Cinchona Alkaloids in Synthesis and Catalysis

Ligands, Immobilization and Organocatalysis

Edited by
Choong Eui Song
Cinchona Alkaloids in
Synthesis and Catalysis

Edited by
Choong Eui Song
Further Reading

Crabtree, R. H. (ed.)

Handbook of Green Chemistry - Green Catalysis
2009
Hardcover
ISBN: 978-3-527-31577-2

Kollár, L (ed.)

Modern Carbonylation Methods
2008
Hardcover
ISBN: 978-3-527-31896-4

Börner, A. (ed.)

Phosphorus Ligands in Asymmetric Catalysis - Synthesis and Applications
2008
Hardcover
ISBN: 978-3-527-31746-2

Yamamoto, H., Ishihara, K. (eds.)

Acid Catalysis in Modern Organic Synthesis
2008
Hardcover
ISBN: 978-3-527-31724-0

Maruoka, K. (ed.)

Asymmetric Phase Transfer Catalysis
2008
Hardcover
ISBN: 978-3-527-31842-1

Stepnicka, P. (ed.)

Ferrocenes - Ligands, Materials and Biomolecules
Hardcover
ISBN: 978-0-470-03585-6

Christmann, M., Bräse, S. (eds.)

Asymmetric Synthesis - The Essentials
2008
Softcover
ISBN: 978-3-527-32093-6

Hudlicky, T., Reed, J. W.

The Way of Synthesis - Evolution of Design and Methods for Natural Products
2007
Hardcover
ISBN: 978-3-527-32077-6

Hiersemann, M., Nubbemeyer, U. (eds.)

The Claisen Rearrangement - Methods and Applications
2007
Hardcover
ISBN: 978-3-527-30825-5

Cornils, B., Herrmann, W. A., Muhler, M., Wong, C.-H. (eds.)

Catalysis from A to Z - A Concise Encyclopedia
2007
Hardcover
ISBN: 978-3-527-31438-6
Cinchona Alkaloids in Synthesis and Catalysis

Ligands, Immobilization and Organocatalysis

Edited by
Choong Eui Song
To my wife Teresa
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>XV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biography</td>
<td>XVII</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>XIX</td>
</tr>
</tbody>
</table>

1 An Overview of Cinchona Alkaloids in Chemistry

Choong Eui Song

1.1 Brief History
1.2 Active Sites in Cinchona Alkaloids and Their Derivatives
1.3 Structural Information on Cinchona Alkaloids
1.4 How This Book Is Organized
References

Part One Cinchona Alkaloid Derivatives as Chirality Inducers in Metal-Catalyzed Reactions

2 Cinchona Alkaloids as Chirality Transmitters in Metal-Catalyzed Asymmetric Reductions

Hans-Ulrich Blaser

2.1 Introduction
2.2 Homogeneous Systems for Ketone Reductions
2.3 Heterogeneous Pt and Pd Catalysts Modified with Cinchona Alkaloids
2.3.1 Background
2.3.2 Catalysts
2.3.3 Modifiers and Solvents
2.3.4 Substrate Scope for Pt Catalysts
2.3.4.1 α-Keto Acid Derivatives
2.3.4.2 α,γ-Diketo Esters
2.3.4.3 Fluorinated Ketones
2.3.4.4 α-Keto Acetals
2.3.4.5 α-Keto Ethers
2.3.4.6 Miscellaneous Ketones
2.3.5 Substrate Scope for Pd Catalysts 21
2.4 Industrial Applications 22
2.5 Conclusions 25
References 26

3 Cinchona Alkaloids as Chiral Ligands in Asymmetric Oxidations 29
David J. Ager
3.1 Introduction 29
3.2 Asymmetric Dihydroxylation of Alkenes 30
3.2.1 Early Reactions 30
3.2.2 Bisalkaloid Ligands 33
3.2.3 Mechanism 35
3.2.4 Variations 36
3.2.5 Substrates and Selectivity 38
3.2.5.1 Simple Alkenes 38
3.2.5.2 Functionalized Alkenes 38
3.2.5.3 Polyenes 43
3.2.5.3.1 Nonconjugate Olefins 43
3.2.5.3.2 Conjugated Polyenes 43
3.2.5.4 Double Asymmetric Induction 44
3.2.5.5 Resolutions 50
3.2.6 Some Reactions of 1,2-Diols 51
3.2.6.1 Cyclic Sulfates and Sulfoxides 54
3.3 Aminohydroxylation 56
3.4 Sulfur Oxidations 61
3.5 Summary 61
References 62

4 Cinchona Alkaloids and their Derivatives as Chirality Inducers in Metal-Promoted Enantioselective Carbon–Carbon and Carbon–Heteroatom Bond Forming Reactions 73
Ravindra R. Deshmukh, Do Hyun Ryu, and Choong Eui Song
4.1 Introduction 73
4.2 Nucleophilic Addition to Carbonyl or Imine Compounds 74
4.2.1 Organozinc Addition 74
4.2.1.1 Dialkylzinc Addition to Aldehydes 74
4.2.1.2 Dialkylzinc Addition to Imines 75
4.2.1.3 Addition of Alkynylzincs to Carbonyls 77
4.2.2 Asymmetric Reformatsky Reaction 78
4.2.3 Indium-Mediated Addition 79
4.2.4 Asymmetric Cyanation 81
4.2.4.1 Cyanohydrin Synthesis 81
4.2.4.2 Strecker Synthesis 84
4.2.5 Reactions of Chiral Ammonium Ketene Enolates as Nucleophiles with Different Electrophiles 86
4.2.5.1 Lewis Acid Assisted Nucleophilic Addition of Ketenes (or Sulfenes) to Aldehydes: β-Lactone and β-Sultone Synthesis 86
4.2.5.2 Lewis Acid Assisted Nucleophilic Addition of Ketenes to Imines: β-Lactam Synthesis 90
4.2.5.3 Applications of Chiral Ketene Enolates to Formal [4 + 2] type Cyclization 92
4.2.6 Aza-Henry Reaction 92
4.2.7 Enantioselective Hydrophosphonylation 93
4.3 Miscellaneous Reactions 94
4.3.1 Claisen Rearrangements 94
4.3.2 Pd-Catalyzed Asymmetric Allylic Substitutions 95
4.3.3 Pauson–Khand Reaction 97
4.3.4 Asymmetric Dimerization of Butadiene 98
4.3.5 Enantiotopic Differentiation Reaction of Mesocyclic Anhydrides 98
4.4 Cinchona-Based Chiral Ligands in C–F Bond Forming Reactions 99
4.5 Conclusions 100
References 101

Part Two Cinchona Alkaloid Derivatives as Chiral Organocatalysts 105

5 Cinchona-Based Organocatalysts for Asymmetric Oxidations and Reductions 107
 Ueon Sang Shin, Je Eun Lee, Jung Woon Yang, and Choong Eui Song
5.1 Introduction 107
5.2 Cinchona-Based Organocatalysts in Asymmetric Oxidations 108
5.2.1 Epoxidation of Enones and α,β-Unsaturated Sulfones Using Cinchona-Based Chiral Phase-Transfer Catalysts 108
5.2.1.1 Epoxidation of Acyclic Enones 108
5.2.1.2 Epoxidation of Cyclic Enones 113
5.2.1.3 Synthetic Applications of the Asymmetric Epoxidation of Enones Using Chiral PTCs 115
5.2.1.4 Epoxidation of α,β-Unsaturated Sulfones 117
5.2.2 Organocatalytic Asymmetric Epoxidation of Enones via Iminium Catalysis 118
5.2.3 Aziridination of Enones Using Cinchona-Based Chiral Phase-Transfer Catalyst 120
5.3 Cinchona-Based Organocatalysts in Asymmetric Reductions 125
5.4 Conclusions 127
References 128

6 Cinchona-Catalyzed Nucleophilic α-Substitution of Carbonyl Derivatives 131
 Hyeung-geun Park and Byeong-Seon Jeong
6.1 Introduction 131
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Organocatalytic Nucleophilic α-Substitution of Carboxyl Derivatives</td>
<td>131</td>
</tr>
<tr>
<td>6.3</td>
<td>Cinchona Alkaloids in Asymmetric Organocatalysis</td>
<td>133</td>
</tr>
<tr>
<td>6.4</td>
<td>The Pioneer Works for Phase-Transfer Catalytic α-Substitution</td>
<td>134</td>
</tr>
<tr>
<td>6.5</td>
<td>α-Substitution of α-Amino Acid Derivatives via PTC</td>
<td>135</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Monoalkylation of Benzophenone Imines of Glycine Esters</td>
<td>135</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Alkylation of α-Monosubstituted α-Amino Acid Derivatives</td>
<td>148</td>
</tr>
<tr>
<td>6.6</td>
<td>α-Substitution of Other Carboxyl Derivatives via PTC</td>
<td>150</td>
</tr>
<tr>
<td>6.6.1</td>
<td>α-Substitution of Monocarbonyl Compounds</td>
<td>150</td>
</tr>
<tr>
<td>6.6.2</td>
<td>α-Substitution of β-Keto Carbonyl Compounds</td>
<td>153</td>
</tr>
<tr>
<td>6.7</td>
<td>α-Heteroatom Substitution via PTC</td>
<td>156</td>
</tr>
<tr>
<td>6.7.1</td>
<td>α-Hydroxylation of Carboxyl Derivatives</td>
<td>156</td>
</tr>
<tr>
<td>6.7.2</td>
<td>α-Fluorination of Carboxyl Derivatives</td>
<td>157</td>
</tr>
<tr>
<td>6.8</td>
<td>Nucleophilic α-Substitution of Carboxyl Derivatives via Non-PTC</td>
<td>157</td>
</tr>
<tr>
<td>6.8.1</td>
<td>α-Arylation of Carboxyl Derivatives</td>
<td>158</td>
</tr>
<tr>
<td>6.8.2</td>
<td>α-Hydroxylation of Carboxyl Derivatives</td>
<td>159</td>
</tr>
<tr>
<td>6.8.3</td>
<td>α-Halogenation of Carboxyl Derivatives</td>
<td>160</td>
</tr>
<tr>
<td>6.8.4</td>
<td>α-Amination of Carboxyl Derivatives</td>
<td>162</td>
</tr>
<tr>
<td>6.8.5</td>
<td>α-Sulfenylation of Carboxyl Derivatives</td>
<td>165</td>
</tr>
<tr>
<td>6.9</td>
<td>Conclusions</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>Cinchona-Mediated Enantioselective Protonations</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Jacques Rouden</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>7.2</td>
<td>Preformed Enolates and Equivalents</td>
<td>172</td>
</tr>
<tr>
<td>7.3</td>
<td>Nucleophilic Addition on Ketenes</td>
<td>175</td>
</tr>
<tr>
<td>7.4</td>
<td>Michael Additions</td>
<td>178</td>
</tr>
<tr>
<td>7.5</td>
<td>Enantioselective Decarboxylative Protonation</td>
<td>184</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Copper-Catalyzed EDP</td>
<td>184</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Palladium-Catalyzed EDP</td>
<td>185</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Organocatalyzed EDP</td>
<td>188</td>
</tr>
<tr>
<td>7.6</td>
<td>Proton Migration</td>
<td>192</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary of Cinchona-Mediated Enantioselective Protonations</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>194</td>
</tr>
<tr>
<td>8</td>
<td>Cinchona-Catalyzed Nucleophilic 1,2-Addition to C=O and C=N Bonds</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Hyeong Bin Jang, Ji Woong Lee, and Choong Eui Song</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>197</td>
</tr>
<tr>
<td>8.2</td>
<td>Aldol and Nitroaldol (Henry) Reactions</td>
<td>198</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Aldol Reactions</td>
<td>198</td>
</tr>
<tr>
<td>8.2.1.1</td>
<td>Mukaiyama-Type Aldol Reactions</td>
<td>198</td>
</tr>
<tr>
<td>8.2.1.2</td>
<td>Direct Aldol Reactions</td>
<td>200</td>
</tr>
</tbody>
</table>
8.2.2 Henry Reactions 206
8.3 Mannich and Nitro-Mannich Reactions 209
8.3.1 Mannich Reactions 209
8.3.2 Nitro-Mannich (Aza-Henry) Reactions 215
8.4 Aldol- and Mannich-Related Reactions 218
8.4.1 Darzens Reactions 218
8.4.2 Morita–Baylis–Hillman Reactions and Aza-Morita–Baylis–Hillman Reactions 221
8.4.2.1 Morita–Baylis–Hillman Reactions 221
8.4.2.2 Aza-Morita–Baylis–Hillman Reactions 225
8.4.3 Nucleophilic Addition of Ammonium Ketene Enolate to C=O or C=N Bonds 228
8.5 Cyanation Reactions 229
8.5.1 Cyanohydrin Synthesis 229
8.5.2 Strecker Synthesis 232
8.6 Trifluoromethylation 234
8.7 Friedel–Crafts Type Alkylation 237
8.8 Hydrophosphonylation 240
8.9 Conclusions 244
References 244

9 Cinchona-Catalyzed Nucleophilic Conjugate Addition to Electron-Deficient C=C Double Bonds 249
Ji Woong Lee, Hyeong Bin Jang, and Choong Eui Song
9.1 Introduction 249
9.2 Conjugate Reaction of α,β-Unsaturated Ketones, Amides, and Nitriles 249
9.2.1 Natural Cinchona Alkaloids as Catalysts 249
9.2.2 PTC-Catalyzed Enantioselective Michael Addition Reactions 252
9.2.3 Non-PTC-Catalyzed Enantioselective Michael Addition Reactions 261
9.3 Conjugate Addition of Nitroalkenes 274
9.4 Conjugate Addition of Vinyl Sulfones and Vinyl Phosphates 284
9.4.1 Vinyl Phosphate 286
9.5 Cyclopropanation and Other Related Reactions 288
9.5.1 Cyclopropanation 288
9.5.2 Epoxidation and Aziridination 292
9.6 Conclusions 293
References 293

10 Cinchona-Catalyzed Cycloaddition Reactions 297
Yan-Kai Liu and Ying-Chun Chen
10.1 Introduction 297
10.2 Asymmetric Cycloadditions Catalyzed by Quinuclidine Tertiary Amine 297
10.3 Asymmetric Cycloadditions Catalyzed by Bifunctional Cinchona Alkaloids 308
10.4 Asymmetric Cycloaddition Reactions Catalyzed by Cinchona-Based Primary Amines 312
10.5 Asymmetric Cycloaddition Catalyzed by Cinchona-Based Phase-Transfer Catalysts 320
10.6 Conclusion 323
References 323

11 Cinchona-Based Organocatalysts for Desymmetrization of meso-Compounds and (Dynamic) Kinetic Resolution of Racemic Compounds 325
Ji Woong Lee, Hyeong Bin Jang, Je Eun Lee, and Choong Eui Song
11.1 Introduction 325
11.2 Desymmetrization of meso-Compounds 326
11.2.1 Desymmetrization of meso-Cyclic Anhydrides 326
11.2.1.1 Applications 336
11.2.2 Desymmetrization of meso-Diols 336
11.2.3 Desymmetrization of meso-Endoperoxides 341
11.2.4 Desymmetrization of meso-Phospholenes via Alkene Isomerization 344
11.2.5 Desymmetrization of meso-Epoxy Phospholenes to Allyl Alcohols via Rearrangement 345
11.2.6 Desymmetrization of Prochiral Ketones by Means of Horner–Wadsworth–Emmons Reaction 346
11.3 (Dynamic) Kinetic Resolution of Racemic Compounds 346
11.3.1 (Dynamic) Kinetic Resolution of Racemic Cyclic Anhydrides 346
11.3.2 (Dynamic) Kinetic Resolution of Racemic N-Cyclic Anhydrides 348
11.3.3 Dynamic Kinetic Resolution of Racemic Azlactones 350
11.3.4 Catalytic Sulfinyl Transfer Reaction via Dynamic Kinetic Resolution of Sulfinyl Chlorides 351
11.4 Conclusions 354
References 355

Part Three Organic Chemistry of Cinchona Alkaloids 359

12 Organic Chemistry of Cinchona Alkaloids 361
Hans Martin Rudolf Hoffmann and Jens Frackenpohl
12.1 Introduction 361
12.2 Preparation of Quincorine and Quincoridine: Discovery of a Novel Cleavage Reaction of Cinchona Alkaloids 364
12.3 Transformations of the Quinoline Moiety 366
12.4 Basic Transformations of the Vinyl Side Chain 368
12.4.1 Alkyne Cinchona Alkaloids, Their Derivatives, and Basic Transformations 368
12.4.1.1 The Ethynyl Group is Anything but a Spectator Substituent

Page 371

12.4.2 Fluorination of the Vinyl Side Chain

Page 374

12.4.3 Oxidation and Oxidative Cleavage of the Vinyl Group

Page 375

12.4.3.1 Oxidative Functionalization of Quincorine and Quincoridine

Page 380

12.4.4 Degradation of the Vinyl Side Chain: Synthesis of Cinchona Alkaloid Ketones

Page 381

12.5 Selected Novel Transformations of the Quinuclidine Moiety of Cinchona Alkaloids

Page 382

12.5.1 Cage Helicity and Further Consequences: Nucleophilic Attack on Quinuclidin-3-ones

Page 382

12.5.2 Transformations at Carbon C6 and Formation of Bridgehead Bicyclic Lactams

Page 389

12.5.3 Functionalization of Other Quinuclidine Carbons, for Example, C5 and C7

Page 393

12.6 Nucleophilic Substitution at Carbon C9

Page 394

12.6.1 Unusual Steric Course of Solvolysis of C9-Activated Alkaloids: Access to C9-epi-Configured Stereoisomers

Page 394

12.6.2 Replacing the C9-Hydroxy Group by Alternative Substituents

Page 396

12.6.3 Transformations of QCI and QCD at Carbon C9: Access to a Novel Class of Small Molecule Ligands

Page 399

12.7 Novel Rearrangements of the Azabicyclic Moiety

Page 403

12.7.1 First Cinchona Rearrangement

Page 403

12.7.2 Second Cinchona Rearrangement

Page 407

12.8 General Experimental Hints and Obstacles

Page 409

12.9 Conclusions

Page 412

References

Page 415

Part Four Cinchona Alkaloid and Their Derivatives in Analytics

Page 419

13 Resolution of Racemates and Enantioselective Analytics by Cinchona Alkaloids and Their Derivatives

Page 421

Karol Kacprzak and Jacek Gawronski

13.1 Introduction

Page 421

13.2 Resolution of Racemates by Crystallization and Extraction of Diastereoisomers

Page 423

13.2.1 Resolution of Racemates by Crystallization

Page 423

13.2.2 Resolution of Racemates by Enantioselective Extraction

Page 430

13.3 Enantioselective Chromatography and Related Techniques

Page 433

13.3.1 Early Attempts and Current Status

Page 434

13.3.2 Cinchona 9-O-Carbamates as CSPs in HPLC

Page 436

13.3.2.1 Applications

Page 437

13.3.2.2 Mechanistic Studies on Chiral Discrimination

Page 443

13.3.3 Other Cinchona-Based Selectors: Toward “Receptor-Like” CSPs

Page 447

13.3.4 Cinchona-Based Chiral Modifiers and Phases in Capillary Electrophoresis and Capillary Electrochromatography

Page 450
13.3.5 Other Chromatographic Techniques 452
13.4 Cinchona Alkaloids as Chiral Solvating (Shift) Agents in NMR Spectroscopy 453
13.5 Cinchona-Based Sensors, Receptors, and Materials for Separation and Analytics 455
References 464

Appendix: Tabular Survey of Selected Cinchona-Promoted Asymmetric Reactions 471
Ji Woong Lee and Choong Eui Song

Index 507
Preface

Since the pioneering works of H. Wynberg in the late 1970s and early 1980s, cinchona alkaloids have been intensively applied as either standalone catalysts or chiral ligands in catalytic asymmetric reactions and are now regarded as one of the most privileged chirality inducers. Indeed, today, nearly all classes of organic reactions can be effectively carried out with the use of cinchona alkaloids in a highly stereoselective fashion. Some of them are even used in large-scale processes, for example, the heterogeneous hydrogenation of α-ketoesters catalyzed by cinchona alkaloid-modified platinum, the Sharpless asymmetric dihydroxylation of olefins, and the asymmetric alkylation of indanones using cinchona alkaloid-derived chiral phase-transfer catalysts, and so on. Of these reactions, the osmium-catalyzed asymmetric dihydroxylation of olefins using cinchona alkaloid derivatives as chiral ligands has had the greatest impact on modern asymmetric catalysis. In 2001, the Nobel Prize in Chemistry was awarded to Professor Sharpless “for his pioneering work on chirally catalyzed oxidation reactions”.

In spite of the huge amount of attention that has been given to this research area and the immense success that has been obtained, surprisingly, no book on this topic has been published to date. So far, on this topic, only a few review articles on the use of cinchona alkaloids in asymmetric synthesis (Pracejus (up to 1967), Morrison and Mosher (up to 1970), Wynberg (up to 1986), Song (up to 1999), Gawronski (up to 2000), Deng (up to 2004), and Lectka (up to 2008), and so on) have appeared. However, these reviews are either dated or deal only with a specific reaction class. Thus, when I was invited to do so by Wiley-VCH Verlag GmbH, I felt that it was indeed an honor to be asked to serve as editor of this new and first handbook on cinchona alkaloids. I accepted the invitation with full confidence that this new and timely book would be warmly welcomed by many researchers.

This multiauthor handbook will cover the whole spectrum of cinchona alkaloid chemistry ranging from the fundamentals to industrial applications. This book is organized in four units, namely, the use of cinchona alkaloids as chirality inducers in metal-promoted reactions (Chapters 2–4), the use of cinchona alkaloids as chiral organocatalysts (Chapters 5–11), the organic chemistry of cinchona alkaloids themselves (Chapter 12), and the use of cinchona alkaloids as chiral discriminating agents...
in modern analysis (Chapter 13), reflecting the comprehensive current state of the art on cinchona alkaloid chemistry. All of the chapters are written by organic chemists at the forefront of research in this field and are able to provide an insider’s view.

In addition, a collection of carefully selected representative catalytic examples, organized by reaction type, is given in the Appendix. These tables will offer a great deal of information and be invaluable to anyone who wants to get the information of the current state of the art on this topic within a short time.

I hope this book will be of interest to all those involved in this field, from graduate students to independent organic researchers, both academic and industrial. Especially, this book should be a must to read for anyone working in the field of asymmetric synthesis.

Last but definitely not the least, I am very grateful to all of my colleagues for their excellent contributions to this book, despite their busy time schedules. Grateful acknowledgments are offered to the Wiley-VCH editorial staff, in particular to Dr Elke Maase, who gave me the good fortune of being the editor of this first handbook and who offered a great deal of help at the beginning of this project. I also thank Dr Stefanie Volk for her professional work during the production process.

Finally, I can hardly wait to see the spectacular achievements that will doubtless be made in this rapidly evolving research field in the near future and that will require this manual to be rapidly updated.

Suwon, February 2009

Choong Eui Song
Choong Eui Song has been a full professor at the Sungkyunkwan University since 2004. He received his B.S. in 1980 from Chungang University and obtained a diploma (1985) and a Ph.D. (1988) at RWTH Aachen in Germany. After completing his Ph.D., he worked as Principal Research Scientist at the Korea Institute of Science and Technology (KIST). In 2001, he was appointed as head of the National Research Laboratory for Green Chirotechnology in Korea. In 2004, he moved to his current position and in 2006 he was appointed as a director at the Research Institute of Advanced Nanomaterials and Institute of Basic Sciences at the Sungkyunkwan University. His research interests focus on asymmetric catalysis, ionic liquid chemistry, and nanochemistry. He received the Scientist of the Month Award from the Ministry of Science and Technology of Korea in 2001.
List of Contributors

David J. Ager
DSM Pharmaceutical Chemicals
PMB 150, 9650 Strickland Road, Suite 103
Raleigh, NC 27615
USA

Hans-Ulrich Blaser
Solvias AG
P.O. Box
CH-4002 Basel
Switzerland

Ying-Chun Chen
Sichuan University
West China School of Pharmacy
Department of Medicinal Chemistry
Chengdu 610041
China

Ravindra R. Deshmukh
Sungkyunkwan University
Department of Chemistry
300 Cheoncheon, Jangan, Suwon
Gyeonggi 440-746
Korea

Jacek Gawronski
Adam Mickiewicz University
Department of Chemistry
Grunwaldzka 6
60-780 Poznan
Poland

Hans Martin Rudolf Hoffmann
University of Hannover
Department of Organic Chemistry
Schneiderberg 1B
30167 Hannover
Germany

Hyeong Bin Jang
Sungkyunkwan University
Department of Chemistry
300 Cheoncheon, Jangan, Suwon
Gyeonggi 440-746
Korea

Jens Frackenpohl
Bayer CropScience AG
Gebäude G 836, Industriepark Höchst
65926 Frankfurt am Main
Germany

Byeong-Seon Jeong
Yeuangnam University
College of Pharmacy
Gyeongsan 712-749
South Korea
List of Contributors

Karol Kacprzak
Adam Mickiewicz University
Department of Chemistry
Grunwaldzka 6
60-780 Poznan
Poland

Je Eun Lee
Sungkyunkwan University
Department of Chemistry
300 Cheoncheon, Jangan, Suwon
Gyeonggi 440-746
Korea

Ji Woong Lee
Sungkyunkwan University
Department of Chemistry
300 Cheoncheon, Jangan, Suwon
Gyeonggi 440-746
Korea

Yan-Kai Liu
Sichuan University
West China School of Pharmacy
Department of Medicinal Chemistry
Chengdu 610041
China

Hyeung-geun Park
Seoul National University
College of Pharmacy
Seoul 151-742
South Korea

Jacques Rouden
Université de Caen-Basse Normandie
Laboratoire de Chimie Moléculaire et
Thio-organique, ENSICAEN, CNRS
6 Boulevard du Maréchal Juin
14050 Caen
France

Do Hyun Ryu
Sungkyunkwan University
Department of Chemistry
300 Cheoncheon, Jangan, Suwon
Gyeonggi 440-746
Korea

Ueon Sang Shin
Sungkyunkwan University
Department of Chemistry
300 Cheoncheon, Jangan, Suwon
Gyeonggi 440-746
Korea

Choong Eui Song
Sungkyunkwan University
Department of Chemistry
300 Cheoncheon, Jangan, Suwon
Gyeonggi 440-746
Korea

Jung Woon Yang
Sungkyunkwan University
Department of Chemistry
300 Cheoncheon, Jangan, Suwon
Gyeonggi 440-746
Korea
1
An Overview of Cinchona Alkaloids in Chemistry

Choong Eui Song

1.1
Brief History

Cinchona alkaloids (Figure 1.1), isolated from the bark of several species of cinchona trees, are the organic molecules with the most colorful biography [1]. Their history dates back to the early seventeenth century when they were first introduced into the European market after the discovery of the antimalarial property of cinchona bark and the subsequent isolation of its active compound, quinine, by Pierre-Joseph Pelletier and Joseph Bienaimé Caventou in 1820. Since then, cinchona alkaloids (especially, quinine) have played a pivotal medicinal role in human society for over 300 years. Approximately 700 metric tons of cinchona alkaloids is now extracted from the bark of *Cinchona ledgeriana* annually. Nearly half of this is used in the food and beverages industry as a bitter additive, and much of the remaining quinine and quinidine is used as an important antimalarial drug and muscle relaxant compound and as a cardiac depressant (antiarrhythmic), respectively.

The role of cinchona alkaloids in organic chemistry was firmly established with the discovery of their potential as resolving agents by Pasteur in 1853, which ushered in an era of racemate resolutions by the crystallization of diastereomeric salts [3]. Today, there are countless examples in which cinchona alkaloids are used as chiral resolving agents [4]. Besides the classical resolution process, significant progress has also been made in the past two decades in the field of cinchona-based enantioseparation, as well as in their use as enantioselective analytical tools (Chapter 13). The considerable effort made to accomplish the stereoselective synthesis of quinine over the past 150 years, which was initially triggered by the supply problem caused by political vagaries of the producing countries, has also undoubtedly laid the foundation for much of modern organic chemistry [5]. However, possibly the most interesting application of cinchona alkaloids in chemistry resides in their ability to promote enantioselective transformations in both homogeneous and heterogeneous catalyses (Chapters 2–11). The first asymmetric reaction carried out using a cinchona base was published by Bredig and Fiske [6] as early as in 1912. These two German chemists reported
that the addition of HCN to benzaldehyde is accelerated by the pseudoenantiomeric alkaloids, quinine and quinidine, and that the resulting cyanohydrins are optically active and are of opposite chirality. However, the optical yields achieved were in the range of $< 10\%$ ee. After about four decades, Pracejus was first to obtain useful levels of enantioselectivity (74% ee) by using O-acetylquinine as a catalyst ($1 \text{ mol}\%$) in the addition of methanol to phenylmethylketene, affording (−)-α-phenyl methylpropionate [7]. Two decades later (in the late 1970s and early 1980s) after Pracejus’ seminal study, Wynberg and coworkers began a new era in asymmetric catalysis driven by cinchona alkaloids [8]. Their extensive studies on the use of cinchona alkaloids as chiral Lewis base/nucleophilic catalysts demonstrated that this class of alkaloids could serve as highly versatile catalysts for a broad spectrum of enantioselective transformations (e.g., conjugate additions and the addition of ketenes to carbonyl compounds, resulting in β-lactones). Since their pioneering studies, the popularity of cinchona derivatives in asymmetric catalysis has increased considerably. During the late 1980s and early 1990s, quite successful examples in terms of the catalytic activity and enantioselectivity have been reported, where the asymmetry was induced by cinchona alkaloids. In particular, Sharpless and coworkers developed the osmium-catalyzed asymmetric dihydroxylation (AD) of olefins [9], which is one of the reactions that has had the greatest impact on synthetic chemistry and for which Sharpless was awarded the Nobel Prize in chemistry in 2001. Furthermore, since 2000, explosively expanding interest in chiral organocatalysis as a new stream of catalysis [10] has sparked a second renaissance in the use of cinchona alkaloids as organocatalysts. Thus, nowadays, cinchona alkaloids and their derivatives are classified as the most “privileged organic chirality inducers,” efficiently catalyzing nearly all classes of organic reactions in a highly stereoselective fashion (Chapters 5–11).

Figure 1.1 Quinine and other cinchona alkaloids are extracted from the bark of the cinchona tree [2], which is mainly cultivated in Africa, Latin America, and Indonesia. Approximately 700 metric tons of cinchona alkaloids is harvested annually.
1.2 Active Sites in Cinchona Alkaloids and Their Derivatives

As mentioned in the previous section, nowadays, readily available and inexpensive cinchona alkaloids with pseudoenantiomeric forms, such as quinine and quinidine or cinchonine and cinchonidine, are among the most privileged chirality inducers in the area of asymmetric catalysis. The key feature responsible for their successful utility in catalysis is that they possess diverse chiral skeletons and are easily tunable for diverse types of reactions (Figure 1.2). The presence of the 1,2-aminoalcohol subunit containing the highly basic and bulky quinuclidine, which complements the proximal Lewis acidic hydroxyl function, is primarily responsible for their catalytic activity.

The presence of the quinuclidine base functionality makes them effective ligands for a variety of metal-catalyzed processes (Chapters 2–4). The most representative example is the osmium-catalyzed asymmetric dihydroxylation of olefins [9]. The metal binding properties of the quinuclidine nitrogen also allow to use cinchona alkaloids as metal surface modifiers, for example, in the highly enantioselective heterogeneous asymmetric hydrogenation of \(\alpha \)-keto esters (Chapter 2). Both

![Figure 1.2 Active sites in cinchona alkaloids and their derivatives.](image-url)
reactions are classified as ligand-accelerated catalyses (LAC) [11]. In addition to its utility for metal binding, the quinuclidine nitrogen can be used as a chiral base or a chiral nucleophilic catalyst promoting the vast majority of organocatalytic reactions (Chapters 5–11). Finally, the related quaternized ammonium salts of cinchona alkaloids have proved to catalyze numerous reactions under phase-transfer conditions, where asymmetric inductions occur through a chiral ion pairing mechanism between the cationic ammonium species and an anionic nucleophile [12].

The secondary 9-hydroxy group can serve as an acid site or hydrogen bond donor [13]. The derivatization of the OH group into ureas, amides, and so on, with either the retention or inversion of the configuration, provides a more powerful acidic site or hydrogen bond donor. The 6′-methoxy group of quinine and quinidine can also be readily derivatized to the free OH group or thiourea moiety, which can serve as an effective H-bond donor. Moreover, the substitution of 9-OH into the free amino group with the inversion of the configuration enables enantioselective aminocatalysis, which includes reactions of the so-called generalized enamine cycle [14] and charge accelerated reactions via the formation of iminium intermediates [15]. Representative examples of modified cinchona alkaloids are depicted in Figure 1.3.

However, in general, these active sites in cinchona alkaloids and their derivatives act in catalysis not independently but cooperatively; that is, they activate the reacting molecules simultaneously. Furthermore, in many cases, the catalysis is also supported by a π–π interaction with the aromatic quinoline ring or by its steric hindrance.

1.3 Structural Information on Cinchona Alkaloids

Cinchona alkaloids have characteristic structural features for their diverse conformations and self-association phenomena. Therefore, knowledge of their “real structure” in solution can provide original information on the chiral inducing and discriminating ability of these alkaloids.

Conformational investigations of this class of alkaloids, based on computational and spectroscopic methods, have been undertaken with the aim of providing information that would help understand these chiral induction and discrimination processes. Dijkstra et al. were the first to investigate in 1989 the conformational behavior by means of NMR spectroscopic and molecular mechanics (MM) calculations and identify that the C8–C9 and C4′–C9 bonds are the most important in determining the overall conformation, resulting in four low-energy conformers (syn-closed, syn-open, anti-closed, and anti-open conformers) (Figure 1.4) [16]. MM calculations showed that the parent alkaloids preferentially adopt an anti-open conformation in nonpolar solvents [16]. More sophisticated ab initio calculations conducted later also revealed that anti-open is the most stable conformer in apolar solvents [17, 18]. In polar solvents, two other conformers, syn-closed and anti-closed, are strongly stabilized compared to the anti-open conformer, due to the greater support provided by their large dipole moments [18]. For example, in polar solvents, the fraction of cinchonidine adopting a closed conformation is more than 50% at
Figure 1.3 Representative examples of cinchona alkaloid derivatives.
room temperature. However, upon protonation, the anti-open conformation is observed exclusively [18]. The protonation of cinchona alkaloids appears to hinder their rotation around the C4'-C9 and C9-C8 bonds and favor only a narrow range of the conformational space of the molecule [19].

The pivotal role of the conformational behavior of a cinchona alkaloid (e.g., cinchonidine) in its enantioselectivity was nicely illustrated in the platinum-catalyzed enantioselective hydrogenation of ketopantolactone in different solvents [18]. The achieved enantiomeric excess shows the same solvent dependence as the fraction of anti-open conformer in solution, suggesting that this conformer plays a crucial role in the enantiodifferentiation. As a more dramatic example, the solvent affects the absolute chirality of the product in the 1,3-hydron transfer reaction catalyzed by dihydroquinidine [20]. An NMR study revealed that the changes in the ratio between the two conformers of dihydroquinidine can explain the observed reversal of the sense of the enantioselectivity for this reaction when the solvent is changed from o-dichlorobenzene (open/closed ~60:40) to DMSO (open/closed ~20:80).

Undoubtedly, the modification of the structure of the cinchona alkaloid also has a significant effect on its conformational behavior in solution; esters [17] and 9-O-carbamoyl derivatives [21] exist as a mixture of two major anti-closed and anti-open conformers, while C9 methyl ethers prefer an anti-closed arrangement in noncoordinating solvents [17]. Here again, protonation provides the anti-open conformation as the sole stable form [16b]. In addition to the solvent polarity, many other factors such as intermolecular interactions are also responsible for the complex conformational behavior of cinchona alkaloids in solution.
Another characteristic structural feature of cinchona alkaloids is their multifunctional character and, thus, autoassociation phenomena are possible that could result in the strong dependency of their efficiency on the concentration and temperature [22, 23].

In 1969, Uskokovic and coworkers observed a concentration-dependent intermolecular interaction between dihydroquinine molecules [24]. The 1H NMR spectra of (−)-dihydroquinine and racemic dihydroquinine are clearly different under concentrated conditions; that is, this molecule can generate its own nonequivalence. However, at high dilution (0.01 M), this interaction disappeared. This indicates the existence of a self-association process mediated by intermolecular hydrogen bonding [24]. Moreover, the measurement of the molecular weight of quinine using osmometry conducted by Hiemstra and Wynberg revealed the presence of particles larger than monomeric quinine at 37 °C for a 16 mM solution in toluene. For concentrations less than 4 mM, on the other hand, quinine was almost completely monomeric [22].

In 1992, the coexistence of the monomer and dimers of quinine in chloroform solution was established by Salvadori and coworkers by investigating the temperature and concentration dependence of the NMR spectral parameters (chemical shift, NOE effect, relaxation time, etc.). The mole fraction of dimers was about 40% in 0.6 M solution [25]. The structure of the dimer determined from NOESY and the relaxation rate data is given in Figure 1.5. As shown in Figure 1.5, the dimer of quinine was shown to be a π-π complex with nearly parallel quinoline rings. A study carried out on the self-aggregation of chloroquine [26] gave similar results. Recently, the changes in the 13C chemical shifts at various concentrations were also used to study the self-association of quinine. T-shaped dimers formed by the quinoline rings were proposed [27].

Quite recently, we also observed that quinine-based thiourea derivatives showed dramatic concentration and temperature effects on the enantioselectivity in the alcoholytic desymmetrization of meso-cyclic anhydrides, which can also be attributed to the self-association of the catalyst [23]. Of course, the possibility that the variation in

![Figure 1.5 Conformation of quinine dimer from NMR results.](image-url)
the enantioselectivity is caused by a concentration-dependent change in the conformational composition cannot be ruled out. However, according to the results obtained by Salvadori [25], at least in the case of the parent alkaloids, the conformation is similar in the dimer and monomer. Quite recently, Soós and coworkers proved by means of NMR NOESY experiments and computational studies that the quinine thiourea catalyst exists in a dimeric form under concentrated conditions due to H-bond and T-type π–π interactions (Figure 1.6) [28].

As discussed, the solvent dipole moments, concentration, and temperature play a significant role in determining the structure of cinchona alkaloids and their derivatives in solution. In order to delineate the intimate details of the mechanism of action of cinchona alkaloids and their derivatives, a thorough understanding of their real structure in solution is needed. Furthermore, such detailed information on the real structure in solution would make it possible to develop new and more powerful chiral catalysts and discriminators.

1.4 How This Book Is Organized

The goal of this handbook is to provide up-to-date information on the whole spectrum of cinchona alkaloid chemistry. The authors have attempted to provide those who want to learn about the current state of the art on this topic and are willing to contribute actively to the extraordinary developments taking place in this field with an insider’s view of this subject. This book is organized in four units, namely, the use of cinchona alkaloids as chirality inducers in metal-promoted reactions (Chapters 2–4), as chiral organocatalysts (Chapters 5–11), the organic chemistry of cinchona alkaloids themselves (Chapter 12), and their use as chiral discriminating agents in modern analysis (Chapter 13). In addition, a collection of carefully selected representative catalytic examples organized according to the reaction type is given in the form of an appendix.