Synthesis of Solid Catalysts

Edited by
Krijn P. de Jong

WILEY-VCH Verlag GmbH & Co. KGaA
Synthesis of Solid Catalysts

Edited by
Krijn P. de Jong
Related Titles

Jackson, S. D., Hargreaves, J. S. J. (ed.)
Metal Oxide Catalysis
2009
ISBN: 978-3-527-31815-5

Mizuno, N. (ed.)
Modern Heterogeneous Oxidation Catalysis
Designs, Reactions and Characterization
2009
ISBN: 978-3-527-31859-9

van Santen, R. A., Sautet, P. (eds.)
Computational Methods in Catalysis and Materials Science
An Introduction for Scientists and Engineers
2009
ISBN: 978-3-527-32032-5

Ozkan, U. (ed.)
Design of Heterogeneous Catalysts
New Approaches based on Synthesis, Characterization and Modeling
2009
ISBN: 978-3-527-32079-0

Ding, K., Uozumi, Y. (eds.)
Handbook of Asymmetric Heterogeneous Catalysis
2008
ISBN: 978-3-527-31913-8

Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J. (eds.)
Handbook of Heterogeneous Catalysis
8 Volumes
2008
ISBN: 978-3-527-31241-2

Astruc, D. (ed.)
Nanoparticles and Catalysis
2008
ISBN: 978-3-527-31572-7

Chorkendorff, I., Niemantsverdriet, J. W.
Concepts of Modern Catalysis and Kinetics
2007
ISBN: 978-3-527-31672-4

Centi, G., van Santen, R. A. (eds.)
Catalysis for Renewables
From Feedstock to Energy Production
2007
ISBN: 978-3-527-31788-2

Sheldon, R. A., Arends, I., Hanefeld, U.
Green Chemistry and Catalysis
2007
ISBN: 978-3-527-30715-9
Synthesis of Solid Catalysts

Edited by
Krijn P. de Jong

WILEY-VCH Verlag GmbH & Co. KGaA
Part I Basic Principles and Tools

1 General Aspects
Krijn P. de Jong
1.1 Importance of Solid Catalysts
1.2 Development of Solid Catalysts
1.3 Development of Solid Catalyst Synthesis
1.4 About This Book

References

2 Interfacial Chemistry
Alexis Lycourghiotis
2.1 Introduction
2.2 Interfacial and Bulk Deposition
2.3 The Surface of the Oxidic Supports: Surface Ionization Models
2.3.1 The Charged Surface of the Oxidic Supports
2.3.2 Homogeneous Surface Ionization Models
2.3.3 The Music Model
2.4 The Size and the Structure of the Interface
2.5 The Arrangement of the Ions Inside the Interface and the Deposition Modes
2.5.1 Indifferent Ions
2.5.2 Transition-Metal Ionic Species
2.6 Determining the Mode of Interfacial Deposition and the Surface Speciation/Structure of the Deposited Precursor Species

Preface

List of Contributors

Abbreviations
Contents

2.6.2 Methodologies Based on Macroscopic Adsorption Data and Potentiometric Titrations as well as on Microelectrophoretic Mobility or Streaming Potential Measurements 23

2.6.3 Spectroscopic Investigations 25

2.6.4 Quantum-Mechanical Calculations 26

2.6.5 Electrochemical (Equilibrium) Modeling 26

2.7 A Case Study: The Deposition of $\text{Co(H}_2\text{O)}_6^{2+}$ Aqua Complex on the Titania Surface 27

2.7.1 Experimental Investigation 27

2.7.2 Quantum-Mechanical Calculations 28

2.7.3 Electrochemical (Equilibrium) Modeling 29

References 30

3 Electrostatic Adsorption 33

John R. Regalbuto

3.1 Introduction 33

3.2 Purely Electrostatic Adsorption 37

3.3 Electrostatic Adsorption with Metal Respeciation 38

3.4 Electrostatic Adsorption and Ion Exchange 41

3.5 Electrostatic Adsorption and Deposition-Precipitation 45

3.6 Electrostatic Adsorption and Surface Reaction 46

3.7 Electrostatics and Dissolution, Reaction, and Redeposition 47

3.8 Electrostatics-Based Design 48

3.8.1 Well-Dispersed Single Metals 49

3.8.2 Selective Adsorption onto Promoters 51

3.8.3 Bimetallic Catalysts 54

3.9 Summary 57

References 57

4 Impregnation and Drying 59

Eric Marceau, Xavier Carrier, and Michel Che

4.1 Introduction 59

4.2 Impregnation 61

4.2.1 Methods of Impregnation 61

4.2.2 Physical Models for Impregnation 62

4.3 Drying 64

4.4 The Chemistry 67

4.4.1 Concentrations and pH 67

4.4.2 Precursor-Support Interactions 69

4.4.2.1 Adsorption: From Electrostatic Interactions to Grafting 69

4.4.2.2 The Formation of Mixed Phases 70

4.4.3 Ligands 71

4.4.4 Couterions 73

4.5 Impregnation and Drying of an $\text{MoO}_x/\text{Al}_2\text{O}_3$ Catalyst 74

4.5.1 Molybdenum Speciation and Its Consequences 74
7.2 Basic Principles of Precipitation and Nucleation 136
7.3 Raw Materials 139
7.4 Precipitation Conditions 141
7.5 Process Operation 141
7.6 Examples 145
7.6.1 High Metal Nickel/Alumina Catalysts 145
7.6.2 Single-Step Sulfur-Promoted Nickel/Alumina Catalyst 146
7.6.3 Copper/Zinc Methanol Catalysts 147
7.6.4 Iron-Based Fischer–Tropsch Catalysts 148
7.6.5 Unsupported Metal Sulfide Catalysts for Hydrotreating 148
7.7 New Developments in Process Monitoring 148
Acknowledgments 149
References 149

8 Clusters and Immobilization 153
Sophie Hermans
8.1 Introduction 153
8.2 The Surface of Common Supports 154
8.3 Clusters in Catalysis 157
8.4 Reaction with Unmodified Surface 160
8.5 “Ship-in-a-Bottle” Synthesis 163
8.6 Tethering 167
8.7 Concluding Remarks 168
References 169

9 Shaping of Solid Catalysts 173
Bettina Kraushaar-Czarnetzki and Steffen Peter Müller
9.1 Objectives of Catalyst Shaping 173
9.2 Fixed-Bed Reactors – Particle Beds 177
9.2.1 Pelleting 177
9.2.2 Granulation 179
9.2.3 Extrusion 181
9.2.4 Tailoring of the Pore-Size Distribution 184
9.2.5 Fixed-Bed Egg-Shell Catalysts 186
9.3 Fixed-Bed Reactors – Monoliths 187
9.3.1 Honeycombs 187
9.3.1.1 Ceramic Honeycombs 188
9.3.1.2 Metallic Honeycombs 190
9.3.2 Open-Cell Foams 192
9.3.3 Coating of Monoliths 194
9.4 Catalysts for Moving-Bed Reactors 195
9.5 Catalysts for Fluidized Beds 196
References 198
10 **Space and Time-Resolved Spectroscopy of Catalyst Bodies** 201
Bert M. Weckhuysen
10.1 Introduction 201
10.2 Space- and Time-Resolved Methods Applied to Catalyst Bodies 201
10.2.1 Invasive Methods 202
10.2.2 Noninvasive Methods 205
10.3 Case Studies 209
10.3.1 Keggin-Type Co-Mo Complexes in Catalyst Bodies 209
10.3.2 Speciation of Co Complexes in Catalyst Bodies 212
10.4 Future Prospects 215
Acknowledgments 215
References 216

11 **High-Throughput Experimentation** 217
Uwe Rodemerck and David Linke
11.1 Introduction 217
11.2 Synthesis Strategies 219
11.2.1 Combinatorial Strategies 220
11.2.2 Methods to Reduce Experiments 220
11.3 Catalyst Libraries for Primary Screening 223
11.3.1 Wafer-Based Preparation 223
11.3.2 Single Pellets 224
11.3.3 Single Beads 225
11.4 Catalyst Libraries for Secondary Screening 225
11.4.1 Impregnation Techniques 226
11.4.2 Precipitation 226
11.4.3 Hydrothermal Synthesis 230
11.4.4 Sol-Gel Chemistry 231
11.4.5 Drying, Calcination, and Shaping 231
11.5 Catalyst Libraries for Special Reactor Types 234
11.6 An Industrial Point of View 234
11.7 Conclusions 235
References 236

Part II Case Studies

12 **Concepts for Preparation of Zeolite-Based Catalysts** 243
Metin Bulut and Pierre A. Jacobs
12.1 Introduction and Scope 243
12.2 Zeolite Effects in Catalysis 245
12.2.1 Brønsted Acidity in Metallosilicate Zeolites 245
12.2.2 Zeolite Protonic Superacidity 246
12.2.3 Brønsted Acidity in Substituted Four-Coordinated Aluminophosphates 247
12.2.4 Zeolite Shape Selectivity 250
14.2 Typical Hydrotreating Catalyst 302
14.2.1 Typical Catalyst Composition 302
14.2.2 Literature Describing the Preparation of Hydrotreating Catalysts 302
14.3 Support Preparation 303
14.3.1 Precipitation of γ-Alumina 303
14.3.2 Addition of SiO₂ 305
14.3.3 Addition of Other Components (e.g. Zeolites) and Extrusion 305
14.4 Drying and Calcination of Al₂O₃ and SiO₂-Al₂O₃ Supports 307
14.4.1 Addition of Metals to the Al₂O₃ Dough 307
14.4.2 Bulk Catalysts 308
14.4.3 Drying and Calcination of Catalysts Prepared by Comixing/Coextrusion and Coprecipitation Routes 308
14.5 Impregnation of Metals 309
14.5.1 Typical Additives and Solution Stabilizers 309
14.5.2 Pore-Volume Impregnation versus Dipping/Equilibrium Impregnation of Compacted Support Particles 310
14.5.3 Sequential versus Coinregnation 314
14.5.4 Drying and Calcination 315
14.6 Presulfiding as the Last Stage in Hydrotreating Catalyst Preparation 318
14.6.1 Presulfiding Goals 318
14.6.2 Gas-Phase versus Liquid-Phase Presulfiding 319
14.6.3 Ex-situ versus In-situ Presulfiding 320
14.7 Industrial Process for the Production of the Oxidic Catalyst 323
14.7.1 Industrial Equipment 323
14.7.2 Health, Safety, and Environmental Issues 323
14.8 Summary 324
References 324

15 Methanol Catalysts 329
S. Schimpf and M. Muhler
15.1 Binary Cu/ZnO Catalysts 329
15.2 Coprecipitation 331
15.2.1 Precipitation 333
15.2.2 Aging 334
15.2.3 Washing 337
15.2.4 Drying and Calcination 337
15.2.5 Reduction 339
15.3 The Role of Alumina in Ternary Catalysts 341
15.4 Alternative Preparation Routes 344
15.4.1 Alternative Anions 344
15.4.2 Chemical Vapor Deposition 347
15.4.3 Promising Strategies 347
15.5 Conclusions 348
Preface

Solid catalysts are used in modern energy, chemical and environmental processes. Catalyst performance – activity, selectivity and stability – is largely determined by their preparation. In this respect, catalyst synthesis may be considered as one of the most influential ‘unit operations’ in industry. This book provides an introduction to basic concepts and research tools relevant to catalyst synthesis followed by a number of case studies. In this way it is an introduction to the field of catalyst synthesis for students and newcomers as well as a reference book for experienced scientists and practitioners. I hope that this book will stimulate the research field of catalyst synthesis and that it will support research and applications of solid catalysts by facilitating reliable and reproducible synthesis of materials.

For me it has been a privilege to work with so many colleagues in developing this book. I thank all of the lead authors as well as their co-authors for working with me on this project. It has been rewarding and I hope that we can continue to work together to foster and develop the field of catalyst synthesis.

I would like to thank Jos van Dillen and John Geus. They taught me as a graduate student at Utrecht University that catalyst synthesis is a research topic in its own right. For many years colleagues at the Shell Research Laboratories in Amsterdam provided a stimulating environment to synthesize and use solid catalysts. More recently at Utrecht University, staff, students and postdoctoral fellows have worked with me in the field of catalyst synthesis. Working with them has been a pleasure and is acknowledged.

Utrecht, December 2008

Krijn P. de Jong

Synthesis of Solid Catalysts. Edited by K. P. de Jong
© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32040-0
List of Contributors

Metin Bulut
KU Leuven
COK, Dept. M2S
23 Kasteelpark Arenberg
3001 Leuven (Heverlee)
Belgium

Xavier Carrier
Laboratoire de Réactivité
de Surface
(UMR 7197 CNRS)
UPMC (Université Pierre et
Marie Curie)
Tour 54-55
4 Place Jussieu
75252 Paris Cedex 05
France

Michel Che
Laboratoire de Réactivité
de Surface
(UMR 7197 CNRS)
UPMC (Université Pierre et
Marie Curie)
Tour 54-55
4 Place Jussieu
75252 Paris Cedex 05
France

Krijn P. de Jong
Utrecht University
Inorganic Chemistry
and Catalysis
Sorbonnelaan 16
3584 CA Utrecht
The Netherlands

Sonja Eijsbouts
Albemarle Catalysts Company BV
Research Centre Catalysts
1022 AB Amsterdam
The Netherlands

Sophie Hermans
Catholic University of Louvain
Departement de Chemie
Place Louis Pasteur, 1 bte. 3
1348 Louvain-la-Neuve
Belgium

Pierre A. Jacobs
KU Leuven
COK, Dept. M2S
23 Kasteelpark Arenberg
3001 Leuven (Heverlee)
Belgium
List of Contributors

Bettina Kraushaar-Czarnetzki
University of Karlsruhe
Institute of Chemical Process Engineering CVT
Kaiserstr. 12
76128 Karlsruhe
Germany

Miron V. Landau
Ben-Gurion Univ. of the Negev
Dept. of Chem. Engineering
Ben-Gurion av. 1
Beer-Sheva 84105
Israel

Dr. David Linke
Leibniz-Institut für Katalyse
Albert-Einstein-Str. 29a
18059 Rostock
Germany

Martin Lok
Johnson Matthey Catalysts
Belasis Avenue, Billingham
Cleveland, TS23 1LB
UK

Catherine Louis
Laboratoire de Réactivité de Surface
(UMR 7197 CNRS)
UPMC (Université Pierre et Marie Curie)
Tour 54-55
Lab. de Reactions de Surfactants
4 Place Jussieu
75252 Paris Cedex 05
France

Alexis Lycourghiotis
University of Patras
Department of chemistry
26500 Patras
Greece

Eric Marceau
Laboratoire de Réactivité de Surface
(UMR 7197 CNRS)
UPMC (Université Pierre et Marie Curie)
Tour 54-55
4 Place Jussieu
75252 Paris Cedex 05
France

Martin Muhler
Ruhr-Universität Bochum
LS für Technische Chemie
Universitätsstr. 150
44780 Bochum
Germany

Steffen Peter Müller
University of Karlsruhe (TH)
Institute of Chemical Process Engineering CVT
Kaiserstr. 12
76128 Karlsruhe
Germany

John R. Regalbuto
University of Illinois
Chemical Engineering
810 South Clinton Street
Chicago, IL 60607
USA

Uwe Rodemerck
Leibniz-Institut für Katalyse
Albert-Einstein-Str. 29a
18059 Rostock
Germany

Sabine Schimpf
Ruhr-Universität Bochum
LS für Technische Chemie
Universitätsstr. 150
44780 Bochum
Germany
Stuart Soled
ExxonMobil Research and Engineering Company
Corporate Strategic Research
1545 Rt. 22 East
Annandale, NJ 08801
USA

Ying Wan
Shanghai Normal University
Department of Chemistry
Guilin Road 100
Shanghai 200234
P. R. China

Bert M. Weckhuysen
Utrecht University
Inorganic Chemistry and Catalysis
Sorbonnelaan 16
3584 CA Utrecht
The Netherlands

Dongyuan Zhao
Fudan University
Laboratory of Advanced Materials
Department of Chemistry
Handan Road 220
Shanghai 200233
P. R. China
Abbreviations

AHM ammonium-hexa-molybdate
BM base metal
ccp cubic close packing
CNF carbon nanofiber
CNT carbon nanotube
CT charge transfer
CVD chemical vapor deposition
D4R double four-ring
D6R double six-ring
DFG Deutsche Forschungsgemeinschaft
DI dry impregnation
DoE design of experiment
DP deposition precipitation
DTG differential thermal gravimetry
EDF equilibrium deposition filtration
EDTA ethylene diamine tetraacetic acid
EDX energy-dispersive X-ray spectroscopy
EPR electron paramagnetic resonance
EXAFS extended X-ray absorption fine structure spectroscopy
FCC fluid catalytic cracking
FTIR Fourier transform infrared
hcp hexagonal close packing
HDMe hydrometallation
HDN hydrodenitrogenation
HDO hydrodeoxygenation
HDS hydrodesulfurization
HPA heteropolyacid
IA ion adsorption
ICI Imperial Chemical Industries
iep isoelectric point
IE ion exchange
IL ionic liquid
IR infrared

Synthesis of Solid Catalysts. Edited by K.P. de Jong
© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32040-0
Abbreviations

IWI
incipient wetness impregnation

IZA
International Zeolite Association

MAS-NMR
magic-angle sample spinning nuclear magnetic resonance

MMA
methyl methacrylate

MOF
metal organic framework

MRI
magnetic resonance imaging

MTBE
methyl tert-butylether

(M)HC
(mild) hydrocracking

NMR
nuclear magnetic resonance

NM
noble metal

NTA
nitrilo triacetic acid

OHP
outer Helmholtz plane

Pc
phthalocyanine

PMO
periodic mesoporous organosilica

PTA
platinum tetraammine

PZC
point of zero charge

QMS
quadrupole mass spectroscopy

RDP
reduction deposition precipitation

RFC
reactive frontal chromatography

RPA
revised physical adsorption

RT
room temperature

SAPO
SiAlPO₄

SCR
selective catalytic reduction

SDA
structure-directing agent

SEA
strong electrostatic adsorption

SRGO
straight run gas oil

STY
space time yield

3D
three-dimensional

TEA
triethanolamine

TEDDI
tomographic energy-dispersive diffraction imaging

TEM
transmission electron microscope

TEOS
tetraethylorthosilicate

TMA
tetramethylammonium

TMB
trimethyl benzene

TPA
tetrapropylammonium

TPD
temperature-programmed desorption

TPR
temperature-programmed reduction

2D
two-dimensional

USY
ultrastable Y

UV-VIS
ultraviolet-visible spectroscopy

VOC
volatile organic compound

XPS
X-ray photoelectron spectroscopy

XRD
X-ray diffraction
PART I
Basic Principles and Tools
General Aspects

Krijn P. de Jong

1.1 Importance of Solid Catalysts

Catalysis is essential to modern energy conversion, chemicals manufacture, and environmental technology. From the start, oil refining and bulk chemicals manufacture have relied largely on the application of solid catalysts. In the meantime, in specialty and fine-chemicals production catalysis is used frequently too. According to current estimates about 85% of all chemical processes make use of catalysis, while all molecules in modern transportation fuels have been confronted with one or more solid catalysts.

Heterogeneous catalysts, or more specifically solid catalysts, dominate industrial catalysis. Of all industrial catalytic processes, 80% involves the use of solid catalysts with the remaining 20% for homogeneous catalysts (17%) and biocatalysts (3%). The world catalyst sales in 2004 amounted to 15 billion US$/a, with 12 billion US$/a for solid catalysts. The growth rate foreseen for catalyst sales amounts to about 5% per year (see Table 1.1) [1]. Although the catalyst sales comprise a significant market, the economic impact of catalysts is amplified by their use. The products (mainly fuels and chemicals) obtained by catalysts usage generate a margin that is a multiple of the catalysts costs. Data are scarce but indicative figures have been reported. For zeolite catalysis a paper by Naber and coworkers quotes figures on the costs of zeolites and their upgrading in heavy-oil cracking [2]. From their figures one can estimate the ratio of product margin divided by zeolite costs to be around 100 for fluid catalytic cracking as well as hydrocracking. If all energy and chemical industries are involved a ratio of 100–300 has been published [3] and it seems sufficient for the sake of argument that the total gross margin of the “catalysis industry” amounts to more than 100 times the catalyst sales, that is, more than 1500 billion US$/a. The importance of research and manufacture of catalysts relates to this gross margin of their application.

Next to the economic importance we mention the environmental impact of catalysis. The amount of energy and raw materials needed for fuels and
chemicals manufacture is much reduced by using catalysts. In fact today, many products could not be obtained without catalysis. Although sulfur removal from oil products started as extraction processes, today’s low-sulfur diesel and gasoline could not be produced in an acceptable manner without hydrodesulfurization (HDS) catalysis. Exhaust catalysis has enabled the widespread use of cars, while selective catalytic reduction of nitrogen oxides has removed the brown plumes from power and chemical plants. In the future, the importance of catalysis will grow as raw materials for chemicals diversify and alternative energy sources and end use come into play. Building blocks in new energy chains, such as water electrolysis and fuel cells, also rely on solid catalysts.

1.2 Development of Solid Catalysts

In Table 1.2 selected solid catalysts are shown together with their main use. Bulk and supported catalysts as well as zeolite-based catalysts are listed. Many of the examples shown have been known for decades. However, a continuous and spectacular progress over the years is noted for many catalytic processes. We discuss two examples hereafter.

Based on the development of both catalysts and reactors [4, 5], the Fischer–Tropsch synthesis activity and selectivity of cobalt catalyst have increased as illustrated in Figure 1.1. The volume-based activity has increased by a factor of 10 going from 1940 at space time yield (STY) = 10 to 1990 at STY = 100, and another factor of 3 is expected to lead to STY = 300 by 2010. Most importantly, with increasing activity the catalysts displayed improved selectivities to higher hydrocarbons.

The second example, shown in Figure 1.2, involves the increase of the weight-based activity for HDS of NiMo catalysts over the years [6]. For quite a long period, say 1975–1995 the increase of activity has been modest, whereas a steep increase is apparent over the last decade. Low costs for HDS catalysts have been the predominating market factor for previous decades, whereas legislation for low-sulfur diesel has been a major driver lately. Market pull had...
1.3 Development of Solid Catalyst Synthesis

Depending on the application, macroscopic catalyst bodies differ in size and shape. For slurry and fluid-bed applications the size is in the range of

Table 1.2 Survey of selected catalysts with their main applications.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni/SiO₂</td>
<td>Hydrogenation</td>
</tr>
<tr>
<td>K₂O/Al₂O₃/Fe</td>
<td>Ammonia synthesis</td>
</tr>
<tr>
<td>Ag/α-Al₂O₃</td>
<td>Epoxidation</td>
</tr>
<tr>
<td>CrOₓ/SiO₂</td>
<td>Polymerization</td>
</tr>
<tr>
<td>CoMoSₓ/γ-Al₂O₃</td>
<td>Hydrotreating</td>
</tr>
<tr>
<td>Co/SiO₂</td>
<td>Fischer–Tropsch synthesis</td>
</tr>
<tr>
<td>Cu/ZnO/Al₂O₃</td>
<td>Methanol synthesis</td>
</tr>
<tr>
<td>Zeolite Y composite</td>
<td>Catalytic cracking</td>
</tr>
<tr>
<td>Pt/Mordenite</td>
<td>Hydroisomerization of light alkanes</td>
</tr>
<tr>
<td>V₂O₅/TiO₂</td>
<td>NOₓ abatement</td>
</tr>
<tr>
<td>Pt/C</td>
<td>Hydrogenation; fuel cell</td>
</tr>
</tbody>
</table>

![Figure 1.1](image1.png)

Figure 1.1 Development of cobalt-based Fischer–Tropsch synthesis in terms of both activity (STY = space time yield) and selectivity to hydrocarbons of five or more C-atoms. Data from 1940 to 2010 with data points from left to right at years 1940, 1990, and 2010, respectively.

quite an impact at all stages and it shows the great flexibility and potential of catalyst preparation to respond quickly.

One could easily put forward many other examples where catalyst preparation has been the basis for new and improved processes, such as methanol synthesis, ethene epoxidation, and acrylic acid production. However, for the topic of this book it is more important to discuss in which ways catalyst preparation has allowed these new developments.

1.3 Development of Solid Catalyst Synthesis

Depending on the application, macroscopic catalyst bodies differ in size and shape. For slurry and fluid-bed applications the size is in the range of
tens of micrometers, whereas fixed-bed applications require millimeter-sized particles. Next to particles, monoliths are used with macroscopic sizes well beyond that of particles (Chapter 9). A typical structure for a cylindrically shaped catalyst body for fixed-bed application is shown in Figure 1.3. This figure also reveals the multiple length scales involved in solid catalysts. The microscopic scale involves the structure of the active sites, the mesoscopic scale the pore system and the sizes of support particles as well as the particles of the active phase. The macroscopic length scale involves the size and shape of the catalyst bodies. The importance of the microscopic scale goes without saying as it determines the intrinsic activity and selectivity of the catalyst. The mesoscopic length scale affects, amongst others, the intraparticle mass transfer of the catalysts. The macroscopic size and shape is relevant for properties such as pressure drop (fixed-bed reactor), mechanical strength, and attrition resistance.

In catalyst manufacturing a final catalyst is usually obtained in multiple steps. Building blocks of the final catalyst may be obtained from sol-gel type processes with support materials such as alumina and silica as prime examples. Also, zeolites and carbon are relevant catalyst building
1.3 Development of Solid Catalyst Synthesis

Table 1.3 Generations of solid catalysts according to manufacturing techniques.

<table>
<thead>
<tr>
<th>Period</th>
<th>Material type</th>
<th>Key production step</th>
<th>Example – material and process</th>
</tr>
</thead>
<tbody>
<tr>
<td>~1890</td>
<td>Natural</td>
<td>Shaping</td>
<td>Bauxite; Claus process</td>
</tr>
<tr>
<td>~1930</td>
<td>Natural</td>
<td>Shaping</td>
<td>Clays; catalytic cracking</td>
</tr>
<tr>
<td>~1940</td>
<td>Synthetic</td>
<td>Impregnation</td>
<td>Pt/Al₂O₃; reforming</td>
</tr>
<tr>
<td>~1970</td>
<td>Synthetic</td>
<td>Precipitation</td>
<td>Cu/ZnO/Al₂O₃; methanol synthesis</td>
</tr>
<tr>
<td>~1980</td>
<td>Synthetic</td>
<td>Hydrothermal</td>
<td>ZSM-5; methanol-to-gasoline</td>
</tr>
<tr>
<td>>2000</td>
<td>Nanostructured</td>
<td>Templating, CVD</td>
<td>MCM-41, SBA-15, CNF, CNT</td>
</tr>
</tbody>
</table>

See main text for an explanation of abbreviations.

blocks. The synthesis of these “building blocks” mostly leads to primary particles in the nanometer or micrometer range that have to be shaped to macroscopic sizes (Chapter 9). Subsequently, shaped particles can be loaded with active components via methods such as impregnation and drying or ion adsorption.

The development of the manufacture of solid catalyst synthesis is summarized in Table 1.3. The first solid catalysts comprised of supports and active phase available from nature. Bauxite and clays are examples of active phases, while “diatomaceous earth” or “kieselguhr” is a natural source of silica support material. Using sol-gel chemistry synthetic support materials have been developed. Application techniques for the active phase based on impregnation and drying emerged during the twentieth century. Hydrothermal synthesis has been important for synthetic zeolites such as ZSM-5. Using micelle templating nanostructured silica (MCM-41, SBA-15) and other oxides have been produced during the last two decades. Using chemical vapor deposition (CVD) techniques nanostructured carbon materials such as carbon nanofibers (CNFs) and carbon nanotubes (CNTs) have been produced and explored as catalyst supports [7].

Figure 1.4 displays three generations of support materials, that is, natural silica (kieselguhr), silica gel and ordered mesoporous silica. Moving from natural (Figure 1.4a) to synthetic (Figure 1.4b) materials has greatly improved the control over composition and texture of the support in question. Although diatomaceous earth has been named “nature’s nanotechnology”, one should realize that, next to a low specific surface area and broad pore-size distribution, the variation in properties is a major issue. The latest advancement of synthetic nanostructured supports (Figure 1.4c) has not yet resulted in many new industrial catalysts. For fundamental studies on catalyst preparation, however, these materials are of great value with results that can be translated to more conventional support materials [8].
Here, we illustrate the impact of new supports, on the one hand, and new catalyst synthesis methods, on the other hand, by considering the showcase of the preparation of silica-supported cobalt catalysts for Fischer–Tropsch synthesis. In Figure 1.5 different generations of cobalt catalysts are shown. In Figure 1.5a a kieselguhr-supported cobalt catalyst is shown that has been prepared according to a recipe from the 1940s reported by Anderson [9] that involves precipitation in the presence of the support. The large amount of cobalt separate from the support is apparent as well as clustering of the cobalt particles. Using a synthetic silica gel and impregnation with aqueous cobalt...