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XV

Preface to the First Edition

Atoms, Radiation, and Radiation Protection was written from material developed
by the author over a number of years of teaching courses in the Oak Ridge Res-
ident Graduate Program of the University of Tennessee’s Evening School. The
courses dealt with introductory health physics, preparation for the American Board
of Health Physics certification examinations, and related specialized subjects such
as microdosimetry and the application of Monte Carlo techniques to radiation pro-
tection. As the title of the book is meant to imply, atomic and nuclear physics and
the interaction of ionizing radiation with matter are central themes. These subjects
are presented in their own right at the level of basic physics, and the discussions are
developed further into the areas of applied radiation protection. Radiation dosime-
try, instrumentation, and external and internal radiation protection are extensively
treated. The chemical and biological effects of radiation are not dealt with at length,
but are presented in a summary chapter preceding the discussion of radiation-
protection criteria and standards. Non-ionizing radiation is not included. The book
is written at the senior or beginning graduate level as a text for a one-year course
in a curriculum of physics, nuclear engineering, environmental engineering, or an
allied discipline. A large number of examples are worked in the text. The traditional
units of radiation dosimetry are used in much of the book; SI units are employed in
discussing newer subjects, such as ICRP Publications 26 and 30. SI abbreviations
are used throughout. With the inclusion of formulas, tables, and specific physical
data, Atoms, Radiation, and Radiation Protection is also intended as a reference for
professionals in radiation protection.

I have tried to include some important material not readily available in textbooks
on radiation protection. For example, the description of the electronic structure
of isolated atoms, fundamental to understanding so much of radiation physics,
is further developed to explain the basic physics of “collective” electron behavior
in semiconductors and their special properties as radiation detectors. In another
area, under active research today, the details of charged-particle tracks in water are
described from the time of the initial physical, energy-depositing events through
the subsequent chemical changes that take place within a track. Such concepts are
basic for relating the biological effects of radiation to particle-track structure.

I am indebted to my students and a number of colleagues and organizations,
who contributed substantially to this book. Many individual contributions are ac-
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knowledged in figure captions. In addition, I would like to thank J. H. Corbin and
W. N. Drewery of Martin Marietta Energy Systems, Inc.; Joseph D. Eddleman of
Pulcir, Inc.; Michael D. Shepherd of Eberline; and Morgan Cox of Victoreen for
their interest and help. I am especially indebted to my former teacher, Myron F.
Fair, from whom I learned many of the things found in this book in countless
discussions since we first met at Vanderbilt University in 1952.

It has been a pleasure to work with the professional staff of Pergamon Press, to
whom I express my gratitude for their untiring patience and efforts throughout the
production of this volume.

The last, but greatest, thanks are reserved for my wife, Renate, to whom this
book is dedicated. She typed the entire manuscript and the correspondence that
went with it. Her constant encouragement, support, and work made the book a
reality.

Oak Ridge, Tennessee James E. Turner
November 20, 1985



XVII

Preface to the Second Edition

The second edition of Atoms, Radiation, and Radiation Protection has several im-
portant new features. SI units are employed throughout, the older units being de-
fined but used sparingly. There are two new chapters. One is on statistics for health
physics. It starts with the description of radioactive decay as a Bernoulli process and
treats sample counting, propagation of error, limits of detection, type-I and type-II
errors, instrument response, and Monte Carlo radiation-transport computations.
The other new chapter resulted from the addition of material on environmental ra-
dioactivity, particularly concerning radon and radon daughters (not much in vogue
when the first edition was prepared in the early 1980s). New material has also been
added to several earlier chapters: a derivation of the stopping-power formula for
heavy charged particles in the impulse approximation, a more detailed discussion
of beta-particle track structure and penetration in matter, and a fuller description
of the various interaction coefficients for photons. The chapter on chemical and bi-
ological effects of radiation from the first edition has been considerably expanded.
New material is also included there, and the earlier topics are generally dealt with
in greater depth than before (e.g., the discussion of data on human exposures). The
radiation exposure limits from ICRP Publications 60 and 61 and NCRP Report No.
116 are presented and discussed. Annotated bibliographies have been added at the
end of each chapter. A number of new worked examples are presented in the text,
and additional problems are included at the ends of the chapters. These have been
tested in the classroom since the 1986 first edition. Answers are now provided to
about half of the problems. In summary, in its new edition, Atoms, Radiation, and
Radiation Protection has been updated and expanded both in breadth and in depth
of coverage. Most of the new material is written at a somewhat more advanced level
than the original.

I am very fortunate in having students, colleagues, and teachers who care about
the subjects in this book and who have shared their enthusiasm, knowledge, and
talents. I would like to thank especially the following persons for help I have re-
ceived in many ways: James S. Bogard, Wesley E. Bolch, Allen B. Brodsky, Darryl J.
Downing, R. J. Michael Fry, Robert N. Hamm, Jerry B. Hunt, Patrick J. Papin, Her-
wig G. Paretzke, Tony A. Rhea, Robert W. Wood, Harvel A. Wright, and Jacquelyn
Yanch. The continuing help and encouragement of my wife, Renate, are gratefully
acknowledged. I would also like to thank the staff of John Wiley & Sons, with whom
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I have enjoyed working, particularly Gregory T. Franklin, John P. Falcone, and An-
gioline Loredo.

Oak Ridge, Tennessee James E. Turner
January 15, 1995



XIX

Preface to the Third Edition

Since the preparation of the second edition (1995) of Atoms, Radiation, and Ra-
diation Protection, many important developments have taken place that affect the
profession of radiological health protection. The International Commission on Ra-
diological Protection (ICRP) has issued new documents in a number of areas that
are addressed in this third edition. These include updated and greatly expanded
anatomical and physiological data that replace “reference man” and revised mod-
els of the human respiratory tract, alimentary tract, and skeleton. At this writing,
the Main Commission has just adopted the Recommendations 2007, thus laying
the foundation and framework for continuing work from an expanded contempo-
rary agenda into future practice. Dose constraints, dose limits, and optimization are
given roles as core concepts. Medical exposures, exclusion levels, and radiation pro-
tection of nonhuman species are encompassed. The National Council on Radiation
Protection and Measurements (NCRP) in the United States has introduced new
limiting criteria and provided extensive data for the design of structural shield-
ing for medical X-ray imaging facilities. Kerma replaces the traditional exposure as
the shielding design parameter. The Council also completed its shielding report
for megavoltage X- and gamma-ray radiotherapy installations. In other areas, the
National Research Council’s Committee on the Biological Effects of Ionizing Radia-
tion published the BEIR VI and BEIR VII Reports, respectively dealing with indoor
radon and with health risks from low levels of radiation. The very successful com-
pletion of the DS02 dosimetry system and the continuing Life Span Study of the
Japanese atomic-bomb survivors represent additional major accomplishments dis-
cussed here.

Rapid advances since the last edition of this text have been made in instrumenta-
tion for the detection, monitoring, and measurement of ionizing radiation. These
have been driven by improvements in computers, computer interfacing, and, in
no small part, by heightened concern for nuclear safeguards and home security.
Chapter 10 on Methods of Radiation Detection required extensive revision and the
addition of considerable new material.

As in the previous edition, the primary regulatory criteria used here for discus-
sions and working problems follow those given in ICRP Publication 60 with limits
on effective dose to an individual. These recommendations are the principal ones
employed throughout the world today, except in the United States. The ICRP-60
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limits for individual effective dose, with which current NCRP recommendations
are consistent, are also generally encompassed within the new ICRP Recommen-
dations 2007. The earlier version of the protection system, limiting effective dose
equivalent to an individual, is generally employed in the U.S. Some discussion and
comparison of the two systems, which both adhere to the ALARA principle (“as
low as reasonable achievable”), has been added in the present text. As a practical
matter, both maintain a comparable degree of protection in operating experience.

It will be some time until the new model revisions and other recent work of the
ICRP become fully integrated into unified general protocols for internal dosimetry.
While there has been partial updating at this time, much of the formalism of ICRP
Publication 30 remains in current use at the operating levels of health physics in
many places. After some thought, this formalism continues to be the primary focus
in Chapter 16 on Internal Dosimetry and Radiation Protection. To a considerable
extent, the newer ICRP Publications follow the established format. They are de-
scribed here in the text where appropriate, and their relationships to Publication
30 are discussed.

As evident from acknowledgements made throughout the book, I am indebted
to many sources for material used in this third edition. I would like to express
my gratitude particularly to the following persons for help during its preparation:
M. I. Al-Jarallah, James S. Bogard, Rhonda S. Bogard, Wesley. E. Bolch, Roger J.
Cloutier, Darryl J. Downing, Keith F. Eckerman, Joseph D. Eddlemon, Paul W.
Frame, Peter Jacob, Cynthia G. Jones, Herwig G. Paretzke, Charles A. Potter, Robert
C. Ricks, Joseph Rotunda, Richard E. Toohey, and Vaclav Vylet. Their interest and
contributions are much appreciated. I would also like to thank the staff of John Wi-
ley & Sons, particularly Esther Dörring, Anja Tschörtner, and Dagmar Kleemann,
for their patience, understanding, and superb work during the production of this
volume.

Oak Ridge, Tennessee James E. Turner
March 21, 2007
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1

About Atomic Physics and Radiation

1.1

Classical Physics

As the nineteenth century drew to a close, man’s physical understanding of the
world appeared to rest on firm foundations. Newton’s three laws accounted for the
motion of objects as they exerted forces on one another, exchanging energy and
momentum. The movements of the moon, planets, and other celestial bodies were
explained by Newton’s gravitation law. Classical mechanics was then over 200 years
old, and experience showed that it worked well.

Early in the century Dalton’s ideas revealed the atomic nature of matter, and
in the 1860s Mendeleev proposed the periodic system of the chemical elements.
The seemingly endless variety of matter in the world was reduced conceptually to
the existence of a finite number of chemical elements, each consisting of identical
smallest units, called atoms. Each element emitted and absorbed its own character-
istic light, which could be analyzed in a spectrometer as a precise signature of the
element.

Maxwell proposed a set of differential equations that explained known electric
and magnetic phenomena and also predicted that an accelerated electric charge
would radiate energy. In 1888 such radiated electromagnetic waves were generated
and detected by Hertz, beautifully confirming Maxwell’s theory.

In short, near the end of the nineteenth century man’s insight into the nature of
space, time, matter, and energy seemed to be fundamentally correct. While much
exciting research in physics continued, the basic laws of the universe were gener-
ally considered to be known. Not many voices forecasted the complete upheaval
in physics that would transform our perception of the universe into something
undreamed of as the twentieth century began to unfold.

1.2

Discovery of X Rays

The totally unexpected discovery of X rays by Roentgen on November 8, 1895 in
Wuerzburg, Germany, is a convenient point to regard as marking the beginning of
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Fig. 1.1 Schematic diagram of an early Crooke’s, or

cathode-ray, tube. A Maltese cross of mica placed in the path of

the rays casts a shadow on the phosphorescent end of the tube.

Fig. 1.2 X-ray picture of the hand of Frau Roentgen made by

Roentgen on December 22, 1895, and now on display at the

Deutsches Museum. (Figure courtesy of Deutsches Museum,

Munich, Germany.)
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the story of ionizing radiation in modern physics. Roentgen was conducting exper-
iments with a Crooke’s tube—an evacuated glass enclosure, similar to a television
picture tube, in which an electric current can be passed from one electrode to an-
other through a high vacuum (Fig. 1.1). The current, which emanated from the
cathode and was given the name cathode rays, was regarded by Crooke as a fourth
state of matter. When the Crooke’s tube was operated, fluorescence was excited in
the residual gas inside and in the glass walls of the tube itself.

It was this fluorescence that Roentgen was studying when he made his discov-
ery. By chance, he noticed in a darkened room that a small screen he was using
fluoresced when the tube was turned on, even though it was some distance away.
He soon recognized that he had discovered some previously unknown agent, to
which he gave the name X rays.1) Within a few days of intense work, Roentgen had
observed the basic properties of X rays—their penetrating power in light materi-
als such as paper and wood, their stronger absorption by aluminum and tin foil,
and their differential absorption in equal thicknesses of glass that contained dif-
ferent amounts of lead. Figure 1.2 shows a picture that Roentgen made of a hand
on December 22, 1895, contrasting the different degrees of absorption in soft tis-
sue and bone. Roentgen demonstrated that, unlike cathode rays, X rays are not
deflected by a magnetic field. He also found that the rays affect photographic plates
and cause a charged electroscope to lose its charge. Unexplained by Roentgen, the
latter phenomenon is due to the ability of X rays to ionize air molecules, leading to
the neutralization of the electroscope’s charge. He had discovered the first example
of ionizing radiation.

1.3

Some Important Dates in Atomic and Radiation Physics

Events moved rapidly following Roentgen’s communication of his discovery and
subsequent findings to the Physical–Medical Society at Wuerzburg in December
1895. In France, Becquerel studied a number of fluorescent and phosphorescent
materials to see whether they might give rise to Roentgen’s radiation, but to no
avail. Using photographic plates and examining salts of uranium among other sub-
stances, he found that a strong penetrating radiation was given off, independently
of whether the salt phosphoresced. The source of the radiation was the uranium
metal itself. The radiation was emitted spontaneously in apparently undiminish-
ing intensity and, like X rays, could also discharge an electroscope. Becquerel an-
nounced the discovery of radioactivity to the Academy of Sciences at Paris in Feb-
ruary 1896.

1 That discovery favors the prepared mind is
exemplified in the case of X rays. Several
persons who noticed the fading of
photographic film in the vicinity of a Crooke’s
tube either considered the film to be defective
or sought other storage areas. An interesting

account of the discovery and near-discoveries
of X rays as well as the early history of
radiation is given in the article by R. L.
Kathren cited under “Suggested Reading” in
Section 1.6.
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The following tabulation highlights some of the important historical markers in
the development of modern atomic and radiation physics.

1810 Dalton’s atomic theory.
1859 Bunsen and Kirchhoff originate spectroscopy.
1869 Mendeleev’s periodic system of the elements.
1873 Maxwell’s theory of electromagnetic radiation.
1888 Hertz generates and detects electromagnetic waves.
1895 Lorentz theory of the electron.
1895 Roentgen discovers X rays.
1896 Becquerel discovers radioactivity.
1897 Thomson measures charge-to-mass ratio of cathode rays (electrons).
1898 Curies isolate polonium and radium.
1899 Rutherford finds two kinds of radiation, which he names “alpha” and “beta,”

emitted from uranium.
1900 Villard discovers gamma rays, emitted from radium.
1900 Thomson’s “plum pudding” model of the atom.
1900 Planck’s constant, h = 6.63 × 10–34 J s.
1901 First Nobel prize in physics awarded to Roentgen.
1902 Curies obtain 0.1 g pure RaCl2 from several tons of pitchblend.
1905 Einstein’s special theory of relativity (E = mc2).
1905 Einstein’s explanation of photoelectric effect, introducing light quanta (pho-

tons of energy E = hν).
1909 Millikan’s oil drop experiment, yielding precise value of electronic charge,

e = 1.60 × 10–19 C.
1910 Soddy establishes existence of isotopes.
1911 Rutherford discovers atomic nucleus.
1911 Wilson cloud chamber.
1912 von Laue demonstrates interference (wave nature) of X rays.
1912 Hess discovers cosmic rays.
1913 Bohr’s theory of the H atom.
1913 Coolidge X-ray tube.
1914 Franck–Hertz experiment demonstrates discrete atomic energy levels in

collisions with electrons.
1917 Rutherford produces first artificial nuclear transformation.
1922 Compton effect.
1924 de Broglie particle wavelength, λ = h/momentum.
1925 Uhlenbeck and Goudsmit ascribe electron with intrinsic spin h̄/2.
1925 Pauli exclusion principle.
1925 Heisenberg’s first paper on quantum mechanics.
1926 Schroedinger’s wave mechanics.
1927 Heisenberg uncertainty principle.
1927 Mueller discovers that ionizing radiation produces genetic mutations.
1927 Birth of quantum electrodynamics, Dirac’s paper on “The Quantum Theory

of the Emission and Absorption of Radiation.”
1928 Dirac’s relativistic wave equation of the electron.
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1930 Bethe quantum-mechanical stopping-power theory.
1930 Lawrence invents cyclotron.
1932 Anderson discovers positron.
1932 Chadwick discovers neutron.
1934 Joliot-Curie and Joliot produce artificial radioisotopes.
1935 Yukawa predicts the existence of mesons, responsible for short-range nu-

clear force.
1936 Gray’s formalization of Bragg-Gray principle.
1937 Mesons found in cosmic radiation.
1938 Hahn and Strassmann observe nuclear fission.
1942 First man-made nuclear chain reaction, under Fermi’s direction at Univer-

sity of Chicago.
1945 First atomic bomb.
1948 Transistor invented by Shockley, Bardeen, and Brattain.
1952 Explosion of first fusion device (hydrogen bomb).
1956 Discovery of nonconservation of parity by Lee and Yang.
1956 Reines and Cowen experimentally detect the neutrino.
1958 Discovery of Van Allen radiation belts.
1960 First successful laser.
1964 Gell-Mann and Zweig independently introduce quark model.
1965 Tomonaga, Schwinger, and Feynman receive Nobel Prize for fundamental

work on quantum electrodynamics.
1967 Salam and Weinberg independently propose theories that unify weak and

electromagnetic interactions.
1972 First beam of 200-GeV protons at Fermilab.
1978 Penzias and Wilson awarded Nobel Prize for 1965 discovery of 2.7 K mi-

crowave radiation permeating space, presumably remnant of “big bang”
some 10–20 billion years ago.

1981 270 GeV proton–antiproton colliding-beam experiment at European Or-
ganization for Nuclear Research (CERN); 540 GeV center-of-mass energy
equivalent to laboratory energy of 150,000 GeV.

1983 Electron–positron collisions show continuing validity of radiation theory up
to energy exchanges of 100 GeV and more.

1984 Rubbia and van der Meer share Nobel Prize for discovery of field quanta for
weak interaction.

1994 Brockhouse and Shull receive Nobel Prize for development of neutron spec-
troscopy and neutron diffraction.

2001 Cornell, Ketterle, and Wieman awarded Nobel Prize for Bose-Einstein con-
densation in dilute gases for alkali atoms.

2002 Antihydrogen atoms produced and measured at CERN.
2004 Nobel Prize presented to Gross, Politzer, and Wilczek for discovery of as-

ymptotic freedom in development of quantum chromodynamics as the the-
ory of the strong nuclear force.

2005 World Year of Physics 2005, commemorates Einstein’s pioneering contri-
butions of 1905 to relativity, Brownian motion, and the photoelectric effect
(for which he won the Nobel Prize).
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Figures 1.3 through 1.5 show how the complexity and size of particle accelerators
have grown. Lawrence’s first cyclotron (1930) measured just 4 in. in diameter. With
it he produced an 80-keV beam of protons. The Fermi National Accelerator Labora-
tory (Fermilab) is large enough to accommodate a herd of buffalo and other wildlife
on its grounds. The LEP (large electron-positron) storage ring at the European Or-
ganization for Nuclear Research (CERN) on the border between Switzerland and
France, near Geneva, has a diameter of 8.6 km. The ring allowed electrons and
positrons, circulating in opposite directions, to collide at very high energies for the
study of elementary particles and forces in nature. The large size of the ring was
needed to reduce the energy emitted as synchrotron radiation by the charged par-
ticles as they followed the circular trajectory. The energy loss per turn was made
up by an accelerator system in the ring structure. The LEP was recently retired,
and the tunnel is being used for the construction of the Large Hadron Collider
(LHC), scheduled for completion in 2007. The LHC will collide head-on two beams
of 7-TeV protons or other heavy ions.

In Lawrence’s day experimental equipment was usually put together by the in-
dividual researcher, possibly with the help of one or two associates. The huge ma-
chines of today require hundreds of technically trained persons to operate. Ear-
lier radiation-protection practices were much less formalized than today, with little
public involvement.

Fig. 1.3 E. O. Lawrence with his first cyclotron. (Photo by

Watson Davis, Science Service; figure courtesy of American

Institute of Physics Niels Bohr Library. Reprinted with

permission from Physics Today, November 1981, p. 15.

Copyright 1981 by the American Institute of Physics.)
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Fig. 1.4 Fermi National Accelerator Laboratory, Batavia, Illinois.

Buffalo and other wildlife live on the 6800 acre site. The

1000 GeV proton synchrotron (Tevatron) began operation in

the late 1980s. (Figure courtesy of Fermi National Accelerator

Laboratory. Reprinted with permission from Physics Today,

November 1981, p. 23. Copyright 1981 by the American

Institute of Physics.)
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Fig. 1.5 Photograph showing location of underground LEP ring

with its 27 km circumference. The SPS (super proton

synchrotron) is comparable to Fermilab. Geneva airport is in

foreground. [Figure courtesy of the European Organization for

Nuclear Research (CERN).]

1.4

Important Dates in Radiation Protection

X rays quickly came into widespread medical use following their discovery. Al-
though it was not immediately clear that large or repeated exposures might be
harmful, mounting evidence during the first few years showed unequivocally that
they could be. Reports of skin burns among X-ray dispensers and patients, for ex-
ample, became common. Recognition of the need for measures and devices to pro-
tect patients and operators from unnecessary exposure represented the beginning
of radiation health protection.

Early criteria for limiting exposures both to X rays and to radiation from radioac-
tive sources were proposed by a number of individuals and groups. In time, organi-
zations were founded to consider radiation problems and issue formal recommen-
dations. Today, on the international scene, this role is fulfilled by the International
Commission on Radiological Protection (ICRP) and, in the United States, by the
National Council on Radiation Protection and Measurements (NCRP). The Inter-
national Commission on Radiation Units and Measurements (ICRU) recommends
radiation quantities and units, suitable measuring procedures, and numerical val-
ues for the physical data required. These organizations act as independent bodies


