

In contrast to the triplet excited state, singlet excited states of acetylene are less well characterized. Recent spectroscopic studies showed there is a strong singlet-triplet coupling in the singlet excited state [68-70]. This led to the speculation that the lowest singlet excited state lies close in energy to one of the transition states on the triplet potential energy surface of acetylene [60]. Several computational studies have been reported on the singlet excited states of acetylene [33, 71-75].

1.2.3 Radical Ions

Ionization of acetylene gives a radical cation, for which many studies have been reported in the literature. The radical cation is a Renner-Teller molecule, and is predicted to have a degenerate $X^2\Pi_u$ electronic ground state [76]. It was observed experimentally by mass spectrometry [67, 77]. The structures and energies of the C₂H₂ radical cation have been studied in detail by several groups [78-81]. The isomerization barrier from vinylidene cation to the more stable acetylene cation is predicted to be ~10 kcal/mol both at the UMP2/6-311G** level reported by Baker [80] and at the CISD(+Q)/DZP level reported by Hamilton and Schaefer [79]. In addition, theoretical considerations led Ramasesha and Sinha to suggest that stacked acetylenic radical ions are prime candidates for the observation of organic ferromagnetism, because of their stable high-spin ground state [82].

The acetylene anion radical undergoes autodetachment of the electron, but the vinylidene anion can be generated easily [83]. Since the calculated isomerization barrier is ~45 kcal/mol, the ${}^{2}B_{2}$ ground-state vinylidene anion radical is predicted to be stable with respect to the 1,2-hydrogen shift [30, 84, 85]. As mentioned before, the vinylidene anion radical was used as the precursor for the generation of the singlet vinylidene in Lineberger's experimental studies.