Agent-Directed Simulation and Systems Engineering

Edited by
Levent Yilmaz and Tuncer Ören
Wiley Series in Systems Engineering and Management
Series Editor: Andrew P. Sage

A complete list of the titles in this series appears at the end of this volume.
Agent-Directed Simulation and Systems Engineering
The Editors

Prof. Levent Yilmaz
Auburn University
3116 Shelby Center
Computer Science and Software Engineering
College of Engineering
Auburn, AL 36849
USA

Prof. Tuncer Ören
University of Ottawa
Faculty of Engineering
800 King Edward
Ottawa, ON K1N 6N5
Canada

Cover
Spieszdesign,
Neu-Ulm, Germany.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for
Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages).
No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Typesetting le-tex publishing services GmbH, Leipzig
Printing betz-druck GmbH, Darmstadt
Binding Litges & Dopf GmbH, Heppenheim
Cover Design Spieszdesign, Neu-Ulm

ISBN 978-3-527-40781-1
To Funda
Levent Yılmaz

To Füsun
Tuncer Ören
Foreword

What makes agent software different from ordinary software? What can modeling and simulation contribute to agent systems? Conversely, is there a role for agents in modeling and simulation? This book is the first extended work to provide in-depth answers to these questions and others like them. Indeed, the term “agent” has become a ubiquitous “buzzword” used in an enormous variety of contexts to refer to a wide range of software attributes. So it is very timely to bring together a group of experts to offer their unique insights into various aspects of agent software as they relate primarily to modeling and simulation and to systems engineering. However, this book is more than a collection of essays on agents in their diverse applications. The editors, Tuncer Ören and Levent Yilmaz, combining depth of experience with bleeding-edge enthusiasm, provide a degree of coherence well beyond that usually seen in edited collections. In addition to writing some of the key chapters, the editors contribute new concepts and organizing principles that illuminate the current state of the art and reveal intriguing possibilities for theory and applications going forward.

The looseness of terminology in information technology is something we have grown to live with as the field has developed. Terms such as “agent” that have broad connotations are useful for such socially important activities as building communities of interest, organizing conferences, and successfully communicating with the nontechnical layperson. However, there comes a point where imprecise terminologies need to be given greater definitiveness so that critical concepts can be delineated and clarified, thereby allowing the field to move forward on a sounder foundation. To address this need, the book opens with a chapter that provides an integrative and comprehensive view of modeling and simulation, laying the basis for the rest of the book. Interspersed in the sequel are chapters that provide similarly foundational discussions of agent concepts, systems engineering, and the application of each one of these areas to the other. Whether you are a software developer, simulation practitioner, or systems engineer, you will find some eye-opening material in this presentation.

The central thesis of the book is that, while simulation in application to agents is fairly well established, the converse application of agents to the enterprise of modeling and simulation is much less appreciated and, as the editors assert, no less important. Indeed, Ören’s taxonomy in the opening chapter alone is worth the
price of admission. His framework enables one to consider the mutual synergies among modeling and simulation, system theories, systems engineering, software agents, and artificial intelligence. I can envision research professors and graduate students being stimulated to explore branches of this tree toward new research directions in proposals or dissertations.

As a contributor of a chapter to the book, I can attest that its title, “Agent-Directed Simulation and Systems Engineering”, challenged me to address its novel theme in the context of my own and fellow authors’ work. Interoperability has become a critical feature in modern systems of systems engineering. Testing for interoperability (the ability of independent systems to effectively communicate) has likewise become a necessary part of the overall system development process. Our work in this context employs foundational modeling and simulation concepts in novel ways. We use models derived from system requirements to execute in real time as agents deployed across a network to observe net-enabled collaboration of participants. In this way, agent, modeling and simulation, and systems engineering, concepts, and technologies are brought together to provide a testing solution that would be difficult to synthesize otherwise.

We used the term “agent-implemented” in our title (Chapter 13) to suggest the particular flavor of support provided by agents in this context. By all means, let the reader be challenged to find new species of agent-directed, enabled, oriented, or driven simulation to further the goals of model-based systems engineering. And conversely!

December 2008

Bernard P. Zeigler
Agent-Directed Simulation and Systems Engineering. Edited by Levent Yilmaz and Tuncer Ören
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40781-1

Contents

Foreword VII
Preface XIX
List of Contributors XXIII

Part One Background 1

1 Modeling and Simulation: a Comprehensive and Integrative View 3
 Tuncer I. Ören
 1.1 Introduction 3
 1.2 Simulation: Several Perspectives 4
 1.2.1 Purpose of Use 4
 1.2.2 Problem to Be Solved 8
 1.2.3 Connectivity of Operations 9
 1.2.4 M&S as a Type of Knowledge Processing 9
 1.2.5 M&S from the Perspective of Philosophy of Science 13
 1.3 Model-Based Activities 13
 1.3.1 Model Building 15
 1.3.2 Model-Base Management 15
 1.3.3 Model Processing 15
 1.3.4 Behavior Generation 17
 1.4 Synergies of M&S: Mutual and Higher-Order Contributions 20
 1.5 Advancement of M&S 20
 1.6 Preeminence of M&S 24
 1.6.1 Physical Tools 27
 1.6.2 Knowledge-Based or Soft Tools 27
 1.6.3 Knowledge Generation Tools 30
 1.7 Summary and Conclusions 32

2 Autonomic Introspective Simulation Systems 37
 Levent Yilmaz and Bradley Mitchell
 2.1 Introduction 37
 2.2 Perspective and Background on Autonomic Systems 39
 2.3 Decentralized Autonomic Simulation Systems: Prospects and Issues 41
Contents

2.3.1 Motivating Scenario: Adaptive Experience Management in Distributed Mission Training 41
2.3.2 An Architectural Framework for Decentralized Autonomic Simulation Systems 42
2.3.3 Challenges and Issues 44
2.4 Symbiotic Adaptive Multisimulation: An Autonomic Simulation System 47
 2.4.1 Metamodels for Introspection Layer Design 48
 2.4.2 Local Adaptation: First-Order Change via Particle Swarm Optimizer 50
 2.4.3 The Learning Layer: Genetic Search of Potential System Configurations 51
 2.4.4 SAMS Component Architecture 52
2.5 Case Study: UAV Search and Attack Scenario 55
 2.5.1 Input Factors 56
 2.5.2 Agent Specifications 57
2.6 Validation and Preliminary Experimentation with SAMS 64
 2.6.1 Face Validity of the UAV Model 65
 2.6.2 Experiments with the Parallel SAMS Application 67
2.7 Summary 70

Part Two Agents and Modeling and Simulation 73

3 Agents: Agenthood, Agent Architectures, and Agent Taxonomies 75
 Andreas Tolk and Adelinde M. Uhrmacher
 3.1 Introduction 75
 3.2 Agenthood 76
 3.2.1 Defining Agents 76
 3.2.2 Situated Environment and Agent Society 78
 3.3 Agent Architectures 79
 3.3.1 Realizing Situatedness 79
 3.3.2 Realizing Autonomy 81
 3.3.3 Realizing Flexibility 82
 3.3.4 Architectures and Characteristics 84
 3.4 Agenthood Implications for Practical Applications 86
 3.4.1 Systems Engineering, Simulation, and Agents 87
 3.4.2 Modeling and Simulating Human Behavior for Systems Engineering 88
 3.4.3 Simulation-Based Testing in Systems Engineering 91
 3.4.4 Simulation as Support for Decision Making in Systems Engineering 93
 3.4.5 Implications for Modeling and Simulation Methods 94
 3.5 Agent Taxonomies 96
 3.5.1 History and Application-Specific Taxonomies 96
 3.5.2 Categorizing the Agent Space 99
 3.6 Concluding Discussion 101
4 Agent-directed Simulation 111
Levent Yilmaz and Tuncer I. Ören
4.1 Introduction 111
4.2 Background 113
4.2.1 Software Agents 113
4.2.2 Complexity 113
4.2.3 Complex Systems of Systems 114
4.2.4 Software Agents within the Spectrum of Computational Paradigms 115
4.3 Categorizing the Use of Agents in Simulation 118
4.3.1 Agent Simulation 118
4.3.2 Agent-Based Simulation 119
4.3.3 Agent-Supported Simulation 119
4.4 Agent Simulation 120
4.4.1 A Metamodel for Agent System Models 120
4.4.2 A Taxonomy for Modeling Agent System Models 122
4.4.3 Using Agents as Model Design Metaphors: Agent-Based Modeling 123
4.4.4 Simulation of Agent Systems 127
4.5 Agent-Based Simulation 129
4.5.1 Autonomic Introspective Simulation 130
4.5.2 Agent-Coordinated Simulator for Exploratory Multisimulation 131
4.6 Agent-Supported Simulation 134
4.6.1 Agent-Mediated Interoperation of Simulations 135
4.6.2 Agent-Supported Simulation for Decision Support 139
4.7 Summary 141

Part Three Systems Engineering and Quality Assurance for Agent-Directed Simulation 145

5 Systems Engineering: Basic Concepts and Life Cycle 147
Steven M. Biemer and Andrew P. Sage
5.1 Introduction 147
5.2 Agent-Based Systems Engineering 148
5.3 Systems Engineering Definition and Attributes 148
5.3.1 Knowledge 149
5.3.2 People and Information Management 150
5.3.3 Processes 151
5.3.4 Methods and Tools 156
5.3.5 The Need for Systems Engineering 157
5.4 The System Life Cycle 157
5.4.1 Conceptual Design (Requirements Analysis) 160
5.4.2 Preliminary Design (Systems Architecting) 161
5.4.3 Detailed Design and Development 161
5.4.4 Production and Construction 163
5.4.5 Operational Use and System Support 164
5.5 Key Concepts of Systems Engineering 164
5.5.1 Integrating Perspectives into the Whole 164
5.5.2 Risk Management 165
5.5.3 Decisions and Trade Studies (the Strength of Alternatives) 166
5.5.4 Modeling and Evaluating the System 168
5.6 Summary 169

6 Quality Assurance of Simulation Studies of Complex Networked Agent Systems 173

Osman Balci, William F. Ormsby, and Levent Yilmaz

6.1 Introduction 173
6.2 Characteristics of Open Agent Systems 174
6.3 Issues in the Quality Assurance of Agent Simulations 175
6.4 Large-Scale Open Complex Systems – The Network-Centric System Metaphor 177
6.5 M&S Challenges for Large-Scale Open Complex Systems 179
6.6 Quality Assessment of Simulations of Large-Scale Open Systems 181
6.7 Conclusions 186

7 Failure Avoidance in Agent-directed Simulation: Beyond Conventional v&v and qa 189

Tuncer I. Ören and Levent Yilmaz

7.1 Introduction 189
7.1.1 The Need for a Fresh Look 189
7.1.2 Basic Terms 191
7.2 What Can Go Wrong 192
7.2.1 Increasing Importance of M&S 192
7.2.2 Contributions of Simulation to Failure Avoidance 192
7.2.3 Need for Failure Avoidance in Simulation Studies 194
7.2.4 Some Sources of Failure in M&S 196
7.3 Assessment for M&S 198
7.3.1 Types of Assessment 198
7.3.2 Criteria for Assessment 200
7.3.3 Elements of M&S to be Studied 200
7.4 Need for Multiparadigm Approach for Successful M&S Projects 200
7.4.1 V&V Paradigm for Successful M&S Projects 201
7.4.2 QA Paradigm for Successful M&S Projects 203
7.4.3 Failure Avoidance Paradigm for Successful M&S Projects 204
7.4.4 Lessons Learned and Best Practices for Successful M&S Projects 204
7.5 Failure Avoidance for Agent-Based Modeling 206
7.5.1 Failure Avoidance in Rule-Based Systems 207
7.5.2 Failure Avoidance in Autonomous Systems 208
7.5.3 Failure Avoidance in Agents with Personality, Emotions, and Cultural Background 209
7.5.4 Failure Avoidance in Inputs 210
7.6 Failure Avoidance for Systems Engineering 212
7.7 Conclusion 213
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Toward Systems Engineering for Agent-directed Simulation</td>
<td>Levent Yilmaz</td>
<td>219-235</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>What Is a System?</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>What Is Systems Engineering?</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>8.2.1</td>
<td>The Functions of Systems Engineering</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Modeling and Simulation</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>The Synergy of M&S and SE</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>8.4.1</td>
<td>The Role of M&S in Systems</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>8.4.2</td>
<td>Why Does M&S Require SE?</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>8.4.3</td>
<td>Why Is SSE Necessary?</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Toward Systems Engineering for Agent-Directed Simulation</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>8.5.1</td>
<td>The Essence of Complex Adaptive Open Systems (CAOS)</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>8.5.2</td>
<td>The Merits of ADS</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>8.5.3</td>
<td>Systems Engineering for Agent-Directed Simulation</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Sociocognitive Framework for ADS-SE</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>8.6.1</td>
<td>Social-Cognitive View</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>8.6.2</td>
<td>The Dimensions of Representation</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Functions for Analysis</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Case Study: Human-Centered Work Systems</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>8.7.1</td>
<td>Operational Level – Organizational Subsystem</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>8.7.2</td>
<td>Operational Level – Organizational Subsystem</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>8.7.3</td>
<td>Operational Level – Integration of Organization and Social Subsystems</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Technical Level</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>Conclusions</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Organizational Model</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>Organizational Structure</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>9.3.1</td>
<td>Organizational Structures in Organization Theory</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>9.3.2</td>
<td>Organizational Structures in Multiagent Systems</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>Organization and Environment</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>9.4.1</td>
<td>Environment Characteristics</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>9.4.2</td>
<td>Congruence</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>Organization and Autonomy</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td>Reorganization</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>9.6.1</td>
<td>Organizational Utility</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>9.6.2</td>
<td>Organizational Change</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>Organizational Design</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>9.7.1</td>
<td>Designing Organizational Simulations</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>9.7.2</td>
<td>Application Scenario</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>9.8</td>
<td>Understanding Simulation of Reorganization</td>
<td>256</td>
<td></td>
</tr>
</tbody>
</table>
9.8.1 Reorganization Dimensions 257
9.8.2 Analyzing Simulation Case Studies 257
9.9 Conclusions 263

10 Programming Languages, Environments, and Tools for Agent-directed Simulation 269
Yu Zhang, Mark Lewis, and Maarten Sierhuis
10.1 Introduction 269
10.2 Architectural Style for ADS 271
10.3 Agent-Directed Simulation – An Overview 272
10.3.1 Language 273
10.3.2 Environment 275
10.3.3 Service 276
10.3.4 Application 276
10.4 A Survey of Five ADS Platforms 277
10.4.1 Ascape 277
10.4.2 NetLogo 280
10.4.3 Repast 283
10.4.4 Swarm 286
10.4.5 Mason 289
10.5 Brahms – A Multiagent Simulation for Work System Analysis and Design 291
10.5.1 Language 291
10.5.2 Environment 295
10.5.3 Service 298
10.5.4 Application 299
10.6 CASESim – A Multiagent Simulation for Cognitive Agents for Social Environment 300
10.6.1 Language 302
10.6.2 Environment 302
10.6.3 Service 306
10.6.4 Application 310
10.7 Conclusion 312

11 Simulation for Systems Engineering 317
Joachim Fuchs
11.1 Introduction 317
11.2 The Systems Engineering Process 317
11.3 Modeling and Simulation Support 318
11.4 Facilities 320
11.5 An Industrial Use Case: Space Systems 321
11.5.1 Simulators for Analysis and Design 323
11.5.2 Facility for Spacecraft Qualification and Acceptance 325
11.5.3 Facility for Ground System Qualification and Testing and Operations 325
11.6 Outlook 325
11.7 Conclusions 327
12 Agent-directed Simulation for Systems Engineering 329
Philip S. Barry, Matthew T.K. Koehler, and Brian F. Tivnan
12.1 Introduction 329
12.2 New Approaches Are Needed 331
12.2.1 Employing ADS Through the Framework of Empirical Relevance 332
12.2.2 Simulating Systems of Systems 334
12.3 Agent-Directed Simulation for the Systems Engineering of Human Complex Systems 336
12.3.1 A Call for Agents in the Study of Human Complex Systems 337
12.3.2 Noteworthy Agent-Directed Simulations in the Science of Human Complex Systems 338
12.4 A Model-Centered Science of Human Complex Systems 338
12.5 An Infrastructure for the Engineering of Human Complex Systems 339
12.5.1 Components of the Infrastructure for Complex Systems Engineering 339
12.5.2 Modeling Goodness 341
12.5.3 The Genetic Algorithm Optimization Toolkit 341
12.6 Case Studies 344
12.6.1 Case Study 1: Defending The Stadium 345
12.6.2 Case Study 2: Secondary Effects from Pandemic Influenza 350
12.7 Summary 355

Part Four Agent-Directed Simulation for Systems Engineering 361

13 Agent-implemented Experimental Frames for Net-centric Systems Test and Evaluation 363
Bernard P. Zeigler, Dane Hall, and Manuel Salas
13.1 Introduction 363
13.2 The Need for Verification Requirements 364
13.3 Experimental Frames and System Entity Structures 366
13.4 Decomposition and Design of System Architecture 371
13.5 Employing Agents in M&S-Based Design, Verification and Validation 376
13.6 Experimental Frame Concepts for Agent Implementation 378
13.7 Agent-Implemented Experimental Frames 381
13.8 DEVS/SOA: Net-Centric Execution Using Simulation Service 382
13.8.1 Automation of Agent Attachment to System Components 382
13.8.2 DEVS-Agent Communications/Coordination 384
13.8.3 DEVS-Agent Endomorphic Models 386
13.9 Summary and Conclusions 388
13.A cAutoDEVS – A Tool for the Bifurcated Methodology 391

14 Agents and Decision Support Systems 399
Andreas Tolk, Poornima Madhavan, Jeffrey W. Tweedale, and Lakhmi C. Jain
14.1 Introduction 399
14.1.1 History 399
14.1.2 Motivating Agent-Directed Decision Support Simulation Systems 401
14.1.3 Working Definitions 403
14.2 Cognitive Foundations for Decision Support 405
14.2.1 Decision Support Systems as Social Actors 406
14.2.2 How to Present the System to the User and Improve Trust 407
14.2.3 Relevance for the Engineer 410
14.3 Technical Foundations for Decision Support 411
14.3.1 Machine-Based Understanding for Decision Support 412
14.3.2 Requirements for Systems When Being Used for Decision Support 413
14.3.3 Agent-Directed Multimodel and Multisimulation Support 417
14.3.4 Methods Applicable to Support Agent-Directed Decision Support Simulation Systems 418
14.4 Examples for Intelligent and Agent-Directed Decision Support Simulation Systems 421
14.4.1 Supporting Command and Control 421
14.4.2 Supporting Inventory Control and Integrated Logistics 423
14.5 Conclusion 426

15 Agent Simulation for Software Process Performance Analysis 433
Levent Yilmaz and Jared Phillips
15.1 Introduction 433
15.2 Related Work 435
15.2.1 Organization-Theoretic Perspective for Simulation-Based Analysis of Software Processes 435
15.2.2 Simulation Methods for Software Process Performance Analysis 436
15.3 Team-RUP: A Framework for Agent Simulation of Software Development Organizations 437
15.3.1 Organization Structure 437
15.3.2 Team-RUP Task Model 438
15.3.3 Team-RUP Team Archetypes and Cooperation Mechanisms 439
15.3.4 Reward Mechanism in Team-RUP 440
15.4 Design and Implementation of Team-RUP 441
15.4.1 Performance Metrics 443
15.4.2 Validation of the Model 444
15.5 Results and Discussion 445
15.6 Conclusions 447

16 Agent-Directed Simulation for Manufacturing System Engineering 451
Jeffrey S. Smith, Erdal Sahin, and Levent Yilmaz
16.1 Introduction 451
16.1.1 Manufacturing Systems 452
16.1.2 Agent-Based Modeling 453
16.2 Simulation Modeling and Analysis for Manufacturing Systems 454
16.2.1 Manufacturing System Design 455
16.2.2 Manufacturing Operation 458
16.3 Agent-Directed Simulation for Manufacturing Systems 463
Preface

Simulation is the enabling technology for hundreds of very important application areas requiring any type of decision support (such as prediction, evaluation, testing, planning, acquisition, and proof of concept), understanding, and education, as well as training to develop and/or enhance motor skills to gain proficiency in the use of equipment, decision making and communication skills, and operational skills by getting real-life-like experience in controlled environments.

The maturity of simulation is (1) facilitated by the advances of computer hardware, software engineering, artificial intelligence, software agents, and system theories; (2) due to the dedicated contributions of several simulationists, the requirements of advanced users, and the support of influential people who realize its importance; and (3) achieved through developments, improvements, and especially through several paradigm shifts. As presented by Thomas Kuhn in his seminal book *The Structure of Scientific Revolutions*, three stages are necessary for a paradigm shift to occur. In the first stage, a paradigm becomes dominant. In the second stage, limitations or problems with the dominant paradigm are observed or better anticipated. In the third stage, a new paradigm that would surpass these limitations and problems is proposed and after some delay becomes the new dominant paradigm.

This book emphasizes the benefits of a double synergy: first, the synergy of modeling and simulation with software engineering, which leads to agent-directed simulation; and then the synergy of agent-directed simulation with systems engineering.

The use of agents in computational modeling has now become pervasive. The power of agents comes partly from their ability to conceptualize problems and devise solutions in terms of interacting entities that communicate, collaborate, coordinate, and intentionally deliberate their actions and reactions. The significant benefit gained by an event-based interactive computing perspective over algorithmic computation is due to our new understanding of complex systems and the universal principles, as well as patterns underlying their mechanisms. This coherent theme about the significance of interaction spans complex systems from cellular mechanisms in systems biology, physiology, brain dynamics, organizational dynamics, ecosystems, as well as patterns of human behavior and culture that define the dynamics of sociotechnical, cognitive, and cultural systems. The call for decentralized problem solving, adaptation, and flexibility in systems engineering
is also resulting in increased use of agent technologies to engineer robustness and resilience into complex artificial systems, while increasing our ability to explore and understand information processes underlying natural systems.

The motivation behind this book, however, goes beyond recognition of these observations. Since its adoption by the simulation modeling and systems engineering communities, the use of agents, unfortunately, has been limited to development of models that use agents as design metaphors. Yet this limited treatment of agents in simulation and systems engineering misses opportunities where agent and simulation technologies are together a central theme. Thus this book aims to fill a gap in the agent, modeling and simulation, and systems engineering communities. By expanding our horizons on the use of agents in modeling and simulation to build, explore, and understand both artificial and natural systems, the book presents a comprehensive framework, called agent-directed simulation, that consists of three distinct, yet related, areas that can be grouped under two categories as follows.

1. Simulation for agents (agent simulation): simulation of agent systems in engineering, human and social dynamics, military applications, etc.
2. Agents for simulation: agent-supported simulation deals with the use of agents as a support facility to enable computer assistance in problem solving, experimentation, or enhancing cognitive capabilities; agent-based simulation focuses on the use of agents for the generation of model behavior in a simulation study.

While agent-based modeling is widely appreciated and used in model-based science and engineering, the potential use of agents in developing next-generation intelligent and adaptive simulators and their inclusion in the simulation frontend or backend interfaces are not yet as widely acknowledged. Furthermore, the growth of new advanced distributed computing standards along with the rapid rise of service orientation is providing a new context that acts as a critical driver for the development of next-generation systems. These standards revolve around pervasive computing, Web services, grid, autonomic computing, ambient intelligence, etc. The supporting role that intelligent agents can play in the design and development of such systems is becoming pervasive, and simulation plays a critical role in the analysis and design of such systems. The synergy between systems engineering, simulation modeling, and agent technologies is examined in this book to facilitate mutual advancement of each area.

To explore interrelations between systems engineering, simulation modeling, and agent technologies, the book is comprised of three parts. First, we start with a background section that includes a comprehensive overview of modeling and simulation, agent paradigm, systems engineering, and quality assurance. In the second part, we examine the use of systems engineering principles, formal methods, tools, toolkits, and environments for developing agent-directed simulation systems. The final section focuses on the role that agent-directed simulation can play in various systems engineering problems such as testing and evaluation, process performance analysis, decision support, and organization and work system engineering.
Writing this book would not have been possible without the support of many people. The efforts of the referees were instrumental in shaping the contents. Esther Dörring, Anja Tschörtner, and other staff members at Wiley were also very helpful in facilitating the process as well as in supporting the production and final camera-ready copy. Special thanks to authors, since without their intellectual work and creative contributions this book could not exist.

We hope that the introduction of agent-directed simulation and systems engineering as a comprehensive framework that expands our horizons on the mutual contributions of modeling and simulation, software agents, and systems engineering will achieve a broader impact of the associated theories, methodologies, and applications and that challenging and complex problems can be tackled more appropriately. We both wish everyone a pleasant and fruitful time reading and using this book.

December 2008

Levent Yilmaz and Tuncer Ören
List of Contributors

Osman Balci
Virginia Tech
Department of Computer Science
3160B Torgersen Hall, MC 0106
Blacksburg, VA 24061
USA

Philip S. Barry
MiTRE Corporation
McLean, VA 22101
USA

Steven M. Biemer
Johns Hopkins University
Whiting School of Engineering
3400 North Charles Street
Baltimore, MD 21218-2608
USA

William J. Clancey
NASA Ames Research Center
Intelligent Systems Division
Moffett Field, CA 94035
USA

Frank Dignum
Utrecht University
Department of Information and Computing Sciences
Centrumgebouw Noord
Padualaan 14
De Uithof/3584 CH Utrecht
The Netherlands

Virginia Dignum
Utrecht University
Department of Information and Computing Sciences
Centrumgebouw Noord
Padualaan 14
De Uithof/3584 CH Utrecht
The Netherlands

Joachim Fuchs
European Space Agency
2200 AG Noordwijk
The Netherlands

Dane Hall
BAE Systems
Sierra Vista, AZ 85706
USA

Lakhmi C. Jain
University of South Australia
School of Electrical and Information Engineering
Mawson Lakes Campus
Mawson Lakes, SA 5095
Australia

Matthew T.K. Koehler
MiTRE Corporation
McLean, VA 22101
USA
Mark Lewis
Trinity University
Department of Computer Science
San Antonio, TX 78212-7400
USA

Poornima Madhavan
Old Dominion University
Department of Engineering Management and Systems Engineering
Kaufman Hall
Norfolk, VA 23529
USA

Bradley Mitchell
Auburn University
3116 Shelby Center
Computer Science and Software Engineering
College of Engineering
Auburn, AL 36849
USA

Andrew P. Sage
George Mason University
Systems Engineering & Operations Research
MS4A6
4400 University Drive
Fairfax, VA 22030
USA

Erdal Sahin
Auburn University
3116 Shelby Center
Computer Science and Software Engineering
College of Engineering
Auburn, AL 36849
USA

Manuel Salas
Modular Mining Systems, Inc.
3289 Hemisphere Loop
Tucson, AZ 85706-5028
USA

William F. Ormsby
Naval Surface Warfare Center
6149 Welsh Road, Suite 203
Dahlgren, VA 22448
USA

Maarten Sierhuis
NASA Ames Research Center
Carnegie Mellon Silicon Valley
Moffett Field, CA 94035-1000
USA

Tuncer I. Ören
University of Ottawa
Faculty of Engineering
800 King Edward
Ottawa, ON, K1N 6N5
Canada

Liz Sonenberg
The University of Melbourne
Department of Information Systems
Victoria 3010
Melbourne
Australia

Jared Phillips
Auburn University
3116 Shelby Center
Computer Science and Software Engineering
College of Engineering
Auburn, AL 36849
USA

Chin H. Seah
NASA Ames Research Center
SGT, Inc.
Moffett Field, CA 94035-1000
USA
Jeffrey Smith
Auburn University
3116 Shelby Center
Computer Science
and Software Engineering
College of Engineering
Auburn, AL 36849
USA

Brian F. Tivnan
MiTRE Corporation
McLean, VA 22101
USA

Andreas Tolk
Old Dominion University
Department of Engineering
Management and Systems Engineering
Kaufman Hall
Norfolk, VA 23529
USA

Jeffrey W. Tweedale
University of South Australia
School of Electrical and Information Engineering
Mawson Lakes Campus
Mawson Lakes, SA 5095
Australia

Adelinde M. Uhrmacher
University of Rostock
Institute of Computer Science
Albert-Einstein-Str. 21
18059 Rostock
Germany

Levent Yilmaz
Auburn University
3116 Shelby Center
Computer Science
and Software Engineering
College of Engineering
Auburn, AL 36849
USA

Bernard P. Zeigler
University of Arizona
Department of Electrical and Computer Engineering
1230 E. Speedway Blvd.
Tucson, AZ 85721
USA

Yu Zhang
Trinity University
Department of Computer Science
San Antonio, TX 78212-7400
USA
Part One Background