Asymmetric Catalysis on Industrial Scale

Challenges, Approaches, and Solutions

2nd edition

Edited by
Hans-Ulrich Blaser and Hans-Jürgen Federsel

WILEY-VCH Verlag GmbH & Co. KGaA
Related Titles

Chiral Ferrocenes in Asymmetric Catalysis
Synthesis and Applications
2010
ISBN: 978-3-527-32280-0

Ding, K., Uozumi, Y. (eds.)
Handbook of Asymmetric Heterogeneous Catalysis
2008
ISBN: 978-3-527-31913-8

Ma, S. (ed.)
Handbook of Cyclization Reactions
2010
ISBN: 978-3-527-32088-2

Gotor, V., Alfonso, I., García-Urdiales, E. (eds.)
Asymmetric Organic Synthesis with Enzymes
2008
ISBN: 978-3-527-31825-4

Royer, J. (ed.)
Asymmetric Synthesis of Nitrogen Heterocycles
2009
ISBN: 978-3-527-32036-3

Chorkendorff, I., Niemantsverdriet, J. W.
Concepts of Modern Catalysis and Kinetics
2007
ISBN: 978-3-527-31672-4

Tao, J., Lin, G.-Q., Liese, A.
Biocatalysis for the Pharmaceutical Industry
Discovery, Development, and Manufacturing
2009

Niemantsverdriet, J. W.
Spectroscopy in Catalysis
An Introduction
2007
ISBN: 978-3-527-31651-9

Swiegers, G.
Mechanical Catalysis
Methods of Enzymatic, Homogeneous, and Heterogeneous Catalysis
2009

Cornils, B., Herrmann, W. A., Muhler, M., Wong, C.-H. (eds.)
Catalysis from A to Z
A Concise Encyclopedia
2007
ISBN: 978-3-527-31438-6
Asymmetric Catalysis on Industrial Scale

Challenges, Approaches, and Solutions

2nd edition

Edited by
Hans-Ulrich Blaser and Hans-Jürgen Federsel
Production of chiral amines with isopropylamine as NH₂-donor, catalyzed by an omega-transaminase. The figure inserted in the glass flask shows a homology model of the enzyme. Prepared by Maria Svedendahl and Professor Per Berglund, Royal Institute of Technology, School of Biotechnology, Stockholm, Sweden.
Contents

<table>
<thead>
<tr>
<th>List of Contributors</th>
<th>XIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>XXIX</td>
</tr>
<tr>
<td>Hans-Ulrich Blaser and Hans-Jürgen Federsel</td>
<td></td>
</tr>
</tbody>
</table>

Part I New processes for Existing Active Compounds (APIs)

1 Some Recent Examples in Developing Biocatalytic Pharmaceutical Processes

Junhua Tao, J. Liu, and Z. Chen

1.1 Introduction

1.2 Levetiracetam (*Keppra*®)

1.3 Atorvastatin (*Lipitor*®)

1.4 Pregabalin (*Lyrica*®)

1.5 Conclusion

Acknowledgments

References

2 Enantioselective Hydrogenation: Applications in Process R&D of Pharmaceuticals

Kurt Püntener and Michelangelo Scalone

2.1 Introduction

2.2 Carbonyl Hydrogenations

2.2.1 Asymmetric Hydrogenation with Dynamic Kinetic Resolution of Racemic 1,4-Dibenzylpiperidin-3-one

2.2.2 Asymmetric Hydrogenation of Methyl 3-Oxotetradecanoate

2.2.3 Asymmetric Hydrogenation of 1,1,1-Trifluoroacetone

2.2.4 Asymmetric Transfer Hydrogenation of Levodione

2.3 Imine Hydrogenation

2.3.1 Asymmetric Hydrogenation of Hexabase Hydrogensulfate

2.4 Conclusion

References

Asymmetric Catalysis on Industrial Scale: Challenges, Approaches, and Solutions. 2nd Ed.
Edited by Hans-Ulrich Blaser and Hans-Jürgen Federsel
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32489-7
3 Chiral Lactones by Asymmetric Hydrogenation – a Step Forward in (+)-Biotin Production 27
Werner Bonrath, Reinhard Karge, Thomas Netscher, Felix Roessler, and Felix Spindler

3.1 Introduction: (+)-Biotin as an Example for the Industrial Production of Vitamins 27
3.2 Commercial Syntheses and Other Routes to (+)-Biotin by Total Synthesis 28
3.3 Catalytic Asymmetric Reduction of Cyclic Anhydride to γ-Lactone 31
3.4 Conclusion 37
Acknowledgments 38
References 38

4 Biocatalytic Asymmetric Oxidation for the Production of Bicyclic Proline Peptidomimetics 41
James J. Lalonde and Jack Liang

4.1 Introduction 41
4.2 Development of Routes to 1 and 2 43
4.2.1 Early Routes to 1 43
4.2.1.1 Synthesis of Cyclic Amino Acids via Cyanation of Imines 45
4.2.2 Early Routes to 2 46
4.3 Asymmetric Biocatalytic Amine Oxidation 48
4.4 Enzyme Evolution – Current State of the Art 50
4.5 Amine Oxidase Evolution 53
4.6 Chemical Development 55
4.7 Optimization of Cyanation 56
4.8 Conclusion 57
Acknowledgments 58
References 59

5 The Asymmetric Reduction of Heterocyclic Ketones – a Key Step in the Synthesis of Potassium-Competitive Acid Blockers (P-CABs) 61
Andreas Marc Palmer and Antonio Zanotti-Gerosa

5.1 Potassium-Competitive Acid Blockers – a New Option for the Treatment of Acid-Related Diseases 61
5.2 Discovery and Development of 7H-8,9-Dihydropyrano[2,3-c]imidazo[1,2-a]pyridines as Potassium-Competitive Acid Blockers 62
5.3 Noyori-Type Catalysts for the Asymmetric Reduction of Prochiral Ketones 63
5.4 Research Overview 64
5.5 Asymmetric Reduction of Ketones Bearing the Imidazo[1,2-a]pyridine Skeleton 66
5.6 Asymmetric Reduction of Ketones Bearing the 3,6,7,8-Tetrahydrochromeno[7,8-d]imidazole Skeleton 70
5.7 Large-Scale Asymmetric Synthesis of the 3,6,7,8-Tetrahydrochromeno[7,8-d]imidazole BYK 405879 71
5.8 Conclusions 75
Acknowledgments 76
References 76

Part II Processes for Important Buildings Blocks 79

6 Application of a Multiple-Enzyme System for Chiral Alcohol Production 81
Junzo Hasegawa, Hirokazu Nanba, and Yoshihiko Yasohara
6.1 Introduction 81
6.2 Construction of an Enzymatic Reduction System 82
6.2.1 Searching the Carbonyl Reductases for Making the Library 83
6.2.1.1 Reductases for Chiral Hydroxycarboxylic Acid Ester Production 83
6.2.1.2 Cooperation of Reductase S1 and Glucose Dehydrogenase 84
6.2.1.3 Reductase for Chiral Halohydrin Production 88
6.2.1.4 Reductases for Chiral 3-Pyrolidinol Production 89
6.2.1.5 Reductase for Chiral Pyridylethanol Derivative Production 92
6.2.2 Searching for a Tough FDH against Halo Ketones 95
6.2.3 Modification of Coenzyme Specificity in Carbonyl Reductase S1 97
6.3 Enzymatic Stereoinversion System 98
6.3.1 First Findings of Microbial Stereoinversion of 1,2-Diols 98
6.3.2 Construction of an Enzymatic Stereoinversion System for Chiral Alcohol Production 105
6.3.2.1 Enzymatic Stereoinversion System for (R)-CPD Production 106
6.3.2.2 Enzymatic Stereoinversion System for (S)-CPD Production 106
References 108

7 Chemoenzymatic Route to the Side-Chain of Rosuvastatin 111
Robert A. Holt and Christopher D. Reeve
7.1 Introduction 111
7.2 Route Selection 113
7.2.1 Deoxyribose-5-phosphate Aldolase-Based Route 113
7.2.2 Lipase-Catalyzed Tetrol Desymmetrization Route 114
7.2.3 Monoxygenase-Catalyzed Baeyer–Villiger Oxygenation 115
7.2.4 Claisen Condensation/Bioreduction Route 116
7.3 Process Development 118
7.3.1 Claisen Condensation 118
7.3.2 Asymmetric Bioreduction 120
7.3.3 Lipase-Catalyzed Transesterification 123
7.3.4 Acetonide Formation 124
7.3.5 Acetyl Deprotection 125
8 Asymmetric Hydrogenation of a 2-Isopropylcinnamic Acid Derivative en Route to the Blood Pressure-Lowering Agent Aliskiren 127

Jeroen A. F. Boogers, Dirk Sartor, Ulfried Felfer, Martina Kotthaus, Gerhard Steinbauer, Bert Dielemans, Laurent Lefort, André H. M. de Vries, and Johannes G. de Vries

8.1 Introduction 127

8.2 Development of Monodentate Phosphoramidites as Ligands for Asymmetric Hydrogenation 127

8.3 Instant Ligand Libraries of Monodentate BINOL-Based Phosphoramidites 130

8.4 Aliskiren™ 132

8.5 High-Throughput Screening in Search of a Cheap Phosphoramidite Ligand 134

8.6 Mixtures of Ligands 135

8.7 Further Screening of Conditions 138

8.8 Validation and Pilot Plant Run 138

8.9 Instant Ligand Library Screening to Further Optimize Rate and ee 141

8.10 Validations 143

8.11 Recent Developments in the Asymmetric Hydrogenation of 3 144

8.12 Conclusion 147

References 148

9 Asymmetric Phase-Transfer Catalysis for the Production of Non-Proteinogenic \(\alpha\)-Amino Acids 151

Masaya Ikunaka and Keiji Maruoka

9.1 Background 151

9.1.1 Non-Proteinogenic \(\alpha\)-Amino Acids 151

9.1.2 Phase-Transfer-Catalyzed Asymmetric Alkylation to Produce NPAAs 152

9.2 Designer’s Chiral Phase-Transfer Catalysts 153

9.2.1 \(N\)-Spiro-\(C_2\)-Symmetric Chiral Catalyst of Bis-1,1′-binaphthyl Structure 154

9.2.2 \(C_2\)-Symmetric Chiral Catalyst of Mono-1,1′-binaphthyl Structure 156

9.2.3 Other Features Common to both \(C_2\)-Symmetric Chiral 1,1′-Binaphthyl-Derived Catalysts 157

9.3 Synthesis of the \(C_2\)-Symmetric Chiral Mono-1,1′-Binaphthyl-Derived Catalyst 159

9.4 Application of Enantiomers of 21 to the Industrial Production of NPAAs 160
<table>
<thead>
<tr>
<th>12</th>
<th>Eliminating Barriers in Large-Scale Asymmetric Synthesis</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>207</td>
</tr>
<tr>
<td>12.2</td>
<td>Improvement of the Synthetic Route to Biaryl Ligands</td>
<td>208</td>
</tr>
<tr>
<td>12.3</td>
<td>Development of an Efficient Process En Route to Unprotected (\beta)-Amino Acids</td>
<td>214</td>
</tr>
<tr>
<td>12.4</td>
<td>Conclusion</td>
<td>217</td>
</tr>
<tr>
<td>References</td>
<td>217</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>Catalytic Asymmetric Ring Opening: A Transfer from Academia to Industry</th>
<th>219</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>219</td>
</tr>
<tr>
<td>13.2</td>
<td>Catalyst Preparation and Initial Optimization</td>
<td>221</td>
</tr>
<tr>
<td>13.3</td>
<td>Further Optimization</td>
<td>222</td>
</tr>
<tr>
<td>13.4</td>
<td>Process Adaptation</td>
<td>224</td>
</tr>
<tr>
<td>13.5</td>
<td>Protecting Group Adaptation</td>
<td>225</td>
</tr>
<tr>
<td>13.6</td>
<td>Use of Benzoate as O-nucleophile</td>
<td>226</td>
</tr>
<tr>
<td>13.7</td>
<td>Chemical Elaboration</td>
<td>227</td>
</tr>
<tr>
<td>13.8</td>
<td>Conclusion</td>
<td>227</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>229</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>Asymmetric Baeyer–Villiger Reactions Using Whole-Cell Biocatalysts</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>14.2</td>
<td>Chemistry</td>
<td>232</td>
</tr>
<tr>
<td>14.3</td>
<td>Biocatalysts</td>
<td>234</td>
</tr>
<tr>
<td>14.4</td>
<td>Process Screening and Design</td>
<td>236</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Cell Format</td>
<td>236</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Sequence of Catalysis</td>
<td>237</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Substrate Supply and Product Removal</td>
<td>237</td>
</tr>
<tr>
<td>14.4.4</td>
<td>Reactor Type</td>
<td>238</td>
</tr>
<tr>
<td>14.4.5</td>
<td>Type of Medium</td>
<td>239</td>
</tr>
<tr>
<td>14.5</td>
<td>Downstream Processing</td>
<td>240</td>
</tr>
<tr>
<td>14.6</td>
<td>Future Process Developments</td>
<td>240</td>
</tr>
<tr>
<td>14.7</td>
<td>Perspective</td>
<td>242</td>
</tr>
<tr>
<td>References</td>
<td>244</td>
<td></td>
</tr>
</tbody>
</table>
15 Large-Scale Applications of Hydrolases in Biocatalytic Asymmetric Synthesis 249
Roland Wohlgemuth
15.1 Introduction 249
15.2 Chemistry 251
15.3 Biocatalyst 253
15.4 Process Screening and Design 255
15.5 Downstream Processing and Purification 257
15.6 Future Process Developments 259
15.7 Perspectives 259
References 260

16 Scale-Up Studies in Asymmetric Transfer Hydrogenation 265
A. John Blacker and Peter Thompson
16.1 Background 265
16.2 Reaction Components 267
16.2.1 The Catalyst 267
16.2.2 The Hydrogen Donor 272
16.2.3 The Solvent 274
16.2.4 The Substrate 274
16.2.5 The Process 277
16.3 Case Studies 278
16.3.1 Diltiazem 278
16.3.2 (R)-N-Methyl-α-methyl-3’,5’-bis(trifluoromethyl)benzylamine 280
16.3.3 Duloxetine 282
16.3.4 (R)-Styrene Oxide 284
16.3.5 (S)-2-(3-Nitrophenyl)ethylamine Hydrochloride 285
16.3.6 (S)-4-Fluorophenylethanol 285
16.3.7 (R)-1-Tetralol 287
16.4 Conclusions 288
Acknowledgment 289
References 289

17 2,2’,5,5’-Tetramethyl-4,4’-bis(diphenylphosphino)-3,3’-bithiophene: A Very Efficient Chiral Ligand for Ru-Catalyzed Asymmetric Hydrogenations on the Multi-Kilograms Scale 291
Oreste Piccolo
17.1 Introduction 291
17.2 Case Histories 295
17.2.1 (S)- and (R)-Ethyl 4-Chloro-3-hydroxybutyrate 295
17.2.2 “ZD 3523” 296
17.3 Conclusion 298
Acknowledgments 298
References 298

18 The Power of Whole-Cell Reaction: Efficient Production of Hydroxyproline, Sugar Nucleotides, Oligosaccharides, and Dipeptides 301
Shin-ichi Hashimoto, Satoshi Koizumi, and Akio Ozaki
18.1 Introduction 301
18.2 Production of Hydroxyproline by Asymmetric Hydroxylation of L-Proline 302
18.2.1 Screening of Regio- and Stereospecific L-Proline Hydroxylases 303
18.2.2 Cloning and Characterization of Proline Hydroxylases 304
18.2.3 Enzymatic Production of Hydroxyproline from L-Proline 304
18.2.4 Production of Hydroxyproline from Glucose 305
18.2.5 Commercial Production of Hydroxyproline 306
18.3 Oligosaccharide Production by Bacterial Coupling 307
18.3.1 Bacterial Glycosyltransferases 307
18.3.2 Oligosaccharide Synthesis with Purified Enzyme Preparations 307
18.3.3 Production of Sugar Nucleotides by Bacterial Coupling 308
18.3.4 Production of Oligosaccharides by Bacterial Coupling 309
18.3.5 Large-Scale Production of Sugar Nucleotides and Oligosaccharides 311
18.4 Dipeptide Production Systems 311
18.4.1 Screening of a Novel Enzyme, L-Amino Acid α-Ligase 311
18.4.2 Dipeptide Production by a Resting Cell System 312
18.4.3 Dipeptide Production by Fermentation 313
18.4.4 Industrial Production of Dipeptides 314
18.5 Conclusion and Perspective 315
References 316

19 Enantioselective Ketone Hydrogenation: from Research to Pilot Scale with Industrially Viable Ru–(Phosphine–Oxazoline) Complexes 321
Frédéric Naud, Felix Spindler, Carsten Rueggeberg, Andreas T. Schmidt, and Hans-Ulrich Blaser
19.1 Introduction 321
19.2 Ligand Screening and Optimization of the Reaction Conditions 322
19.2.1 Ligand Structure 322
19.2.2 Optimization of Reaction Conditions 323
19.3 Quality Risks 324
19.4 Health and Safety 325
19.5 Catalyst Removal 326
19.6 Final Process 327
Acknowledgments 329
References 329
Part III Processes for New Chemical Entities (NCEs)

20 Enabling Asymmetric Hydrogenation for the Design of Efficient Synthesis of Drug Substances
Yongkui Sun, Shane Kraska, Scott Shultz, and David M. Tellers

20.1 Introduction
20.2 Laropiprant
20.2.1 Reaction Discovery
20.2.2 Reaction Optimization and Demonstration
20.2.2.1 Catalyst Identification
20.2.2.2 Substrate Solubility
20.2.2.3 Temperature and Pressure
20.2.2.4 Catalyst Loading
20.2.2.5 Reaction Stress Testing
20.2.3 Kilogram-Scale Demonstration and Pilot Plant Execution
20.2.4 Pilot Plant Implementation
20.2.5 Final Remarks
20.3 Taranabant
20.3.1 Development of a Reductive Dynamic Kinetic Resolution ApproachTowards Taranabant
20.3.2 Development of Long-Term Asymmetric Synthesis of Taranabant Utilizing Asymmetric Enamide Hydrogenation
20.4 Sitagliptin
20.5 Conclusions and Outlook
Acknowledgments
References

21 Scale-up of a Telescoped Enzymatic Hydrolysis Process for an Intermediate in the Synthesis of a Factor Xa Inhibitor
Hans Iding, Beat Wirz, Jean-Michel Adam, Pascal Dott, Wolfgang Haap, Rosa Maria Rodríguez Sarmiento, Thomas Oberhauser, Reinhard Reents, Rolf Fischer, and Stephan Lauper

21.1 Introduction
21.2 The Discovery Chemistry Synthesis
21.3 Optimization and Multi-Kilogram Supply of Monoacid (R, R)-2
21.3.1 Resolution of Diester (R,R)-1
21.3.2 Monohydrolysis of Diester (R,R)-1
21.4 Process Development of the N-Boc Approach
21.4.1 Resolution: Selection of the Enzyme
21.4.1.1 Optimization of Lipase D
21.4.2 Robustness of the Resolution of trans-rac-1
21.4.2.1 pH Control
21.4.2.2 Substrate Quality
21.4.2.3 Stirring Speed
21.4.2.4 Isolation 387
21.5 Scalable Enzymatic Monohydrolysis of the Diester \((R,R)-1\) 388
21.5.1 Residual Heptane Content 388
21.5.2 Isolation 389
21.6 Production – Experimental Part 389
21.6.1 Equipment 389
21.6.2 Resolution of \(N\)-Boc-Diester-1 390
21.6.3 Isolation of Diester \((R,R)-1\) 390
21.6.4 Monohydrolysis of Diester \((R,R)-1\) 391
21.6.5 Isolation of Monoacid \((R,R)-2\) 391
21.6.6 Points to Consider for Future Campaigns 392
21.7 Evaluation of an Enzymatic Alternative – the \(N\)-Difluoroethyl Approach 392
21.7.1 Resolution of Diester \(trans-rac\)-3 393
21.7.2 Monohydrolysis of Diester \((R,R)-3\) 393
21.8 Discussion 394
Acknowledgments 395
References 396

22 An Efficient, Asymmetric Synthesis of Odanacatib, a Selective Inhibitor of Cathepsin K for the Treatment of Osteoporosis, Using an Enzyme-Mediated Dynamic Kinetic Resolution 397
Matthew D. Truppo
22.1 Introduction 397
22.2 Fluoroleucine Synthesis Strategy 397
22.2.1 Retro-Synthetic Analysis 398
22.2.2 Enzyme Screen for Azlactone Ring Opening 399
22.3 First-Generation Enzymatic Dynamic Kinetic Resolution: Batch Process 400
22.4 Development of Enzymatic Dynamic Kinetic Resolution: Towards a Manufacturing Process 401
22.4.1 Kinetic Analysis of the Reaction System 401
22.4.1.1 Effect of Temperature on the Rates of Reaction 402
22.4.1.2 Effects of Azlactone, Ethanol, and Water Concentration on the Rates of Reaction 403
22.4.1.3 Enzyme Deactivation Rate 404
22.4.2 Kinetic Model of Enzymatic Dynamic Kinetic Resolution 405
22.4.2.1 Kinetic Equations 405
22.4.2.2 Kinetic Model Fit to Experimental Batch Reaction Data 406
22.4.3 Fed Batch Reaction System 406
22.4.4 Plug Flow Column Reactor System 408
22.5 Pilot Plant Runs 410
22.6 Conclusion 411
Acknowledgment 413
References 413
23 Biocatalytic Routes to the GPIIb/IIIa Antagonist Lotrafiban, SB 214857
Andy Wells

23.1 Introduction 415
23.2 The Medicinal Chemistry Route of Synthesis 416
23.3 The First Biocatalytic Route – a Late-Stage Resolution 417
23.3.1 Synthesis of Racemic 1,4-Benzodiazepines 418
23.3.2 Functionalization at C-7–Halogenation and Aminocarbonylation 418
23.3.3 Screening for a Suitable Biocatalyst 422
23.3.4 Product Isolation 424
23.3.5 Bioreolution on Scale 425
23.4 Early-Stage Resolution 426
23.4.1 Substrate and Biocatalyst Selection 426
23.4.2 Work-up and “In Situ” Iodination 428
23.4.3 Early-Stage Resolution on Scale 429
23.4.4 Racemization of (R)-1,4-Benzodiazepines 429
23.4.5 The 4,4′-Bipiperidine Issue Solved 430
23.4.6 Carbonylation Using 4,4′-Bipiperidine 431
23.4.7 Aminocarbonylation of SB 240093 431
23.5 Catalase for the Removal of Iodide 432
23.5.1 The Final Steps 434
23.6 Other Synthetic Strategies to Chiral Lotrafiban Intermediates 434
23.7 The End Game 435
Acknowledgment 436
References 436

24 Discovery and Development of a Catalytic Asymmetric Conjugate Addition of Ketoesters to Nitroalkenes and Its Use in the Large-Scale Preparation of ABT-546
David M. Barnes

24.1 Introduction 439
24.2 Retrosynthetic Analysis of ABT-546 440
24.3 Early Asymmetric Syntheses 442
24.4 Synthesis of the Reaction Partners 442
24.5 Discovery of the Asymmetric Conjugate Addition Reaction 444
24.6 Completion of the Synthesis of ABT-546 450
24.7 Extension to Other Reaction Partners 453
24.8 Conclusion 454
References 454

25 The Kagan Oxidation – Industrial-Scale Asymmetric Sulfoxidations in the Synthesis of Two Related NK1/NK2 Antagonists
David R. J. Hose, Bharti Patel, Sharon A. Bowden, and Jonathan D. Moseley

25.1 Introduction 457
25.2 Background and Introduction to ZD7944 457
25.3 Introduction to the ZD7944 CBz Sulfoxide Stage 459
25.4 Process Development of ZD7944 CBz Sulfoxide 461
25.5 Additional Investigations in the Development of ZD7944 CBz Sulfoxide 463
25.6 The Impact of Other Stages on the ZD7944 CBz Sulfoxide Process 464
25.7 Summary of ZD7944 465
25.8 Background and Introduction to ZD2249 466
25.9 Process Development of ZD2249 CBz Sulfoxide 467
25.10 Summary of ZD2249 469
25.11 Comparisons and Conclusions 469
Acknowledgments 470
References 470

26 Large-Scale Application of Asymmetric Phase-Transfer Catalysis for Amino Acid Synthesis 473
Daniel E. Patterson, Shiping Xie, Lynda Jones, Martin H. Osterhout, Christopher G. Henry, and Thomas D. Roper
26.1 Introduction 473
26.2 Initial Strategy 474
26.3 Synthesis of 4,4′-Difluorobenzylhydryl Bromide 475
26.4 Initial Studies and Optimization 476
26.5 Scale-Up of the PTC Alkylation 478
26.6 Conclusion 481
26.7 Experimental 482
26.7.1 General 482
26.7.2 Synthesis of 4-Fluoro-β-(4-fluorophenyl)-l-tert-butylphenylalanine Benzophenone Imine 7 482
26.7.3 Synthesis of 4-Fluoro-β-(4-fluorophenyl)-l-phenylalanine Hydrochloride 11 483
References 483

27 Application of Phase-Transfer Catalysis in the Organocatalytic Asymmetric Synthesis of an Estrogen Receptor Beta-Selective Agonist 485
Jeremy P. Scott
27.1 Introduction 485
27.2 Medicinal Chemistry Synthesis and Revised Synthetic Plan 485
27.3 Preparation of the Phase-Transfer Substrate 11 488
27.4 Asymmetric Phase-Transfer Michael Addition 489
27.4.1 Catalyst Structure Optimization 490
27.4.2 Preparation of the Phase-Transfer Catalyst 20g 491
27.4.3 Agitation Rate 491
References 483
27.4.4 Impurity Issues, Robinson Annulation, and ee Upgrade 492
27.4.4.1 Experimental Details for Catalytic Asymmetric Phase-Transfer
Addition: Preparation of (9aS)-8-chloro-7-methoxy-9a-(2-phenoxyethyl)-
1,2,9,9a-tetrahydro-3H-fluoren-3-one (9) 493
27.5 Ether Cleavage, Cyclization, and Chlorination 494
27.6 Conclusion 495
Acknowledgments 496
References 496

28 Asymmetric Synthesis of HCV and HPV Drug Candidates
on Scale: The Choice Between Enantioselective and
Diastereoselective Syntheses 499
Jeremy D. Cobb, Bob E. Cooley, Roy C. Flanagan, Mary M. Jackson, Lynda
A. Jones, Richard T. Matsuoka, Alan Millar, Daniel E. Patterson, Matthew
J. Sharp, Jennifer F. Toczko, Shiping Xie, and Xiaoming Zhou
28.1 Introduction 499
28.2 GSK260983A (1) for the HPV 500
28.2.1 Target and Background 500
28.2.2 Synthetic Strategy 500
28.2.3 Racemic Synthesis 501
28.2.4 Enantioselective Synthesis Through Chiral Catalysis 502
28.2.5 Diastereoselective Synthesis Through Chiral Auxiliaries 503
28.2.5.1 Screening for Selectivity 503
28.2.5.2 Scale-Up of the Reductive Amination 504
28.2.5.3 Completion of the Synthesis: Meeting the Challenges
in Removal of the Chiral Auxiliaries and Final API
Formation 504
28.2.6 Conclusion 506
28.3 GSK873082X (2) for the HCV 506
28.3.1 Target and Background 506
28.3.2 Synthetic Strategy 507
28.3.3 Racemic Synthesis 508
28.3.4 Diastereoselective Synthesis 509
28.3.5 Enantioselective Synthesis 509
28.3.5.1 The Literature Precedents 509
28.3.5.2 The Concept of Using an Alkaloid as a Bidentate Ligand
for the [3 + 2] Cycloaddition 510
28.3.5.3 Proof of Concept of the Chiral Catalysis 511
28.3.5.4 Optimization of the Chiral Catalysis 513
28.3.5.5 Scale-Up of Enantioselective Synthesis 514
28.3.6 Completion of the Synthesis of GSK873082X (2) 516
28.3.6.1 N-Acylation of the Pyrrolidine 516
28.3.6.2 Addressing the Chemoselectivity and Safety Issues in Reduction
of an Ester 516
28.3.6.3 Final Steps to the Target 520
28.4 Conclusion 520
Acknowledgments 521
References 521

Index 523
List of Contributors

Jean-Michel Adam
F. Hoffmann-La Roche Ltd.
Pharma Research Basel
Technical Sciences
Chemical Synthesis
Synthesis and Process Research
Basel
Switzerland

David M. Barnes
Abbott Laboratories
PPD Process Research
1401 Sheridan Road
North Chicago
IL 60064
USA

A. John Blacker
Piramal Healthcare R&D
Leeds Road
Huddersfield
HD1 9GA
UK

and

University of Leeds
Institute of Process Research
Development
School of Chemistry
Leeds, LS2 9JT
UK

Hans-Ulrich Blaser
Solvias AG
P.O. Box
CH-4002
Basel
Switzerland

Werner Bonrath
DSM Nutritional Products
Research and Development
P.O. Box 2676
4002 Basel
Switzerland

Jeroen A. F. Boogers
DSM Innovative Synthesis BV
A unit of DSM Pharma Chemicals
PO Box 18
6160 MD Geleen
The Netherlands

Sharon A. Bowden
AstraZeneca
PR&D
Avlon Works
Severn Road
Hallen
Bristol, BS10 7ZE
UK
Z. Chen
Elevance Renewable Sciences
175 E. Crossroad Parkway
Bolingbrook
IL 60440
USA

Jeremy D. Cobb
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Bob E. Cooley
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Johannes G. de Vries
DSM Innovative Synthesis BV
A unit of DSM Pharma Chemicals
PO Box 18
6160 MD Geleen
The Netherlands

André H. M. de Vries
DSM Innovative Synthesis BV
A unit of DSM Pharma Chemicals
PO Box 18
6160 MD Geleen
The Netherlands

Bert Dielemans
DSM Innovative Synthesis BV
A unit of DSM Pharma Chemicals
PO Box 18
6160 MD Geleen
The Netherlands

Pascal Dott
F. Hoffmann-La Roche Ltd.
Pharma Research Basel
Technical Sciences
Chemical Synthesis
Kilolab
Basel
Switzerland

Hans-Jürgen Federsel
Director of Science
Pharmaceutical Development
AstraZeneca
151 85 Södertälje
Sweden

Ulfried Felfer
DSM Fine Chemicals Austria Nfg
GmbH & Co Kg
St.-Peter-Strasse 25
4021 Linz
Austria

Rolf Fischer
F. Hoffmann-La Roche Ltd.
Pharma Technical Development
Basel
Switzerland

Roy C. Flanagan
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Wolfgang Haap
F. Hoffmann-La Roche Ltd.
Pharma Research Basel
Discovery Chemistry
Basel
Switzerland
Junzo Hasegawa
Kaneka Corporation
Frontier Biochemical and Medical Research Laboratories
1–8 Miyamae
Takasago
Hyogo 676-8688
Japan

Shin-ichi Hashimoto
Kyowa Hakko Bio Co. Ltd.
Manufacturing Technology Division
1-6-1 Ohtemachi
Chiyoda-ku
Tokyo 100-8185
Japan

Christopher G. Henry
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Robert A. Holt
Piramal Healthcare
Wilton Centre
Redcar
Cleveland TS104RF
UK

David R. J. Hose
AstraZeneca
PR&D
Avlon Works
Severn Road
Hallen
Bristol, BS10 7ZE
UK

Hans Iding
F. Hoffmann-La Roche Ltd.
Pharma Research Basel
Technical Sciences
Chemical Synthesis
Biocatalysis
Basel
Switzerland

Masaya Ikunaka
Nagase & Co., Ltd.
Fine Chemicals Department
5-1, Nihonbashi-Kobunacho
Chuo-ku
Tokyo 103-8355
Japan

and

Yasuda Women’s University
Faculty of Pharmacy
Department of Pharmaceutical Chemistry
6-13-1, Yasuhigashi
Asaminami-ku
Hiroshima 731-0153
Japan

Mary M. Jackson
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Christoph Jäkel
BASF SE
GCB/C-M313
67056 Ludwigshafen
Germany
List of Contributors

Lynda A. Jones
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Shane Krska
Merck & Co., Inc.
Department of Process Research
Merck Research Laboratories
Rahway
NJ 07065
USA

Reinhard Karge
DSM Nutritional Products
Research and Development
P.O. Box 2676
4002 Basel
Switzerland

James J. Lalonde
Codexis, Inc.
200 Penobscot Drive
Redwood City
CA 94063
USA

Franz Dietrich Klingler
Boehringer Ingelheim Pharma GmbH & Co. KG
Department of Process Development
55216 Ingelheim am Rhein
Germany

Stephan Lauper
F. Hoffmann-La Roche Ltd.
Pharma Technical Development
Basel
Switzerland

Satoshi Koizumi
Kyowa Hakko Bio Co. Ltd.
Manufacturing Technology Division
1-6-1 Otemachi
Chiyoda-ku
Tokyo 100-8185
Japan

Laurent Lefort
DSM Innovative Synthesis BV
A unit of DSM Pharma Chemicals
PO Box 18
6160 MD Geleen
The Netherlands

Martina Kotthaus
DSM Fine Chemicals Austria Nfg GmbH & Co Kg
St.-Peter-Strasse 25
4021 Linz
Austria

Jack Liang
Codexis, Inc.
200 Penobscot Drive
Redwood City
CA 94063
USA

J. Liu
Elevance Renewable Sciences
175 E. Crossroad Parkway
Bolingbrook
IL 60440
USA
Keiji Maruoka
Kyoto University
Graduate School of Science
Department of Chemistry
Sakyo
Kyoto 606-8502
Japan

Richard T. Matsuoka
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Alan Millar
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Jonathan D. Moseley
AstraZeneca
PR&D
Avlon Works
Severn Road
Hallen
Bristol, BS10 7ZE
UK

Hirokazu Nanba
Kaneka Corporation
Frontier Biochemical and Medical Research Laboratories
1–8 Miyamae
Takasago
Hyogo 676-8688
Japan

Frédéric Naud
Solvias AG
P.O. Box
CH-4002
Basel
Switzerland

Thomas Netscher
DSM Nutritional Products
Research and Development
P.O. Box 2676
4002 Basel
Switzerland

Thomas Oberhauser
F. Hoffmann-La Roche Ltd.
Pharma Technical Development
Basel
Switzerland

Martin H. Osterhout
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Akio Ozaki
Kyowa Hakko Bio Co. Ltd.
Manufacturing Technology Division
1-6-1 Otemachi
Chiyoda-ku
Tokyo 100-8185
Japan

Rocco Paciello
BASF SE
GCB/H-M313
67056 Ludwigshafen
Germany
List of Contributors

Andreas Marc Palmer
Nycomed GmbH
Department of Medicinal Chemistry
Byk-Gulden-Strasse 2
78467 Konstanz
Germany

Bharti Patel
AstraZeneca
PR&D
Avlon Works
Severn Road
Hallen
Bristol, BS10 7ZE
UK

Daniel E. Patterson
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Oreste Piccolo
Studio di Consulenza Scientifica
Via Bornó 5
23896 Sirtori
Italy

Kurt Püntener
F. Hoffmann-La Roche Ltd.
Pharmaceuticals Division
Synthesis Research & Catalysis
4070 Basel
Switzerland

Reinhard Reents
F. Hoffmann-La Roche Ltd.
Pharma Technical Development
Basel
Switzerland

Christopher D. Reeve
Piramal Healthcare
Wilton Centre
Redcar
Cleveland TS104RF
UK

Felix Roessler
DSM Nutritional Products
Research and Development
P.O. Box 2676
4002 Basel
Switzerland

Thomas D. Roper
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Carsten Rueggeberg
Rohner AG
Gempen strasse 6
CH-4133 Pratteln
Switzerland

Takao Saito
Takasago International Corporation
Fine Chemicals Division
Nissay Aroma Square 17F
5-37-1
Kamata
Ohta-ku
Tokyo 144-8721
Japan
Rosa Maria Rodríguez Sarmiento
F. Hoffmann-La Roche Ltd.
Pharma Research Basel
Discovery Chemistry
Basel
Switzerland

Dirk Sartor
DSM Fine Chemicals Austria Nfg
GmbH & Co Kg
St.-Peter-Strasse 25
4021 Linz
Austria

Noboru Sayo
Takasago International Corporation
Corporate Research and Development Division
Fine Chemical Laboratory
1-4-11 Nishi-yawata
Hiratsuka City
Kanagawa 254-0073
Japan

Michelangelo Scalone
F. Hoffmann-La Roche Ltd.
Pharmaceuticals Division
Synthesis Research & Catalysis
4070 Basel
Switzerland

Andreas T. Schmidt
Rohner AG
Gempen strasse 6
CH-4133 Pratteln
Switzerland

Jeremy P. Scott
Merck Sharp & Dohme Research Laboratories
Department of Process Research
Hertford Road
Hoddesdon
Hertfordshire, EN11 9BU
UK

Matthew J. Sharp
GlaxoSmithKline Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Hideo Shimizu
Takasago International Corporation
Corporate Research and Development Division
Fine Chemical Laboratory
1-4-11 Nishi-yawata
Hiratsuka City
Kanagawa 254-0073
Japan

C. Scott Shultz
Merck & Co., Inc.
Department of Process Research
Merck Research Laboratories
Rahway
NJ 07065
USA
XXVI | List of Contributors

Dirk Spielvogel
Solvias AG
PO Box
4002 Basel
Switzerland

Felix Spindler
Solvias AG
P.O. Box
CH-4002 Basel
Switzerland

Gerhard Steinbauer
DSM Fine Chemicals Austria Nfg GmbH & Co Kg
St.-Peter-Strasse 25
4021 Linz
Austria

Yongkui Sun
Merck & Co., Inc.
Department of Process Research
Merck Research Laboratories
Rahway
NJ 07065
USA

Junhua Tao
Elevance Renewable Sciences
175 E. Crossroad Parkway
Bolingbrook
IL 60440
USA

David M. Tellers
Merck & Co., Inc.
Department of Process Research
Merck Research Laboratories
Rahway
NJ 07065
USA

Peter Thompson
Piramal Healthcare R&D
Leeds Road
Huddersfield
HD1 9GA
UK

Jennifer F. Toczko
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Matthew D. Truppo
Merck & Co., Inc.
Department of Process Research
Merck Research Laboratories
Rahway, NJ 07065
USA

Andy Wells
AstraZeneca Global Process R&D
42/2/2.0 Bakewell Road
Loughborough
Leicestershire, LE11 5RH
UK

Beat Wirz
F. Hoffmann-La Roche Ltd.
Pharma Research Basel
Technical Sciences
Chemical Synthesis
Biocatalysis
Basel
Switzerland
Roland Wohlgemuth
Sigma-Aldrich
Research Specialties
Industriestrasse 25
9470 Buchs
Switzerland

John M. Woodley
Technical University of Denmark
Center for BioProcess Engineering
Department of Chemical and Biochemical Engineering
2800 Lyngby
Denmark

Shiping Xie
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA

Yoshihiko Yasohara
Kaneka Corporation
Frontier Biochemical and Medical Research Laboratories
1–8 Miyamae
Takasago
Hyogo 676-8688
Japan

Antonio Zanotti-Gerosa
Johnson Matthey Catalysis and Chiral Technologies
28 Cambridge Science Park
Cambridge, CB4 0FP
United Kingdom

Xiaoming Zhou
GlaxoSmithKline
Chemical Development
5 Moore Drive
PO Box 13398
Research Triangle Park
NC 27709-3398
USA