Gerhard K. Ackermann and Jürgen Eichler

Holography

A Practical Approach
Gerhard K. Ackermann
and Jürgen Eichler

Holography
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board

1807–2007 Knowledge for Generations
Gerhard K. Ackermann and Jürgen Eichler

Holography

A Practical Approach

WILEY-VCH Verlag GmbH & Co. KGaA
Technically the hologram can best be described as an off axis Fourier transform lens matrix, holographic optical element (H.O.E.). This particular technique produces a white light viewable hologram of pure dimensional light alone, and allows for a greater degree of spontaneity in the process of making a hologram. The holographic imagery appears as a kinetic form of pure light, instead of reflected light from a given object.

e-mail: fred.unterseher@gmail.com

Jan Müller, Hamburg

Peter Hesse, Berlin

“MATRIX 18R”, 1985, silver halide emulsion on glass is one of a series of Kinetic Yantras by Fred Unterseher.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Translation
Jan Müller, Hamburg

Illustrations
Peter Hesse, Berlin

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers.

Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Typesetting Uwe Krieg, Berlin

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Wiley Bicentennial Logo Richard J. Pacifico

Printed in the Federal Republic of Germany

Printed on acid-free paper

ISBN: 978-3-527-40663-0
Contents

Preface XVII

Part 1 Fundamentals of Holography 1

1 Introduction 3
1.1 Photography and Holography 3
1.1.1 Object Wave 3
1.1.2 Photography 4
1.1.3 Holography 4
1.2 Interference and Diffraction 6
1.2.1 Interference During Recording 6
1.2.2 Diffraction During Reconstruction 7
1.3 History of Holography 7
 Problems 7

2 General View of Holography 9
2.1 Interference of Light Waves 9
2.1.1 Wave 9
2.1.2 Interference 11
2.1.3 Visibility 13
2.1.4 Influence of Polarization 13
2.2 Holographic Recording and Reconstruction 13
2.2.1 Recording 14
2.2.2 Reconstruction 14
2.3 Mathematical Approach 16
2.3.1 Object and Reference Wave 16
2.3.2 Recording 16
2.3.3 Gratings 18
2.3.4 Reconstruction 18
Contents

2.4 Conjugated Image 19
 2.4.1 Conjugated Object Wave 19
 2.4.2 Position of the Conjugated Image 21
 2.4.3 Reversal of the Reconstruction Wave 21
2.5 Spatial Frequencies 22
2.6 Diffraction Grating and Fresnel Lens 23
 2.6.1 Diffraction Grating 24
 2.6.2 Fresnel Zone Lens 25
Problems 27

3 Fundamental Imaging Techniques in Holography 29
 3.1 In-Line Hologram (Gabor) 29
 3.2 Off-Axis Hologram (Leith–Upatnieks) 31
 3.3 Fourier Hologram (Lensless) 32
 3.4 Fraunhofer Hologram 34
 3.5 Reflection Hologram (Denisyuk) 35
Problems 36

4 Holograms of Holographic Images 39
 4.1 Image-Plane Hologram 39
 4.2 Transmission and Reflection Hologram in Two Steps 39
 4.3 Rainbow Hologram 42
 4.4 Double-Sided Hologram 44
 4.5 Fourier Hologram 46
 4.5.1 Principle 46
 4.5.2 Calculation 46
Problems 48

5 Optical Properties of Holographic Images 49
 5.1 Hologram of an Object Point 49
 5.1.1 Image Equations 49
 5.1.2 Magnification 50
 5.1.3 Angular Magnification 51
 5.1.4 Longitudinal Magnification 51
 5.1.5 Image Aberrations 52
 5.2 Properties of the Light Source 52
 5.2.1 Spectral Bandwidth 53
 5.2.2 Image-Plane Holograms 53
 5.3 Image Luminance 54
 5.3.1 Without Pupil 54
 5.3.2 With Pupil 55
 5.3.3 Image-Plane Holograms 56
Contents

5.4 Speckles 56
5.4.1 Diffuser 56
5.4.2 Resolution 57
5.4.3 Incoherent Illumination 57
5.4.4 Further Techniques 57
5.5 Resolution 58
Problems 58

6 Types of Holograms 59
6.1 Introduction 59
6.1.1 Transmission and Reflection Holograms 59
6.1.2 Thick and Thin Holograms 59
6.2 Thin Holograms 60
6.2.1 Thin Amplitude Holograms 60
6.2.2 Thin Phase Holograms 61
6.3 Volume Holograms 64
6.3.1 Theory of Coupled Waves 64
6.3.2 Phase Holograms 67
6.3.3 Amplitude Holograms 68
6.3.4 Comparison of Diffraction Efficiency 69
6.3.5 Distinction Criteria for Holograms 70
Problems 71

Part 2 Basic Experiments 73

7 Optical Systems and Lasers for Holography 75
7.1 Coherence and Interferometers 75
7.1.1 Coherence 75
7.1.2 Spatial Coherence 75
7.1.3 Temporal Coherence 76
7.2 Modes and Coherence 78
7.2.1 Gaussian Beam 78
7.2.2 Longitudinal Modes 79
7.2.3 Coherence Length 80
7.2.4 Etalon 81
7.3 Gas Lasers for Holography 82
7.3.1 He–Ne Laser 82
7.3.2 Ion Laser 83
7.3.3 He–Cd Laser 84
7.4 Solid-State Lasers for Holography 84
7.4.1 Ruby Laser 84
7.4.2 Nd:YAG Laser 86
7.5 Lenses and Spatial Filters 86
7.5.1 Gaussian Beam 86
7.5.2 Focusing 87
7.5.3 Geometrical Optics 88
7.5.4 Spatial Filters 89
7.5.5 Beam Expansion 90
7.6 Polarizers and Beam Splitters 91
7.6.1 Polarization 91
7.6.2 Dichroitic Filters 91
7.6.3 Polarization by Reflection 91
7.6.4 Polarization Prisms 92
7.6.5 Thin Film Polarizers 93
7.6.6 λ/4- and λ/2-plates 93
7.6.7 Beam Splitter 94
7.6.8 Metal Mirrors 95
7.6.9 Dielectric Multilayer Mirrors 95
7.6.10 Nonreflective Coating 95
7.6.11 Laser Mirrors 96
7.7 Vibration Isolation 96
7.7.1 Isolators 97
7.7.2 Table Tops 99
7.7.3 Vibration Isolated Table 99
7.8 Optical Fibers and Diode Lasers 101
7.8.1 Monomode Fibers 101
7.8.2 Diode Lasers 102
Problems 102

8 Basic Experiments in the Holographic Laboratory 105
8.1 Polarization and Brewster Angle 105
8.1.1 Experiment 1: Analyzer and Polarizer 105
8.1.2 Experiment 2: Rotation of the Polarization Plane 105
8.1.3 Experiment 3: Brewster Angle 106
8.1.4 Experiment 4: Variable Beam Splitter 107
8.2 Experiments with Lenses 107
8.2.1 Experiment 5: Measuring Focal Length 107
8.2.2 Experiment 6: Adjusting Lenses 108
8.2.3 Experiment 7: Adjusting a Spatial Filter 108
8.3 Experiments on Diffraction and Interference 110
8.3.1 Experiment 8: Diffraction at an Edge or Slit 110
8.3.2 Experiment 9a: Interferences at a Glass Plate 111
8.3.3 Experiment 9b: Newton Rings and “Index-Matching” 111
8.3.4 Experiment 10: Diffraction of a Grating 112
8.3.5 Experiment 11: Divergence of the Laser Beam 113
8.3.6 Experiment 12: Optical Filtering 114
8.3.7 Experiment 13: Granulation of Laser Radiation 115
8.4 Measurements with Interferometers 116
8.4.1 Experiment 14: Setup of a Michelson Interferometer 116
8.4.2 Experiment 15: Measuring Coherence Length 117
8.4.3 Experiment 16: Investigation of Stability 118
8.5 Production of Gratings and Simple Holograms 118
8.5.1 Experiment 17: Production of Diffraction Gratings 118
8.5.2 Exposure and Developing 120
8.5.3 Experiment 18: White Light Hologram 120
8.5.4 Experiment 19: Transmission Hologram 121
8.6 Experiments in the Darkroom 121
8.6.1 Experiment 20: Developing 121
8.6.2 Experiment 21: Solving Bleach Bath 122
8.6.3 Experiment 22: Rehalogenizing Bleach Bath 122
Problems 123

9 Experimental Setups for Single-Beam Holography 125
9.1 Setups for Reflection Holograms 125
9.1.1 Experimental Setups 125
9.1.2 Index Matching of Holographic Films 126
9.1.3 Setups without Index Matching 127
9.1.4 Intensity Loss at Brewster-Angle Setting 127
9.1.5 Vacuum Film Support 128
9.1.6 Simple Single-Beam Setups 128
9.1.7 Holographic Table 129
9.1.8 Visibility 129
9.2 Setups for Transmission Holograms 129
9.3 Experiments for Image Reconstruction 131
9.3.1 Reconstruction Angle 131
9.3.2 Reconstruction Light Source for Transmission Holograms 131
9.3.3 Reconstruction of the Real Image 132
9.3.4 Reconstruction of Reflection Holograms 133
9.3.5 Wavelength Shift 133
9.3.6 Reconstruction of the Real Image 134
9.4 Trouble Shooting 134
Problems 135
Part 3 Advanced Experiments and Materials 137

10 Experimental Setups for Split-Beam Holography 139
10.1 Setups for Transmission Holograms 139
10.1.1 Experimental Setup 139
10.1.2 Vibration 140
10.1.3 Object 140
10.1.4 Avoidance of Scattered Light 141
10.1.5 Index Matching 141
10.1.6 Visibility 141
10.1.7 Reconstruction of the Object Waves 142
10.1.8 Reconstruction of the Reference Wave 142
10.2 Setups for Reflection Holograms 143
10.2.1 Object 144
10.2.2 Reconstruction 144
Problems 145

11 Experimental Setups for Holograms of Holographic Images 147
11.1 Master Hologram (H1) 147
11.1.1 Size and Position of the Object 147
11.1.2 Object Distance and Position of the Reference Wave 148
11.1.3 Preparation of the Reference Wave 148
11.1.4 Duplicating Methods 149
11.2 White Light Reflection Hologram (H2) 150
11.2.1 Single-Beam Method 150
11.2.2 Two-Beam Method 150
11.2.3 Image Aberrations 151
11.3 White Light Transmission Hologram (H2) 152
11.3.1 Image Plane Hologram 152
11.3.2 Rainbow Hologram 153
11.3.3 Reconstruction 154
11.3.4 Calculation of a Rainbow Hologram 155
11.3.5 Optical Basics 155
11.3.6 Calculation Example 156
11.3.7 Designing a Rainbow Hologram 156
Problems 157

12 Other Methods in Holography 159
12.1 Shadow Hologram 159
12.2 Single-Beam Rainbow Hologram 160
12.3 Multiple Exposure 161
12.4 Multiplex Holograms 162
Contents

12.5 360° Holography 163
12.6 Color Holography 163
12.6.1 Multilaser Techniques for Transmission Holograms 164
12.6.2 Multilaser Techniques for Reflection Holograms 165
12.6.3 Color Holograms Using Rainbow Technique 166
12.6.4 Achromatic Images 167
Problems 167

13 Properties of Holographic Emulsions 169
13.1 Transmission and Phase Curves 169
13.1.1 Optical Density 169
13.1.2 Modulation 171
13.1.3 Bleaching 171
13.2 Resolution and Diffraction Efficiency 172
13.2.1 Visibility Transfer Function 172
13.2.2 Recording 173
13.2.3 Efficiency 173
13.3 Noise of Emulsion Layers 174
13.3.1 Fourier Analysis 175
13.3.2 Measurement Procedure 175
13.4 Nonlinear Effects 176
13.4.1 Influence of Harmonics 176
13.4.2 Thick Holograms 177
Problems 177

14 Recording Media for Holograms 179
14.1 Silver Halide Emulsions 179
14.1.1 Working Principle 180
14.1.2 Resolution 180
14.1.3 Spectral Resolution 181
14.1.4 H&D Curves 182
14.1.5 Diffraction Efficiency 183
14.1.6 Scattered Light 183
14.2 Exposure, Developing, and Bleaching 183
14.2.1 Exposure 184
14.2.2 Phase Holograms 185
14.2.3 Optical Density 186
14.2.4 Phase Holograms by Bleaching 186
14.2.5 Shrinkage of the Emulsions 188
14.2.6 Pseudocolors, Preswelling 188
14.2.7 Index Matching 189
14.2.8 Developer 189
14.2.9 Bleaching 190
14.3 Dichromate Gelatin 192
14.3.1 Working Principle 192
14.3.2 Preparation of Dichromate Gelatin (DCG) Holographic Plates 192
14.3.3 Properties of DCG Holographic Plates 193
14.3.4 Exposure and Developing 193
14.4 Photothermoplastic Films 194
14.4.1 Structure of the Layers 194
14.4.2 Optical Properties 196
14.5 Photoresists 196
14.6 Other Recording Media 197
14.6.1 Photopolymers 197
14.6.2 Photochromic Material 198
14.6.3 Photorefractive Crystals 198
Problems 198

Part 4 Application of Holography 201

15 Holographic Interferometry 203
15.1 Double-Exposure Interferometry 203
15.1.1 Principle 203
15.1.2 Theory 204
15.1.3 Practical Realization 205
15.1.4 Sandwich Method 205
15.2 Real-Time Interferometry 206
15.2.1 Principle 206
15.2.2 Phase Difference Between o and o' 207
15.2.3 Intensity of the Interferograms 207
15.2.4 Visibility 208
15.2.5 Practical Realization 209
15.2.6 Thermoplastic Film 209
15.3 Fundamental Equation of Holographic Interferometry 209
15.4 The Holo Diagram 211
15.5 Time Average Interferometry 213
15.5.1 Theory 213
15.5.2 Practical Realization 214
15.6 Speckle Interferometry 215
Problems 216
16 **Holographic Optical Elements** 217
16.1 Lenses, Mirrors, and Gratings 217
16.1.1 Lenses and Mirrors 217
16.1.2 Focal Length 218
16.1.3 Gratings 221
16.1.4 Beam Splitters 222
16.2 Computer-Generated Holograms 223
16.2.1 Complex HOEs 223
16.2.2 Calculated HOEs 223
16.3 Electronic Holography 224
16.3.1 Angle of Diffraction in Electronic Holography 225
16.3.2 Holographic Electronic Display 225
Problems 226

17 **Security and Packing** 229
17.1 Embossed Holograms 229
17.1.1 Production of the Master (Figs. 17.1 and 17.2) 229
17.1.2 Production of the Shim (Fig. 17.3) 233
17.1.3 Embossing of Holograms (Fig. 17.4) 233
17.1.4 Hot Stamping (Fig. 17.5) 233
17.1.5 Properties of Embossed Holograms 233
17.1.6 Dot Matrix Hologram 234
17.1.7 Applications 234
17.2 Holographic Security Devices in Industry (Counterfeiting) 234
17.2.1 Counterfeiting Methods 235
17.2.2 Countermeasures 236
Problems 236

18 **Holography and Information Technology** 237
18.1 Pattern Recognition 237
18.1.1 Associative Storage 237
18.1.2 Pattern Recognition 237
18.1.3 Image Processing 238
18.2 Neuro Computer 238
18.2.1 Recognition of Information 239
18.2.2 Phase Conjugated Mirrors 240
18.3 Digital Holographic Memories 240
18.3.1 Stack Organized Memories 240
18.3.2 Stack Organized DVD 241
18.3.3 Microholographic DVD 242
Problems 242
19 Holography and Communication 245
19.1 Holographic Diffuser Display Screen 245
19.1.1 Lambertian Diffuser 245
19.1.2 Holographic Diffuser Screen [46,47] 246
19.2 Holographic Display [47] 248
19.3 Holographic TV and Movies 249
19.3.1 Holographic TV 250
19.3.2 Alternative Methods 251
19.3.3 Holographic Movie 251
19.3.4 State-of-the-Art 252
Problems 252

20 Holography – Novel Art Medium 253
20.1 Artistic Holographic Works 253
20.1.1 Regarding the Critics on the Medium Holography 253
20.1.2 Examples of Art and Holography 254
20.2 Portrait Holography 256
20.2.1 Lasers for Pulsed Portrait Holography 256
20.2.2 Master (H1) and Reflection Copy (H2) 256
20.2.3 Eye Safety Calculations 258
20.2.4 Multiplexing Method 261
Problems 262

21 Holography in Technology and Architecture 265
21.1 Holography in Solar Energy 265
21.1.1 Photovoltaic Concentration 265
21.2 Holography, Daylighting, and IR Blocking 268
21.2.1 Daylighting 268
21.2.2 Thermal Blocking 269
21.2.3 Other Applications 270
21.3 Holography in Architecture 271
21.3.1 Documentation and Visualization 271
21.3.2 Embossed Holography 271
21.3.3 Holography on Walls and Floors 271
21.3.4 HOE in Architectural Structures 272
21.4 Detection of Particles 272
21.4.1 Recording 272
21.4.2 Reconstruction 273
Problems 274
This page intentionally left blank.
Preface

More than 10 years ago the authors published a first book on holography. Since then holography evolved in many areas. The new possibilities of holography, the free design of colors and forms within a hologram inspired many artists to impressive works and installations. In addition making portraits is one of the professional areas using pulse holography.

The technical application in the field of counterfeiting and in other security devices is of a high standard. Holograms are found in everyday life: credit cards, bills, visa, logos and trademarks are secured against counterfeiting by holograms. Holography penetrates technology in many areas like nondestructive testing, holographic optical elements (HOE), optoelectronic devices, holographic storages, and digital displays.

In order to incorporate the new developments and changes in holography the authors published this book on Practical Holography. In the field of holographic material many new companies are on the market and well known have given up. Computer generated holograms are used widely in the scientific community because of the high diffraction efficiency. The book takes into consideration these new developments.

The textbook is based on laboratory courses, which were offered since two decades at our University. It is designed for students and newcomers as well as for all professionals in holography. On over 300 pages it gives all necessary information to do and to understand holography. It contains more than 100 figures and more than 100 problems including the solutions. Some mathematical more complex details are handled in the three appendices.

The 60th anniversary of holography in this year is the best motivation to publish a book on this fascinating subject. We hope, that many students and interested people will enjoy reading this book. It is made to assist in first steps in holography as well as in more advanced applications.

We are very indebted to the publishing staff of the Wiley-VCH company.
We dedicate this book to Ursula, Evelyn and Sascha’s family.

June 2007

G. Ackermann and J. Eichler
This page intentionally left blank.
Part 1 Fundamentals of Holography
This page intentionally left blank.
1

Introduction

With its many applications holography is one of the most interesting developments in modern optics. Its scientific importance is emphasized by awarding the 1971 Nobel prize to its inventor Denis Gabor. The term “holography” is a compound of the Greek words “holos = complete” and “graphein = to write.” It denotes a procedure for three-dimensional recording and displaying of images and information without the use of lenses. Therefore holography opens up completely new possibilities in science, engineering, graphics and arts. Fields of applications are interferometric measurement techniques, image processing, holographic optical elements and memories as well as art holograms.

1.1

Photography and Holography

1.1.1

Object Wave

To see an object it has to be illuminated. In doing so light is scattered and a so-called object wave is created. This wave contains the complete optical information of the object. The light wave is characterized by two parameters: the amplitude, which describes the brightness, and the phase, which contains the shape of the object. In Fig. 1.1 two waves of different objects are shown which have the same amplitudes but different phases. The objects have the

Fig. 1.1 Illustration of two light waves with same amplitudes but different phases.
same brightness but a different shape. For most holograms the color of the objects is not important, so the first chapters only deal with light waves of one wavelength. This changes for color holography which uses several wavelengths.

1.1.2
Photography

During the process of vision an object is imaged by the eye lens onto the retina. The optical path in a camera is similar: the objective creates an image on the film. For observation or to photograph an object it has to be illuminated. The scattered light, i.e., the object wave, carries the information of the object. The light wave can be made visible in a plane of the optical path, for example using a screen. The object wave appears as a very complex light field (Fig. 1.2) which results from the superposition of all waves emerging from the individual object points. If this light field could be recorded on a screen and displayed again, an observer (or a camera) would see an image that is not discriminable from the object [27].

If there is a photographic film at the position of the screen, the object wave will cause a darkening distribution during the following processing of the film. But only the light intensity is recorded; all information of the phase in the plane of the screen is lost. This loss of phase also happens if the object is imaged onto a film by a lens. Therefore the object wave can never be completely restored from a normal photographic image. A two-dimensional image is the result.

1.1.3
Holography

Holography uses the properties interference and diffraction of light which make it possible to reconstruct the object wave completely. To be able to see these effects coherent laser light has to be used. “Coherence” means that the
1.1 Photography and Holography

The laser on one hand illuminates the object and the scattered light hits the photographic film (object wave) (Fig. 1.3a). On the other hand, the film is illuminated directly with the same laser (reference wave). The object and the reference waves interfere with each other on the holographic film. This generates interference fringes in the holographic layer as are shown as a largely magnified image in Fig. 1.4. The distance of the fringes is in the region of μm which is in the order of magnitude of the light wavelength. The information of the object wave is contained in the modulation of the brightness of the fringes and in the distance of the fringes.

The photographic film is exposed and developed resulting in the hologram. The first step in holography, the recording, is made. The second step, the reconstruction or display of the object wave, is shown in Fig. 1.3b. After developing the film the hologram is illuminated with a light wave that should resemble the reference wave as best as possible. This reconstruction wave is diffracted by the interference pattern of the hologram generating the object wave. An observer looking at the hologram will see a three-dimensional image of the object.
1.2 Interference and Diffraction

1.2.1 Interference During Recording

Light is an electromagnetic wave ranging from 0.4 to 0.7 µm. In the following the superposition of two constants, i.e., coherent light waves, is described. This process, known as “interference,” is responsible for the recording of holograms.

A general description of the waves emerging from the object is complicated. Therefore for simplification a plane object wave is considered. The object in this case is a single point at a large distance. According to Fig. 1.5a a plane object wave and a plane reference wave impinge on the photographic layer. The superposition of the waves creates equally spaced interference fringes, i.e., parallel bright and dark areas. Dark areas occur when the waves cancel out each other by superposition of a maximum and a minimum. Bright areas occur when maxima (or minima) of the waves are superimposed. After exposing and developing the photographic layer a grating is created where exposed areas appear dark.

![Fig. 1.5 Hologram with a plane object wave: (a) recording of the hologram (fabrication of a diffraction grating) and (b) reconstruction of the object wave (diffraction by the grating) [27].](image)
1.2.2

Diffraction During Reconstruction

The image is displayed by illuminating the grating with a wave that closely resembles the reference wave (Fig. 1.5b). According to Huygens’ principle each point of the grating sends out a spherical elementary wave. They are shown in Fig. 1.5b for the center of the bright fringes. The superposition of the elementary waves can be shown by their envelope. Plane waves are created which represent the 0th, 1st, and -1st diffraction orders [1]. (Higher order of diffraction does not occur in sinusoidal gratings.) The zeroth order is the wave passing the grating in the direction of the impinging wave. The first order represents the object wave.

Through the effect of diffraction the object wave is reconstructed; this is the principle of holography. The -1st order is often not desirable in this simple stage of holography; it is called the “conjugate object wave.”

1.3

History of Holography

The physical basics of holography are optics of waves, especially interference and diffraction. The first achievements are that of C. Huygens (1629–1694), who phrased the following principle: every point that is hit by a wave is the origin of a spherical elementary wave. Using this statement a lot of problems of diffraction can be calculated by adding up the elementary waves. Important on the way of developing holography are also the works of T. Young (1733–1829), A.J. Fresnel (1788–1827) and J. von Fraunhofer (1877–1926). Already at the beginning of the 19th century enough knowledge was at hand to understand the principles of holography. A lot of scientist were close to the invention of this method: G. Kirchhoff (1824–1887), Lord Rayleigh (1842–1919), E. Abbe (1840–1905), G. Lippmann (1845–1921), W.L. Bragg (1890–1971), M. Wolfke and H. Boersch. But it took until 1948 when D. Gabor (1900–1979) realized the basic ideas of holography.

The origin of holography was at first connected to problems in optics of electrons. Gabor made his first groundbreaking experiments using a mercury vapor lamp. At the beginning the holographic technique was of minor importance and was forgotten for some time. It was not until the coming up of laser technology when developments in holography experienced a significant upturn. So 23 years after his experiments Gabor was awarded the Nobel prize in 1971. In 1962 the theoretical aspects of this methods were refined by E. Leith and J. Upatnieks and a year later they showed off-axis holograms. This technique marks the breakthrough for the practical application of holography.
Problems

Problem 1.1 What are the two essential elements, which describe an electromagnetic wave?

Problem 1.2 Considering the two elements mentioned in Problem 1.1, what is stored during exposure of a photograph and a hologram and what is the reason of the different results?

Problem 1.3 How is the phase of the object wave preserved during holographic exposure? Name the basic optical principles for exposure and reconstruction of a hologram.

Problem 1.4 Would it help to use coherent light in a photographic exposure in order to get a three-dimensional image?
2 General View of Holography

The basic ideas for holographic recording and reconstruction have been presented in the previous chapter in a simplified way. The next section will give a short mathematical description of holography (see [27], [3], and [66]).

2.1 Interference of Light Waves

Light is an electromagnetic wave, whereas – like within many scientific and technological applications – in holography the electrical field strength is considered only. A light wave is described by a spatial and temporal varying electrical field amplitude. The intensity I of a wave is the square of the electrical field amplitude. Within this book the object wave is abbreviated with o, and the reference wave with r. The object wave o and the reference wave r are superimposed within holographic experiments. The superposition is called interference.

The hologram represents an interference pattern that is created by the superposition of object wave o and reference wave r. The phenomenon of superposition will now be described in more detail.

2.1.1 Wave

A wave corresponds to a spatially propagating oscillation. The oscillation of the electrical field $E(t)$ at a given point, in this case the point of origin, can be described by the following equation:

$$E(t) = A \cos(2\pi ft + \phi) = A \cos(\omega t + \phi).$$ \hspace{1cm} (2.1)

Here A is the amplitude of the oscillation. The parameter ϕ represents a phase factor which is determined for $t = 0$. For abbreviation the term “angular frequency ω” is introduced: $\omega = 2\pi f$, where f is the frequency.

The oscillation for example propagates in the z-direction; Fig. 2.1 shows a “snapshot” of the light wave. The shortest distance between two points that
oscillate with the same phase is called the wavelength \(\lambda \). The time a wave with the velocity \(c \) travels a distance \(\lambda \) is called the period \(T \). The reciprocal value describes the frequency \(f = 1/T \). Since a point at the distance \(z \) from the point of origin starts to oscillate with a phase shift which is proportional to the time \(t_0 = z/c \) the equation of the oscillation at this point looks like

\[
E(t) = A \cos(\omega(t - t_0) + \varphi).
\] (2.2)

Fig. 2.1 Representation of a wave (snapshot).

From the relation \(t_0 = (z/c) = z/(f \cdot \lambda) \), we obtain the equation for a plane wave, i.e., the oscillation at every point \(z \):

\[
E(z, t) = A \cos(\omega t - k z + \varphi) = A \cos(\omega t + \Phi).
\] (2.3a)

where \(k = 2\pi/\lambda \) is called the “wave number.” With this expression the plane wave is mathematically described. The phase \(\Phi = \varphi - k z \) was introduced in the equation.

Generally speaking, a wave, propagating in the \(z \)-direction, has no fixed oscillation direction within the \(x/y \) plane perpendicular to \(z \). In Fig. 2.1 the vector of the electrical field strength is oscillating in the plane of paper. Such a wave, oscillating in a fixed direction, is called linear polarized [2]. Due to technical reasons the radiation of many lasers used in holography is linear polarized.

The complex notation using Euler’s relation often has advantages (see Appendix A):

\[
e^{\pm i \varphi} = \cos \varphi \pm i \sin \varphi.
\]

For the wave (2.3a) the complex notation is used which is denoted by bold characters:

\[
E(z, t) = A e^{-i(\omega t - k z + \varphi)} = A e^{-i(\omega t - \Phi)}.
\] (2.3b)

Here only the real part is important. The frequency \(f \) of a light wave is of the order of \(10^{14} \) Hz and cannot be observed directly. In each measurement the