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Foreword

The carbon-carbon triple bond is one of the oldest and simplest functional groups in
chemistry. The reactions and transformations of this humble functionality are intertwined
with the history and development of organic chemistry. In the past dozen years, acetylene
chemistry has experienced a major renaissance engendered by the incurrence of molecules
with C=C bonds in the frontiers of modern organic chemistry — namely biochemistry and
materials science. An entire family of powerful antitumor antibiotics with cis-enediynes as
reactive fragments was discovered in the mid 1980s, and new members of this family continue
to be found. The range and potential of these antitumor antibiotics has been greatly expanded
by a family of synthetic enediynes capable, analogously to their natural counterparts, of
undergoing the Bergmann cycloaromatization and efficiently nicking and cleaving DNA. On
the other hand, acetylenic molecular scaffolding has been employed to prepare multinano-
meter-sized molecular objects with unprecedented structures, functions, and properties. Some
of these materials are being developed into components for molecular electronics; others form
crystals with molecular pores for separation, inclusion, and catalysis, and thereby become the
organic counterparts of zeolites. Acetylenic two- and three-dimensional carbon allotropes,
with structures and functions different from the natural modifications of diamond and
graphite, as well as fullerenes, are under construction. New, fully conjugated, acetylenic
polymer backbones complement the functional property range of polyacetylenes and
polydiacetylenes. The construction of organic ferromagnets based on acetylenic backbones
and scaffolds is being explored intensively.

These developments, which offer plenty of fascinating perspectives at the two interfaces to
materials science and biology, are efficiently fueled by the invention of powerful new synthetic
methodology, based to a large extent on transition metal chemistry. The invention of new syn-
thetic methods has particularly facilitated the cross-coupling between acetylenic sp-C atoms
and alkene and arene sp?-C-atoms; reactions crucial to molecular scaffolding. Other impor-
tant advances have been made in the formation of five-, six-, and higher-membered rings using
alkyne transition metal chemistry. Small reactive acetylenes such as iodonium derivatives are
increasingly used as reagents in organic synthesis since ways have now been found to control
their reactivity and tame their previous tendency for spontaneous decomposition. The
chemistry of heteroalkynes such as phosphaalkynes has emerged over the past decade.

Theoretical chemistry has been challenged by the broad new developments in modern
acetylene chemistry. Structures and electronic configurations of acyclic and cyclic acetylenic
r-systems have attracted the interest of both experimentalists and theoreticians, and much of
the current knowledge on homoconjugation, and on through-space orbital interactions be-
tween precisely aligned chromophores, has been gained in studies of acetylenic systems. The
structures and electronic properties of acetylenic all-carbon rods and rings, which are formed
in the laser vaporization of graphite and occur as intermediates in fullerene production pro-
cesses, have attracted much interest from theoreticians, providing attractive and challenging
targets to calibrate and improve computational methods.



VI Foreword

This multi-author monograph documents and critically analyzes these recent developments
in contemporary acetylene chemistry in 13 chapters written by leading scientists in the various
areas. With emphasis on the above-mentioned modern developments, the monograph does not
duplicate previous treatises on alkyne chemistry such as Houben-Weyl-Miiller Vol. V/2a
(Alkine, Di und Polyine, Allene, Kumulene), the volumes in the Patai series on The Chemistry
of the Carbon-Carbon Triple Bond, the pioneering monograph on The Chemistry of
Acetylenes by H. G. Viehe, or the book by Brandsma on Preparative Acetylenic Chemistry
with a great variety of useful synthetic procedures. Rather, it builds upon these predecessors
and complements them by updating the reader on the broad new developments in today’s
acetylene chemistry. To enhance the practical value of the monograph, most experimental
chapters include synthetic protocols which have been chosen for broad utility and application.

We anticipate and hope that this monograph will further stimulate the development and
application of acetylene chemistry as one of the key synthetic, structural, and functional tools
of future chemistry.

Salt Lake City Peter 1. Stang
and Frangois Diederich
Ziirich

December 1994
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1 Modern Computational and Theoretical Aspects of
Acetylene Chemistry

Dietmar A. Plattner, Yi Li, K. N. Houk

1.1 Introduction

Few organic molecules have been the object of more intensive physicochemical and theoretical
scrutiny in recent years than acetylene. The focus of modern experimental, theoretical, and
computational studies has been the characterization and elucidation of transition states and
reactive intermediates, reaction potential energy surfaces and reaction dynamics of acetylene.
The reason for this attention is clear. Acetylene is a simple polyatomic molecule only slightly
more complex than a diatomic molecule, yet it has a variety of uses and undergoes a host of
reactions like those of polyfunctional molecules. The rich and diverse chemical properties are
amenable to high-level computational treatment, state-of-the-art spectroscopic measurements,
and detailed theoretical interpretations of experimental data. Although acetylene is one of the
most common molecules, its most fundamental properties such as bond strength are still sub-
ject to refinement, both experimentally and computationally. The rapid growing number of
studies on the structures and stabilities of carbon clusters and rods have renewed interest in
the bonding character of the acetylenic bond. Concepts of bonding in acetylene continue to
evolve, and the understanding of complex varities of acetylenes will aid in the design of new
molecules and materials.

In this chapter, we review some recent developments in the theoretical and computational
aspects of acetylenes. There are several detailed reviews covering various aspects of the early
work [1, 2]. It will become self-evident in this review that modern experimental and computa-
tional studies of acetylene constitute a paradigm for the rivalry and interplay between theory
and experiment. As the theoretical treatments become increasingly sophisticated, and as the
experimental design becomes more and more ingenious and precise, the better is our
understanding.

1.2 Electronic Structures of Acetylene and Monoacetylenes

Historically, the application of molecular orbital theory to the electronic structures of isoelec-
tronic 14-electron molecules such as acetylene, HCN, N,, and O, was an excellent pioneering
demonstration of the value of quantum chemistry. Within the framework of molecular orbital
theory, the C —C bond in acetylene is a triple bond involving one g-bond, and two orthogonal
n-bonds. The 6-bond is formed by two sp-hybrid orbitals from each carbon, and the two n-
bonds are formed from the perpendicular p-orbitals. Alternatively, the so-called “bent” or
“banana” bonds have been invoked to describe the multiple C—C bonds in acetylene
(Fig. 1-1) [3-5]. This creates a conceptual dilemma, though one bonding model can be
transformed to the other by appropriate linear combinations. It is now realized that both
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models are useful for describing various aspects of bonding and reactivity [6], but neither ap-
proach is perfect in describing the electronic structure of acetylene. Due to the electron cor-
relation effects, a multiconfiguration wavefunction is necessary to describe fully the electronic
structure of a molecule. The separation of ¢- and n-orbitals in the molecular orbital treatment
is an approximation, and thus has limitations. A generalized valence-bond theory was
developed by the introduction of Pauling’s resonance theory, which took both models into the
consideration [7]. For acetylene, the descriptions of 6-n bonds or “banana’ bonds comprise
merely one configuration that contributes to the multiconfiguration wavefunction.

@ @ > q p

77N
H-C==C-H H-C C-H
~—
o-n bond model bent bond model

Figure 1-1 The o-n and bent bond models for bonding in acetylene.

To address the question of which single-configuration bond description is a better starting
point for the treatment of correlation effects, Karadakov et al. [8] examined the spin-coupled
wavefunctions generated, respectively, from the Hartree-Fock molecular orbitals and the
generalized valence-bond wavefunction with perfect-pairing and strong-orthogonality con-
straints. The results using these wavefunctions were than compared with the calculations using
a multiconfiguration wavefunction consisting of a complete-active space self-consistent field.
From an energetic point of view, they found that both approaches were equally good for the
treatment of correlation effects beyond the one-configuration approximation. The spin-
coupled wavefunction from o-7 orbitals recovers 63 % of the CASSCF correlation energy, as
compared with a 66 % recovery of correlation energy using the equivalent bent orbitals. Other
computational studies demonstrated the superiority of banana bonds for a variety of systems
containing multiple bonds [9-12]. The superiority of one bond description over the other may
depend upon the extent of conjugation of the muitiple bonds [13].

In spite of the shortcomings of the single-configuration approach, the o-n concept has
played an indispensable role in bridging theoretical understanding and chemical relevance. The
HOMO-LUMO interactions in the frontier molecular orbital theory, the orbital energies
either calculated by theory or measured from ionization potentials, the electron distribution
and density of n-orbitals and bond orders, all have been used to understand and predict the
molecular structural features, chemical stabilities, reactivities, regioselectivities, and
stereoselectivities of acetylenes. Classical chemical concepts such as bond orders, the
HOMO-LUMO energies, and electron densities have also been defined quantitatively and
have been calculated for acetylene numerically from ab-initio calculations [14-20].
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1.2.1 Ground-state Potential Energy Surfaces

On the singlet potential energy surface, acetylene (HC = CH) may undergo isomerization to
vinylidene (H,C=C:). Whether singlet vinylidene exists as a bound intermediate has been the
subject of extensive studies, both experimentally and theoretically [1, 21-35]. The simplest un-
saturated carbene has been proposed to be involved in many chemical reactions, and is of great
value in preparative organic chemistry [36-39]. Because vinylidene is highly reactive, there has
been limited direct experimental characterization of this species, and much debate about
whether vinylidene is a minimum on the potential energy surface or a transition state for the
degenerate hydrogen shift in acetylene. On the other hand, numerous computational studies
have only recently provided a clear consensus on the classical barrier height for the isomeriza-
tion process [26].

The lowest singlet state of vinylidene is an extremely shallow minimum on the potential
energy surface. The best estimate of the classical barrier of isomerization to acetylene made
by Gallo et al. is ~3 kcal/mol (1 kcal = 4.184 kJ) using large basis sets and the coupled cluster
method including single and double excitations [26]. The energy of isomerization of acetylene
is predicted to be ~43 kcal/mol at the same level of theory. Although an artifact at the MP2
level was noted, calculations at the high Mgller-Plesset perturbation levels also predicted a
diminishingly small barrier for the vinylidene isomerization [29, 31]. Such a small barrier of
2-4 kcal/mol also led to a prediction of a lifetime of about 1 ps for the ground-state vinyl-
idene [30, 32]. The first direct observation of singlet vinylidene came from a photodetachment
experiment involving the vinylidene radical anion [23]. Ervin et al. studied in detail the
photoelectron spectra of the vinylidene anion and observed the vibrational structure of
vinylidene [22]. The observed 2 « 0 CH, rock transition (450 cm™!) indicated that the
singlet vinylidene is a minimum with a barrier to rearrangement of >1.3 kcal/mol. Its lifetime
was estimated from these experiments to be 0.04-0.2 ps. Chen et al. also observed vinylidene
in the high-resolution stimulated emission pumping spectrum of acetylene [24]. Although they
were unable to determine the barrier height for vinylidene isomerization, a value of

1.201A H

.. 1.386A H

—C=C-H — 7 = :C—C
H-C=C-H ¢

C
1.251A \H \H
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Scheme 1-1 Energetics of the vinylidene-acetylene rearrangement [25, 40].
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44 kcal/mol was determined for the vinylidene-acetylene isomerization energy. This is in
good agreement with the results of other measurements [21], and is consistent with the predic-
tion by calculations.

One surprising feature in the transition structure obtained at various levels of theory for the
acetylene-vinylidene isomerization is the extent of hydrogen migration (Scheme 1-1). For a
low-barrier, highly exothermic reaction like the vinylidene rearrangement, an early transition
state is expected according to the Hammond postulate. In other words, the transition structure
should resemble vinylidene rather than displaying the reaction progressed halfway in terms of
hydrogen transfer. This contradiction was first observed by Dykstra and Schaefer [40], and
was apparently not due to the level of theory used. Petersson et al. offered a plausible explana-
tion [25]. They considered two distinct processes that are involved in the isomerization: one
corresponding to the hydrogen transfer and the other corresponding to the conversion of the
carbene lone-pair electron to the m bonding electrons. The hydrogen transfer process, which
breaks one C—H bond but creates another, is nearly thermoneutral, forming a species which
is essentially a twisted zwitterion. The transition state for such a thermoneutral reaction
should be midway according to the Hammond postulate. The second part of vinylidene
isomerization is the electron reorganization from the twisted zwitterion to form acetylene, a
very exothermic process. Therefore, in terms of the C—C bond length in the transition struc-
ture, the transition state closely resembles vinylidene, obeying the Hammond postulate.
Petersson et al. suggested that the Hammond postulate should be applied to the energetics of
individual processes, not to the total energy directly.

Besides the acetylene-vinylidene isomerization, other topological regions of the lowest
singlet potential energy surface have been explored in a limited number of studies to date. The
stimulated-emission pumping technique has been used to probe the potential energy surface
up to 28000 cm™! [24, 41, 42]. These studies indicated that acetylene at energy around
26500 cm ™! undergoes the transition from the regular to the chaotic regime. Sibert and
Mayrhofer carried out a variational calculation on highly excited vibrational states up to
8770 cm~! [43]. Binkley reported geometries and frequencies for two additional stationary
points, bridged acetylene and planar bridged acetylene [33]. Halvick et al. investigated
thoroughly the singlet acetylene energy surface up to 43000 cm ™! using high level ab initio
calculations [34). They located eight stationary points and characterized the minimum energy
paths connecting them. This information was then used to build a topologically consistent and
complete configuration space, which included all three isomerization coordinates among
acetylene, vinylidene, bridged acetylene, and planar bridged acetylene (Fig. 1-2).

Finally, calculations of potential energy surfaces involving bond dissociation reactions of
acetylene are highly demanding on the level of theory, and have often been used as the testing
ground for the development of the latest theoretical methods. Recent examples include the G2
theory by Pople and co-workers [44, 45], the coupled cluster methods [46], and the density
functional theory [47-51]. Several authors investigated in great detail the C —H bond dissocia-
tion {52-56], and the C—C bond dissociation as well [53, 57, 58]. For the C—H bond
dissociation of acetylene, high-level calculations, which range from 126 to 132 kcal/mol after
zero-point energy correction, are in agreement with the upper end of the experimentally
measured values. The C— C bond energy of acetylene is predicted to be 206 kcal/mol by the
GVB method [58], or 226 kcal/mol by G2 theory {45], as compared with 229 kcal/mol derived
indirectly from experiments [21]. Table 1-1 summarizes the C —~H and C — C bond dissociation
energies obtained at various levels of theory and by experimental measurements.
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Figure 1-2 Stationary points on the potential energy surface of C,H,. TS = transition structure,

Table 1-1 Calculated bond dissociation energies for acetylene (D,, kcal/mol)@

Method HCC-H HC=CH Reference
G-1 1334 226.9 [44]

G-2 133.4 226.3 [45]
GVB-CCCI/DZP 129.7 206.3 [58]
DFT-LDA/DN 131.1 [51]
DFT-LDA/DNP 129.9 [51]
Exptl. 126-132 (228.8 £0.7) See text

@ | keal = 4.184 kJ.

1.2.2 Excited-state Potential Energy Surfaces

The lowest triplet potential energy surface of acetylene has also been studied by experiments
and theory [59-62). The lowest excited state of acetylene is a cis-bent triplet state which was
predicted theoretically and confirmed experimentally [62, 63]. Although subsequent ex-
perimental studies by Lisy and Klemperer cast some doubts on this conclusion [64], more re-
cent studies have resolved the apparent contradiction between the two experimental findings
[59]. Theoretical work by several groups also extended to the frans-bent triplet acetylene and
its isomerization to the cis-bent triplet state [62, 65]. In the case of triplet vinylidene, the
energy gap between the lowest and first excited triplet state was determined to be 15 kcal/mol
[22), in good agreement with the theoretical predications [32, 40]. In contrast to the singlet
vinylidene, there is a significant barrier of ~ 54 kcal/mol predicted for the isomerization of
the triplet vinylidene to the triplet acetylene [60], involving a nonplanar transition structure
(Scheme 1-2). This is in agreement with the experimental evidence that the lifetime of the
triplet vinylidene (>0.4 us) is much longer than that of the singlet state [66, 67].
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Scheme 1-2 Computed structures of triplet C,H, and transition structures for interconversions.

In contrast to the triplet excited state, singlet excited states of acetylene are less well
characterized. Recent spectroscopic studies showed there is a strong singlet~triplet coupling
in the singlet excited state [68-70]. This led to the speculation that the lowest singlet excited
state lies close in energy to one of the transition states on the triplet potential energy surface
of acetylene [60]. Several computational studies have been reported on the singlet excited
states of acetylene [33, 71-75]).

1.2.3 Radical Ions

Ionization of acetylene gives a radical cation, for which many studies have been reported in
the literature. The radical cation is a Renner-Teller molecule, and is predicted to have a
degenerate X' 2l'[u electronic ground state [76]. It was observed experimentally by mass spec-
trometry [67, 77]. The structures and energies of the C,H, radical cation have been studied
in detail by several groups [78-81]. The isomerization barrier from vinylidene cation to the
more stable acetylene cation is predicted to be ~ 10 kcal/mol both at the UMP2/6-311G**
level reported by Baker [80] and at the CISD(+Q)/DZP level reported by Hamilton and
Schaefer [79]. In addition, theoretical considerations led Ramasesha and Sinha to suggest that
stacked acetylenic radical ions are prime candidates for the observation of organic fer-
romagnetism, because of their stable high-spin ground state [82].

The acetylene anion radical undergoes autodetachment of the electron, but the vinylidene
anion can be generated easily [83]. Since the calculated isomerization barrier is ~45 kcal/mol,
the 2B, ground-state vinylidene anion radical is predicted to be stable with respect to the
1,2-hydrogen shift [30, 84, 85). As mentioned before, the vinylidene anion radical was used as
the precursor for the generation of the singlet vinylidene in Lineberger’s experimental studies.



