Modern Alkaloids

Structure, Isolation, Synthesis and Biology

Edited by
Ernesto Fattorusso and Orazio Taglialatela-Scafati
Modern Alkaloids

Edited by
Ernesto Fattorusso and
Orazio Taglialetela-Scafati
Related Titles

Tietze, Lutz F. / Eicher, Theophil / Diederichsen, Ulf / Speicher, Andreas
Reactions and Syntheses
in the Organic Chemistry Laboratory
2007
ISBN: 978-3-527-31223-8

Hudlicky, Tomas / Reed, Josephine W.
The Way of Synthesis
Evolution of Design and Methods for Natural Products
2007
ISBN: 978-3-527-31444-7

Sarker, Satyajit / Nahar, Lutfun
Chemistry for Pharmacy Students
2007
ISBN: 978-0-470-01780-7

Kayser, Oliver / Quax, Wim J. (eds.)
Medicinal Plant Biotechnology
From Basic Research to Industrial Applications
2006
ISBN: 978-3-527-31443-0

Eicher, Theophil / Hauptmann, Siegfried
The Chemistry of Heterocycles
Structure, Reactions, Syntheses, and Applications
2003
ISBN: 978-3-527-30720-3

van de Waterbeemd, Han / Lennernäs, Hans / Artursson, Per (Eds.)
Drug Bioavailability
Estimation of Solubility, Permeability, Absorption and Bioavailability
2003
ISBN: 978-3-527-30438-7

Hesse, Manfred
Alkaloids
Nature’s Curse or Blessing?
2002
ISBN: 978-3-906390-24-6
Modern Alkaloids

Structure, Isolation, Synthesis and Biology

Edited by
Ernesto Fattorusso and Orazio Taglialatela-Scafati
Contents

Preface XVII
List of Contributors XIX

I Bioactive Alkaloids: Structure and Biology 1

1 Ecological Roles of Alkaloids 3

Michael Wink
1.1 Introduction: Defense Strategies in Plants 3
1.2 Ecological Roles of Alkaloids 4
1.3 Modes of Action 9
1.3.1 Unspecific Interactions 11
1.3.2 Specific Interactions 12
1.3.3 Cytotoxicity of Alkaloids 16
1.4 Evolution of Alkaloidal Defense Systems 19
1.5 Conclusions 23

2 Antitumor Alkaloids in Clinical Use or in Clinical Trials 25

Muriel Cuendet, John M. Pezzuto
2.1 Introduction 25
2.2 Antitumor Alkaloids in Clinical Use 25
2.2.1 Vinca Alkaloids 25
2.2.1.1 Vinblastine (VLB, 1) 28
2.2.1.2 Vincristine (VCR, 2) 28
2.2.1.3 Vindesine (VDS, 3) 28
2.2.1.4 Vinorelbine (VRLB, 4) 29
2.2.1.5 Vinftunine (VFL, 5) 29
2.2.2 Camptothecin and Analogs 29
2.2.2.1 Camptothecin (CPT, 6) 31
2.2.2.2 Irinotecan (CPT-11) 31
2.2.2.3 Topotecan 32
2.2.2.4 Exatecan 32
2.2.2.5 Gimatecan 32
2.2.2.6 Karenitecin 32
2.2.2.7 Lurtotecan 32
2.2.2.8 Rubitecan (9-nitrocamptothecin) 33
2.2.3 Taxanes 33
2.2.3.1 Paclitaxel 33
2.2.3.2 Docetaxel 35
2.3 Antitumor Alkaloids in Clinical Trials 36
2.3.1 Ecteinascidin-743 (Yondelis, Trabectedin) 36
2.3.2 7-Hydroxystaurosporine (UCN-01) 37
2.3.3 Ellipticine and Analogs 37
2.3.4 Acronycine and Analogs 38
2.3.5 Colchicine and Analogs 39
2.3.6 Ukrain 40
2.4 Alkaloids Used for MDR Reversal 40
2.4.1 Cinchona Alkaloids 40
2.4.2 Dofequidar Fumarate (MS-209) 41
2.5 Alkaloids Used for Cancer Prevention 42
2.6 Conclusions 43
2.7 Acknowledgments 44

3 Alkaloids and the Bitter Taste 53
Angela Bassoli, Gigliola Borgonovo, Gilberto Busnelli
3.1 Introduction 53
3.2 The Bitter Taste Chemoreception Mechanism 54
3.3 Bitter Alkaloids in Food 58
3.4 The Bitter Taste of Alkaloids in Other Drugs and Poisons 63
3.5 Alkaloids and Taste in Insects 66
3.6 The Bitter Taste of Alkaloids: Should We Avoid, Mask, or Understand? 69
3.7 Acknowledgments 70

4 Capsaicin and Capsaicinoids 73
Giovanni Appendino
4.1 Introduction 73
4.2 What Is an Alkaloid? Is Capsaicin an Alkaloid? 73
4.3 Diversity, Biosynthesis, and Metabolism of Capsaicinoids 77
4.4 Quantization of Capsaicinoids and Their Distribution in Chili Pepper 83
4.5 Isolation and Synthesis of Capsaicin 86
4.6 TRV1 as the Biological Target of Capsaicin and the Ecological Raison d’être of Capsaicinoids: A Molecular View 90
4.7 Naturally Occurring Analogs and Antagonists of Capsaicin and Endogenous Vanilloids 93
4.8 Structure–Activity Relationships of Capsaicinoids 94
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9 Molecular Gastronomy of Hot Food</td>
<td>98</td>
</tr>
<tr>
<td>4.9.1 Biomedical Relevance of Capsaicin-Induced Trigeminal Responses</td>
<td>98</td>
</tr>
<tr>
<td>4.9.2 Effect of Capsaicin on Taste</td>
<td>98</td>
</tr>
<tr>
<td>4.9.3 Gustatory Sweating</td>
<td>99</td>
</tr>
<tr>
<td>4.9.4 Gustatory Rhinitis</td>
<td>99</td>
</tr>
<tr>
<td>4.9.5 Hot Food Mitridatism</td>
<td>99</td>
</tr>
<tr>
<td>4.9.6 Effect of Capsaicin on Digestion</td>
<td>100</td>
</tr>
<tr>
<td>4.9.7 Capsaicin and Stomach Cancer</td>
<td>100</td>
</tr>
<tr>
<td>4.9.8 The Effect of Age and Sex on the Sensitivity to Capsaicin</td>
<td>100</td>
</tr>
<tr>
<td>4.9.9 Capsaicin as a Slimming Agent</td>
<td>101</td>
</tr>
<tr>
<td>4.9.10 Quenching Capsaicin</td>
<td>101</td>
</tr>
<tr>
<td>4.9.11 Chilies and Olive Oil</td>
<td>102</td>
</tr>
<tr>
<td>4.9.12 Who Should Avoid Chilies?</td>
<td>102</td>
</tr>
<tr>
<td>4.9.13 How can the Pungency of Chilies be Moderated?</td>
<td>102</td>
</tr>
<tr>
<td>4.9.14 Psychology of Pepper Consumption</td>
<td>102</td>
</tr>
<tr>
<td>4.10 Conclusions</td>
<td>103</td>
</tr>
<tr>
<td>4.11 Acknowledgments</td>
<td>103</td>
</tr>
</tbody>
</table>

5 Glycosidase-Inhibiting Alkaloids: Isolation, Structure, and Application 111

Naoki Asano

5.1 Introduction 111
5.2 Isolation and Structural Characterization 111
5.2.1 Deoxynojirimycin and Related Compounds 112
5.2.1.1 Isolation from Morus spp. (Moraceae) 112
5.2.1.2 Isolation from Thai Medicinal Plants ‘Thopthaep’ and ‘Cha Em Thai’ 113
5.2.2 α-Homonojirimycin and Related Compounds 115
5.2.2.1 Isolation from Garden Plants 115
5.2.2.2 Isolation from the Thai Medicinal Plant ‘Non Tai Yak’ 117
5.2.2.3 Isolation from Adenophora spp. (Campanulaceae) 117
5.2.3 Indolizidine and Pyrrolizidine Alkaloids 117
5.2.3.1 Isolation from the Leguminosae Family 118
5.2.3.2 Isolation from the Hyacinthaceae Family 120
5.2.4 Nortropane Alkaloids 122
5.2.4.1 Isolation from the Solanaceae Family 123
5.2.4.2 Isolation from the Convolvulaceae Family 124
5.3 Biological Activities and Therapeutic Application 125
5.3.1 Antidiabetic Agents 125
5.3.1.1 α-Glucosidase Inhibitors 125
5.3.1.2 Glycogen Phosphorylase Inhibitors 128
5.3.1.3 Herbal Medicines 128
5.3.2 Molecular Therapy for Lysosomal Storage Disorders 129
8.3.1 Source of Manzamine Alkaloids 202
8.3.2 Large-scale Preparation of Manzamines 204
8.3.3 Supercritical Fluid Chromatography Separation of Manzamine Alkaloids 205
8.4 Synthesis of Manzamine Alkaloids 206
8.4.1 Total Synthesis of Manzamine A and Related Alkaloids 206
8.4.2 Total Synthesis of Manzamine C 208
8.4.3 Total Synthesis of Nakadomarin A 214
8.4.4 Synthetic Studies of Manzamine Alkaloids 216
8.4.5 Studies on Biomimetic Synthesis 217
8.4.6 Synthesis of Manzamine Analogs 219
8.5 Biological Activities of Manzamines 220
8.5.1 Anticancer Activity 220
8.5.2 Antimalarial Activity 222
8.5.3 Antimicrobial and Antituberculosis Activity 224
8.5.4 Miscellaneous Biological Activities 225
8.6 Concluding Remarks 226

Antiangiogenic Alkaloids from Marine Organisms 233
Ana R. Diaz-Marrero, Christopher A. Gray, Lianne McHardy, Kaoru Warabi, Michel Roberge, Raymond J. Andersen
9.1 Introduction 233
9.2 Purine Alkaloids 235
9.3 Terpenoid Derivatives 236
9.3.1 Avinosol 236
9.3.2 Cortistatins A–D 237
9.3.3 Squalamine 238
9.4 Motuporamines 240
9.5 Pyrrole-Imidazole Alkaloids: “Oroidin”-Related Alkaloids 244
9.5.1 Agelastatin A 245
9.5.2 Ageladine A 247
9.6 Tyrosine-derived Alkaloids 250
9.6.1 Aeroplysinin-1 250
9.6.2 Psammaplin A 254
9.6.3 Bastadins 256
9.7 Tryptophan-derived Alkaloids 259
9.8 Ancorinosides 262
9.9 Concluding Remarks 263

A Typical Class of Marine Alkaloids: Bromopyrroles 271
Anna Aiello, Ernesto Fattorusso, Marialuisa Menna, Orazio Tagliatela-Scafati
10.1 Introduction 271
10.2 Oroidin-like Linear Monomers 273
10.3 Polycyclic Oroidin Derivatives 278
10.3.1 C-4/C-10 Derivatives 278
10.3.2 N-1/C-9 Derivatives 281
10.3.3 N-7/C-11 + N-1/C-12 Derivatives 281
10.3.4 N-7/C-11 + C-4/C-12 Derivatives 284
10.3.5 N-1/C-12 + N-7/C-12 Derivatives 285
10.3.6 N-1/C-9 + C-8/C-12 Derivatives 285
10.4 Simple or Cyclized Oroidin-like Dimers 286
10.5 Other Bromopyrrole Alkaloids 291
10.6 Conclusions 296

11 Guanidine Alkaloids from Marine Invertebrates 305
Roberto G.S. Berlinck, Miriam H. Kossuga
11.1 Introduction 305
11.2 Modified Creatinine Guanidine Derivatives 305
11.3 Aromatic Guanidine Alkaloids 307
11.4 Bromotyrosine Derivatives 309
11.5 Amino Acid and Peptide Guanidines 310
11.6 Terpenic Guanidines 320
11.7 Polyketide-derived Guanidines 321

II New Trends in Alkaidol Isolation and Structure Elucidation 339

12 Analysis of Tropane Alkaloids in Biological Matrices 341
Philippe Christen, Stefan Bieri, Jean-Luc Veuthey
12.1 Introduction 341
12.2 Extraction 343
12.2.1 Plant Material 343
12.2.2 Supercritical Fluid Extraction 343
12.2.3 Microwave-assisted Extraction 344
12.2.4 Pressurized Solvent Extraction 345
12.2.5 Solid-phase Microextraction 345
12.2.6 Biological Matrices 346
12.3 Analysis of Plant Material and Biological Matrices 348
12.3.1 Gas Chromatography 348
12.3.2 High-performance Liquid Chromatography 355
12.3.3 Capillary Electrophoresis 359
12.3.4 Desorption Electrospray Ionization Mass Spectrometry 361
12.4 Conclusions 362

13 LC-MS of Alkaloids: Qualitative Profiling, Quantitative Analysis,
and Structural Identification 369
Steven M. Colegate, Dale R. Gardner
13.1 Introduction 369
13.2 LC-MS Overview 369
13.2.1 Optimization 370
13.2.1.1 Modification of Mobile Phases and Ionization Parameters 370
13.2.1.2 HPLC Versus UPLC 372
13.2.1.3 Fluorinated HPLC Solid Phases 372
13.2.1.4 Reduction of Ion Suppression 373
13.3 Clinical Chemistry and Forensic Applications 374
13.3.1 Extraction and Analytical Considerations 375
13.3.2 Forensic Detection of Plant-derived Alkaloids 375
13.3.2.1 Plant-associated Intoxications 375
13.3.2.2 Illicit Drug Use: Multiple Reaction Monitoring 376
13.3.2.3 Quality Control of Herbal Preparations: APCI-MS 376
13.4 Metabolite Profiling and Structure Determination 376
13.4.1 LC-MS/MS Approaches to the Identification/Structural Elucidation of Alkaloid Drug Metabolites 377
13.4.1.1 Tandem MS 377
13.4.1.2 Accurate Mass Measurement 378
13.4.1.3 Chemical Modification 378
13.4.2 Minimization of Sample Treatment 378
13.4.3 Structure Determination 380
13.4.3.1 Nudicaulins from Papaver nudicaule: High-resolution MS 380
13.4.3.2 Endophyte Alkaloids: An MS Fragment Marker 380
13.5 Pyrrolizidine Alkaloids and Their N-Oxides 382
13.5.1 Solid Phase Extraction 383
13.5.2 Qualitative Profiling 383
13.5.2.1 Echium plantagineum and Echium vulgare 385
13.5.2.2 Senecio ovatus and Senecio jacobaea 387
13.5.3 Quantitative Analysis 392
13.5.3.1 Calibration Standards 393
13.5.3.2 Honey 394
13.6 Alkaloids from Delphinium spp. (Larkspurs) 395
13.6.1 Flow Injection (FI) Mass Spectrometry 396
13.6.1.1 Qualitative FI Analysis 397
13.6.1.2 Quantitative FI Analyses 398
13.6.1.3 Chemotaxonomy of Delphinium Species 399
13.6.2 LC-MS Analysis of Diterpene Alkaloids 400
13.6.2.1 Toxicokinetics and Clearance Times 400
13.6.2.2 Diagnosis of Poisoning 401
13.6.3 Structural Elucidation of Norditerpenoid Alkaloids 402
13.6.3.1 Stereochemical Indications 402
13.6.3.2 Isomeric Differentiation Using Tandem Mass Spectrometry 403
13.6.3.3 Novel Diterpene Alkaloid Identification: Application of Tandem Mass Spectrometry 405
13.7 Conclusions 405
14 Applications of 15N NMR Spectroscopy in Alkaloid Chemistry

Gary E. Martin, Marina Solntseva, Antony J. Williams

14.1 Introduction

14.1.1 15N Chemical Shift Referencing

14.1.2 15N Chemical Shifts

14.1.3 15N Reviews and Monographs

14.2 Indirect-Detection Methods Applicable to 15N

14.2.1 Accordion-optimized Long-range 1H–15N Heteronuclear Shift Correlation Experiments

14.2.2 Pulse Width and Gradient Optimization

14.2.3 Long-range Delay Optimization

14.2.4 Establishing F$_1$ Spectral Windows

14.3 15N Chemical Shift Calculation and Prediction

14.3.1 Structure Verification Using a 15N Content Database

14.3.2 15N NMR Prediction

14.3.3 Enhancing NMR Prediction With User-“trained” Databases

14.3.4 Validating 15N NMR Prediction

14.4 Computer-assisted Structure Elucidation (CASE) Applications Employing 15N Chemical Shift Correlation Data

14.5 Applications of 15N Spectroscopy in Alkaloid Chemistry

14.6 Applications of Long-range 1H–15N 2D NMR

14.6.1 Five-membered Ring Alkaloids

14.6.2 Tropane Alkaloids

14.6.3 Indoles, Oxindoles, and Related Alkaloids

14.6.3.1 Strychnos Alkaloids

14.6.3.2 Azaindoles

14.6.3.3 Indoloquinoline Alkaloids

14.6.3.4 Vinca Alkaloids

14.6.5 Other Indole Alkaloids

14.6.4 Carboline-derived Alkaloids

14.6.5 Quinoline, Isoquinoline, and Related Alkaloids

14.6.6 Benzo[c]phenanthridine Alkaloids

14.6.7 Pyrazine Alkaloids

14.6.8 Diazepinopurine Alkaloids

14.7 Pyridoacridine, Quinoacridine, and Related Alkaloids

14.8 Conclusions

III New Trends in Alkaloid Synthesis and Biosynthesis

15 Synthesis of Alkaloids by Transition Metal-mediated Oxidative Cyclization

Hans-Joachim Knölker

15.1 Silver(l)-mediated Oxidative Cyclization to Pyrroles

15.1.1 Synthesis of the Pyrrolo[2,1-a]isoquinoline Alkaloid Crispine A
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1.2</td>
<td>Synthesis of the Indolizidino[8,7-b]indole Alkaloid Harmicine</td>
<td>478</td>
</tr>
<tr>
<td>15.2</td>
<td>Iron(0)-mediated Oxidative Cyclization to Indoles</td>
<td>478</td>
</tr>
<tr>
<td>15.3</td>
<td>Iron(0)-mediated Oxidative Cyclization to Carbazoles</td>
<td>481</td>
</tr>
<tr>
<td>15.3.1</td>
<td>3-Oxygenated Carbazole Alkaloids</td>
<td>482</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Carbazole-1,4-Quinol Alkaloids</td>
<td>483</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Furo[3,2-a]carbazole Alkaloids</td>
<td>483</td>
</tr>
<tr>
<td>15.3.4</td>
<td>2,7-Dioxygenated Carbazole Alkaloids</td>
<td>485</td>
</tr>
<tr>
<td>15.3.5</td>
<td>3,4-Dioxygenated Carbazole Alkaloids</td>
<td>487</td>
</tr>
<tr>
<td>15.4</td>
<td>Palladium(II)-catalyzed Oxidative Cyclization to Carbazoles</td>
<td>488</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Carbazolequinone Alkaloids</td>
<td>489</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Carbazomadurins and Epocarbazolins</td>
<td>492</td>
</tr>
<tr>
<td>15.4.3</td>
<td>7-Oxygenated Carbazole Alkaloids</td>
<td>493</td>
</tr>
<tr>
<td>15.4.4</td>
<td>6-Oxygenated Carbazole Alkaloids</td>
<td>495</td>
</tr>
</tbody>
</table>

16
Camptothecin and Analogs: Structure and Synthetic Efforts 503
Sabrina Dallavalle, Lucio Merlini
16.1
Introduction: Structure and Activity 503
16.2
Synthetic Efforts 507

17
Combinatorial Synthesis of Alkaloid-like Compounds In Search of Chemical Probes of Protein–Protein Interactions 521
Michael Prakesch, Prabhat Arya, Marwen Naim, Traian Sulea, Enrico Purisima, Aleksey Yu. Denisov, Kalle Gehring, Trina L. Foster, Robert G. Korneluk
17.1
Introduction 521
17.2
Protein–Protein Interactions 523
17.3
Alkaloid Natural Products as Chemical Probes of Protein–Protein Interactions 524
17.4
Indoline Alkaloid Natural Product-inspired Chemical Probes 525
17.4.1
Indoline Alkaloid-inspired Chemical Probes 526
17.4.2
Tetrahydroquinoline Alkaloid-inspired Chemical Probes 528
17.5
Alkaloid Natural Product-inspired Small-molecule Binders to Bcl-2 and Bcl-XL and In Silico Studies 532
17.5.1
Alkaloid Natural Product-inspired Small-molecule Binders to Bcl-XL and NMR Studies 533
17.5.2
Alkaloid Natural Product-inspired Small-molecule Probes for XIAP 535
17.5.2.1
Cell Death Assay 535
17.5.2.2
Caspase-3 Activation Assay 536
17.5.2.3
Caspase-9 Release Assay 536
17.5.3
Summary and Future Outlook 536
17.6
Acknowledgments 538
18 Daphniphyllum alkaloids: Structures, Biogenesis, and Activities 541
Hiroshi Morita, Jun’ichi Kobayashi

18.1 Introduction 541
18.2 Structures of Daphniphyllum Alkaloids 542
18.2.1 Daphnane-type Alkaloids 542
18.2.2 Secodaphnane-type Alkaloids 543
18.2.3 Yuzurimine-type Alkaloids 543
18.2.4 Daphnilactone A-type Alkaloids 543
18.2.5 Daphnilactone B-type Alkaloids 544
18.2.6 Yuzurine-type Alkaloids 544
18.2.7 Daphnezomines 545
18.2.8 Daphnicyclidins 551
18.2.9 Daphmanidins 557
18.2.10 Daphniglaucins 559
18.2.11 Calyciphyllines 560
18.2.12 Daphtenidines 560
18.2.13 Other Related Alkaloids 561
18.3 Biogenesis and Biogenesis 564
18.3.1 Biogenesis of Daphniphyllum Alkaloids 564
18.3.2 Biogenesis of the Daphnane and Secodaphnane Skeletons 564
18.3.3 Biogenesis of the Daphnezomines 565
18.3.4 Biogenesis of the Daphnicyclidins 568
18.3.5 Biogenesis of the Daphmanidins 569
18.3.6 Biogenesis of the Daphniglaucins 570
18.3.7 Biogenesis of the Calyciphyllines 573
18.3.8 Biogenesis of the Daphtenidines 573
18.4 Synthesis 575
18.4.1 Biomimetic Chemical Transformations 575
18.4.1.1 Transformation of an Unsaturated Amine to the Daphnane Skeleton 575
18.4.1.2 Transformation of Daphnicyclidin D to Daphnicyclidins E and J 575
18.4.2 Biomimetic Total Synthesis 576
18.4.2.1 Methyl Homosecodaphniphyllate and Protodaphniphylline 576
18.4.2.2 Secodaphniphylline 579
18.4.2.3 Methyl Homodaphniphyllate and Daphnilactone A 580
18.4.2.4 Codaphniphylline 582
18.4.2.5 Bukittinggine 583
18.4.2.6 Polycyclization Cascade 583
18.5 Activities 585
18.6 Conclusions 586

19 Structure and Biosynthesis of Halogenated Alkaloids 591
Gordon W. Gribble

19.1 Introduction 591
19.2 Structure of Halogenated Alkaloids 591
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.1</td>
<td>Indoles</td>
<td>591</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Carbazoles</td>
<td>596</td>
</tr>
<tr>
<td>19.2.3</td>
<td>β-Carbolines</td>
<td>596</td>
</tr>
<tr>
<td>19.2.4</td>
<td>Tyrosines</td>
<td>598</td>
</tr>
<tr>
<td>19.2.5</td>
<td>Miscellaneous Halogenated Alkaloids</td>
<td>603</td>
</tr>
<tr>
<td>19.3</td>
<td>Biosynthesis of Halogenated Alkaloids</td>
<td>605</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Halogenation Enzymes</td>
<td>605</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Indoles</td>
<td>606</td>
</tr>
<tr>
<td>19.3.3</td>
<td>Biosynthesis of Halogenated Tyrosines</td>
<td>609</td>
</tr>
<tr>
<td>19.3.4</td>
<td>Biosynthesis of Miscellaneous Alkaloids</td>
<td>612</td>
</tr>
</tbody>
</table>

20 Engineering Biosynthetic Pathways to Generate Indolocarbazole Alkaloids in Microorganisms 619

César Sánchez, Carmen Méndez, José A. Salas

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>619</td>
</tr>
<tr>
<td>20.2</td>
<td>Studies Made Before the Identification of Biosynthetic Genes</td>
<td>620</td>
</tr>
<tr>
<td>20.3</td>
<td>Identification of Genes Involved in Indolocarbazole Biosynthesis</td>
<td>621</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Genes Involved in Rebeccamycin Biosynthesis</td>
<td>621</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Genes Involved in Staurosporine Biosynthesis</td>
<td>625</td>
</tr>
<tr>
<td>20.3.3</td>
<td>Genes Involved in Biosynthesis of Other Indolocarbazoles</td>
<td>625</td>
</tr>
<tr>
<td>20.4</td>
<td>Indolocarbazole Biosynthetic Pathways and Their Engineering</td>
<td>626</td>
</tr>
<tr>
<td>20.4.1</td>
<td>Tryptophan Modification</td>
<td>626</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Formation of Bisindole Pyrrole</td>
<td>627</td>
</tr>
<tr>
<td>20.4.3</td>
<td>Formation of Carbazole</td>
<td>630</td>
</tr>
<tr>
<td>20.4.4</td>
<td>Formation of the Sugar Moiety</td>
<td>632</td>
</tr>
<tr>
<td>20.4.4.1</td>
<td>Sugar Moieties in Rebeccamycin and AT2433</td>
<td>632</td>
</tr>
<tr>
<td>20.4.4.2</td>
<td>The Staurosporine Sugar Moiety</td>
<td>634</td>
</tr>
<tr>
<td>20.4.5</td>
<td>Regulation and Self-resistance</td>
<td>636</td>
</tr>
<tr>
<td>20.5</td>
<td>Perspectives and Concluding Remarks</td>
<td>637</td>
</tr>
<tr>
<td>20.6</td>
<td>Acknowledgments</td>
<td>638</td>
</tr>
</tbody>
</table>

Index 641
Preface

Alkaloids constitute one of the widest classes of natural products, being synthesized practically by all phyla of both marine and terrestrial organisms, at any evolutionary level. The extraordinary variety (and often complexity) of alkaloid structures and biological properties have long intrigued natural product chemists (for structure determination and biosynthetic studies), analytical chemists, and synthetic organic chemists. Toxicologists, pharmacologists and pharmaceutical companies have used and will certainly continue to use alkaloids as biological tools and/or as lead compounds for development of new drugs.

When we started our project of a handbook on alkaloid science, we were faced with an impressive number of papers describing the structures and activities of alkaloids, and also with an intense review activity, published in excellent book series or in single books covering specific classes of alkaloids. Consequently, we decided to organize our handbook to present the different aspects of alkaloid science (e.g. the structure and pharmacology of bioactive alkaloids; recent advances in isolation, synthesis, and biosynthesis) in a single volume, aiming to provide representative examples of more recent and promising results as well as of future prospects in alkaloid science. Obviously, the present handbook cannot be regarded as a comprehensive presentation of alkaloid research, but we feel that the diversity of topics treated, ranging from bitterness to the anticancer activity of alkaloids, can provide a good idea of the variety of active research in this field.

In particular, Section I describes the structures and biological activities of selected classes of alkaloids. Almost half of the chapters focus their attention on terrestrial alkaloids (Chapters 1–5). The other half (Chapters 7–11) describe recent results in the field of marine alkaloids, while Chapter 6 is focused on neurotoxic alkaloids produced by cyanobacteria, microorganisms living in both marine and terrestrial environments. The particular emphasis on marine alkaloids undoubtedly reflects our long-standing research activity on marine metabolites, but it is also a result of the impressive amount of work carried out in the last few decades on marine natural product chemistry. Section II (Chapters 12–15) gives an account of modern techniques used for the detection and structural elucidation of alkaloids, while Section III is divided into two parts: different methodologies for the synthesis of alkaloids and accounts of modern biosynthetic studies.
Finally, we should point out that even today the term alkaloid is ambiguous (a discussion on the definition of alkaloid is presented in Chapter 4). The initial definition of Winterstein and Trier (1910) ("nitrogen-containing basic compounds of plant or animal origin") has obviously been superseded. The most recent definition of alkaloid can be attributed to S. W. Pelletier (1984): "compound containing nitrogen at a negative oxidation level characterized by a limited distribution in Nature". In the preparation of this handbook we have decided to follow this last definition and, thus, to include "borderline" compounds such as capsaicins and non-ribosomal polypeptides.

We cannot conclude without thanking all the authors who have made their expert contributions to the realization of this volume, which we hope will stimulate further interest in one of the most fascinating branches of natural product chemistry.

Naples, July 2007

Ernesto Fattorusso
Orazio Tagliatela-Scafati
List of Contributors

Anna Aiello
Università di Napoli “Federico II”
Dipartimento di Chimica delle Sostanze Naturali
Via D. Montesano, 49
80131 Napoli
Italy

Raymond J. Andersen
University of British Columbia
Biological Sciences 1450
Vancouver BC, V6T 1Z1
Canada

Giovanni Appendino
Università del Piemonte Orientale
Largo Donegani, 2
28100 Novara
Italy

Prabhat Arya
National Research Council of Canada
Steacie Institute for Molecular Sciences
100 Sussex Drive,
Ottawa, Ontario, K1A 0R6,
Canada

Naoki Asano
Hokuriku University
Faculty of Pharmaceutical Sciences
Ho-3 Kanagawa-machi
Kanazawa, 920-1181
Japan

Christian Bailly
INSERM U-524, Centre Oscar Lambret
Place de Verdun
59045 Lille
France

Angela Bassoli
Università di Milano
Dipartimento di Scienze Molecolari Agroalimentari
Via Celoria, 2
20133 Milano
Italy

Roberto G.S. Berlinck
University of Sao Paulo
CP 780, CEP 13560-970
3566590 - Sao Carlos, SP
Brazil

Stefan Bieri
Official Food Control Authority of Geneva
20, Quai Ernest-Ansermet
1211 Geneva 4
Switzerland
Gigliola Borgonovo
Università di Milano
Dipartimento di Scienze Molecolari Agroalimentari
Via Celoria, 2
20133 Milano
Italy

Gilberto Busnelli
Università di Milano
Dipartimento di Scienze Molecolari Agroalimentari
Via Celoria, 2
20133 Milano
Italy

Yeun-Mun Choo
University of Mississippi
Department of Pharmacognosy
Mississippi, MS 38677
USA

Philippe Christen
University of Lausanne
School of Pharmaceutical Science EPGL
30, Quai Ernest Ansermet
1211 Genève 4
Switzerland

Steven M. Colegate
CSIRO Livestock Industries
Private Bag 24
East Geelong, Victoria 3220
Australia

Muriel Cuendet
Gerald P. Murphy
Cancer Foundation
3000 Kent Ave, Suite E 2-400
West Lafayette, IN 47906
USA

Sabrina Dallavalle
Università di Milano
Dipartimento di Scienze Molecolari Agroalimentari
Via Celoria, 2
20133, Milano
Italy

Aleksej Dansiov
Department of Biochemistry
McGill University
3655 Promenade Sir William Osler
Montreal, Quebec H3G IV6
Canada

Ana R. Diaz-Marrero
Instituto de Productos Naturales y Agrobiología del CSIC,
Avda Astrofísico F. Sánchez 3
Apdo 195
38206 La Laguna
Tenerife
Spain

Ernesto Fattorusso
Università di Napoli “Federico II”
Dipartimento di Chimica delle Sostanze Naturali
Via D. Montesano, 49
80131 Napoli
Italy

Trina L. Foster
Apoptosis Research Centre
Children’s Hospital of Eastern Ontario (CHEO)
401 Smyth Road
Ottawa K1H 8L1
Canada
List of Contributors

Dale R. Gardner
Poisonous Plant Research Lab
USDA, Agricultural Research Service
1150 E 1400 N
Logan
Utah, 84341
USA

Kalle Gehring
Department of Biochemistry
McGill University
3655 Promenade Sir William Osler
Montreal
Quebec H3G 1V6
Canada

William Gerwick
University of California at San Diego
Scripps Institution of Oceanography
9500 Gilman Drive
La Jolla, CA 92093-0210
USA

Christopher A. Gray
University of British Columbia
Chemistry of Earth and Ocean Sciences
2146 Health Sciences Mall
Vancouver
British Columbia V6T 1Z1
Canada

Gordon W. Gribble
Dartmouth College
Department of Chemistry
6128 Burke Laboratory
Hanover, NH 03755
USA

Rashel V. Grindberg
University of California, San Diego
Center for Marine Biotechnology and Biomedicine
Scripps Institution of Oceanography and The Skaggs School of Pharmacy and Pharmaceutical Sciences,
La Jolla, California 92093
USA

Mark T. Hamann
University of Mississippi
Department of Pharmacognosy
Mississippi, MS 38677
USA

Jerome Kluza
INSERM U-524, Centre Oscar Lambret
Place de Verdun
59045 Lille
France

Hans-Joachim Knölker
University of Dresden
Institut für Organische Chemie
Bergstrasse 66
01069 Dresden
Germany

Jun’ichi Kobayashi
Hokkaido University
Graduate School of Pharmaceutical Sciences
Sapporo 060-0812
Japan

Robert G. Korneluk
National Research Council of Canada
Steacie Institute for Molecular Sciences
100 Sussex Drive,
Ottawa, Ontario, K1A 0R6,
Canada
Miriam H. Kossuga
Instituto de Química de São Carlos
Universidade de São Paulo
CP 780
CEP 13560–970
São Carlos
Brazil

Philippe Marcetti
INSERM U-524, Centre Oscar Lambret
Place de Verdun
59045 Lille
France

Gary E. Martin
Schering - Plough Research Institute
Pharmaceutical Science
556 Morris Avenue
Summit, NJ 07901
USA

Lianne McHardy
University of British Columbia
Biological Sciences 1450
Vancouver BC, V6T 1Z1
Canada

Carmen Mendez
Universidad de Oviedo
Departamento de Biología Funcional
C/. Julián Clavería, s/n
33006 Oviedo
Spain

Marialuisa Menna
Università di Napoli “Federico II”
Dipartimento di Chimica delle Sostanze Naturali
Via D. Montesano, 49
80131 Napoli
Italy

Lucio Merlini
Università di Milano
Dipartimento di Scienze Molecolari Agroalimentari
Via Celoria, 2
20133, Milano
Italy

Hiroshi Morita
Hokkaido University
Graduate School of Pharmaceutical Sciences
Sapporo 060-0812
Japan

Mohammed Naim
Biotechnology Research Institute
National Research Council of Canada
6100 Royalmount Avenue
Montréal, Quebec, H4P 2R2
Canada

John M. Pezzuto
University of Hawaii
Hilo College of Pharmacy
60 Nowelo St., Suite
Hilo, Hawaii 96720
USA

Michael Prakesch
National Research Council of Canada
Steacie Institute for Molecular Sciences
100 Sussex Drive,
Ottawa, Ontario, K1A 0R6,
Canada

Jangnan Peng
University of Mississippi
Department of Pharmacognosy
Mississippi, MS 38677
USA
Karumanchi V. Rao
University of Mississippi
Department of Pharmacognosy
Mississippi, MS 38677
USA

Michel Roberge
University of British Columbia
2146 Health Sciences Mall
Vancouver BC, V6T 1Z3
Canada

Jose A. Salas
Universidad de Oviedo
Departamento de Biología Funcional
C/. Julián Claveria, s/n
33006 Oviedo
Spain

Cesar Sanchez
Universidad de Oviedo
Departamento de Biología Funcional
C/. Julián Claveria, s/n
33006 Oviedo
Spain

Cynthia F. Shumann
University of California, San Diego
Center for Marine Biotechnology and Biomedicine
Scripps Institution of Oceanography and The Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California 92093
USA

Carla M. Sorrels
University of California, San Diego
Center for Marine Biotechnology and Biomedicine
Scripps Institution of Oceanography and The Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California 92093
USA

Traian Sulea
Biotechnology Research Institute
National Research Council of Canada 6100 Royalmount Avenue
Montréal, Quebec, H4P 2R2
Canada

Orazio Tagliatela-Scafati
Università di Napoli “Federico II”
Dipartimento di Chimica delle Sostanze Naturali
Via D. Montesano, 49
80131 Napoli
Italy

Jean-Luc Veuthey
University of Geneve
Faculty of Sciences
20, Bd d’Yvoy
1211 Genève 4
Switzerland

Koaru Warabi
University of British Columbia
Chemistry and Earth and Ocean Sciences
2146 Health Sciences Mall
Vancouver
British Columbia V6T1Z1
Canada

Marina Solntseva
ACD Limited
Bakuleva 6, Str 1
117513 Moscow
Russia
List of Contributors

Anthony J. Williams
Chem Zoo
904 Tamaras Circle
Wake Forest, North Carolina 27587
USA

Josh Wingerd
University of California, San Diego
Center for Marine Biotechnology and Biomedicine
Scripps Institution of Oceanography and The Skaggs School of Pharmacy and Pharmaceutical Sciences,
La Jolla, California 92093
USA

Michael Wink
University of Heidelberg,
Institute of Pharmacy and Molecular Biotechnology
Im Neuenheimer Feld 364
69120 Heidelberg
Germany
Bioactive Alkaloids: Structure and Biology
1

Ecological Roles of Alkaloids

Michael Wink

1.1
Introduction: Defense Strategies in Plants

Plants are autotrophic organisms and serve as both a major and the ultimate source of food for animals and microorganisms. Plants cannot run away or fight back when attacked by a herbivore, nor do they have an immune system to protect them against pathogenic bacteria, fungi, viruses, or parasites. Plants struggle for life, as do other organisms, and have evolved several strategies against herbivorous animals, parasites, microorganisms, and viruses. Plants also compete with neighboring plants for space, light, water, and nutrients [1–8].

Apparently plants have evolved both physical and chemical defense measures, similar to the situation of sessile or slow moving animals. Among physical defense strategies we find [8]

- formation of indigestible cell walls containing cellulose, lignin, or callose;
- presence of a hydrophobic cuticle as a penetration barrier for microbes and against desiccation;
- formation of a thick bark in roots and stems against water loss, microbes, and herbivores;
- development of spines, thorns, hooks, trichomes, and glandular and stinging hairs (often filled with noxious chemicals) against herbivores;
- formation of laticifers and resin ducts (filled with gluey and noxious fluids);
- a high capacity for regeneration so that parts that have been browsed or damaged by infection can be readily replaced (so-called open growth).

Secondly, plants are masters of chemical defense, with a fascinating ability to produce a high diversity of chemical defense compounds, also known as secondary metabolites or allelochemicals [1–17]. Chemical defense involves macromolecular compounds, such as diverse defense proteins (including chitinase [against fungal cell
walls], β-1,3-glucanases [against bacteria], peroxidase, and phenolase, lectins, protease inhibitors, toxaalbumins, and other animal-toxic peptides), polysaccharides, and poly-
terpenes. More diverse and more prominent are low molecular weight secondary metabolites, of which more than 100 000 have been identified in plants (Figure 1.1).

Among the secondary metabolites that are produced by plants, alkaloids figure as a very prominent class of defense compounds. Over 21 000 alkaloids have been identified, which thus constitute the largest group among the nitrogen-containing secondary metabolites (besides 700 nonprotein amino acids, 100 amines, 60 cyanogenic glycosides, 100 glucosinolates, and 150 alkylamides) [2,3,18,19]. However, the class of secondary metabolites without nitrogen is even larger, with more than 25 000 terpenoids, 7000 phenolics and polyphenols, 1500 polyacetylenes, fatty acids, waxes, and 200 carbohydrates.

1.2 Ecological Roles of Alkaloids

Alkaloids are widely distributed in the plant kingdom, especially among angiosperms (more than 20 % of all species produce alkaloids). Alkaloids are less common but present in gymnosperms, club mosses (Lycopodium), horsetails (Equisetum), mosses, and algae [1–5,17]. Alkaloids also occur in bacteria (often termed antibiotics), fungi, many marine animals (sponges, slugs, worms, bryozoa), arthropods, amphibians (toads, frogs, salamanders), and also in a few birds, and mammals [1–5,13,17,20].

Alkaloids are apparently important for the well-being of the organism that produces them (Figures 1.1–1.3). One of the main functions is that of chemical defense against herbivores or predators [2,3,8,18]. Some alkaloids are antibacterial, antifungal, and antiviral; and these properties may extend to toxicity towards animals. Alkaloids can also be used by plants as herbicides against competing plants [1,3,8,18]. The importance of alkaloids can be demonstrated in lupins which – as wild plants – produce quinolizidine alkaloids (“bitter lupins”), that are strong neurotoxins (Table 1.1) [21,22]. Since lupin seeds are rich in protein, farmers were interested in using the seeds for animal nutrition. This was only possible after the alkaloids (seed content 2–6 %) had been eliminated. Plant breeders created so-called sweet lupins with alkaloid levels below 0.02 %. If bitter and sweet lupins are grown together in the field it is possible to study the importance of alkaloids for defense. For example, Figure 1.3 shows that rabbits strongly discriminate between sweet and bitter lupins and prefer the former. This is also true for insects, as aphids and mining flies always favor sweet lupins. In the wild, sweet lupins would not survive because of the lack of an appropriate chemical defense [8,21].

Secondary metabolites are not only mono- but usually multifunctional. In many cases, even a single alkaloid can exhibit more than one biological function. During evolution, the constitution of alkaloids (that are costly to produce) has been modulated so that they usually contain more than one active functional group, allowing them to interact with several molecular targets and usually more than one group of enemies [3,18,19,21–24]. Many plants employ secondary metabolites (rarely alka-