New viruses can arise very quickly and, if unchecked, result in major pandemics. Obvious examples being the AIDS and SARS virus. In order to deal with such imminent threats, drug development times need to be cut short. This is only possible by relying on proven strategies and adapting them to the specific features of any new virus or virus variant.

By focusing on general molecular mechanisms of antiviral drugs rather than therapies for individual viruses, this ready reference provides the critical knowledge needed to develop entirely novel therapeutics and to target new viruses. It is edited by Erik de Clercq, a world authority on antiviral drug discovery.

The volume covers a general discussion of antiviral strategies, followed by a broad survey of known viral targets, such as reverse transcriptases, proteases, neuraminidases, RNA polymerases, helicases, and primases, as well as their known inhibitors. The book also contains several case studies of recent successful antiviral drug development.

As a result, medicinal and pharmaceutical chemists, as well as virologists will be able to pinpoint strategies for combating future viral pandemics.

Erik De Clercq, M.D., PhD, is currently President of the Rega Foundation, a member of the Belgian (Flemish) Royal Academy of Medicine and of the Academia Europaea, and a Fellow of the American Association for the Advancement of Science. He is an active Emeritus Professor of the Katholieke Universiteit Leuven (K.U. Leuven), Belgium. He is honorary doctor of the Universities of Ghent, Belgium; Athens, Greece; Florence, Italy; Fudan (Shanghai), China; Charles (Prague), Czech Republic; and Jhoshak (Cesk Budjovice), Czech Republic, and Tous, France.

For his pioneering efforts in antiviral research, Professor De Clercq received in 1986 the Aventis award from the American Society for Microbiology and in 2000 the Mihon Prize for Biomedical Sciences from the Belgian National Science Foundation. In 2008 he was elected inventor of the Year by the European Union. Jointly with Dr. Anthony Fauci, Prof. De Clercq received the Dr. Paul Janssen Award for Biomedical Research in 2010.

He is the (co)inventor of a number of antiviral drugs, used for the treatment of HSV (valaciclovir, Valtrex®, Zelitrex®), VZV (tecovirimat, Zostavax®), CMV (cidofovir, Vistide®), HBV (adefovir dipivoxil, Hepsera®), and HIV-1 infections (AIDS) (tenofovir disoproxil fumarate, Viread®).
Edited by
Holger Gohlke

Protein-Ligand Interactions
Methods and Principles in Medicinal Chemistry
Edited by R. Mannhold, H. Kubinyi, G. Folkers
Editorial Board
H. Buschmann, H. Timmerman, H. van de Waterbeemd, T. Wieland

Previous Volumes of this Series:

Kappe, C. Oliver / Stadler, Alexander / Dallinger, Doris
Microwaves in Organic and Medicinal Chemistry
Second, Completely Revised and Enlarged Edition
2012
ISBN: 978-3-527-33185-7
Vol. 52

Smith, Dennis A. / Allerton, Charlotte / Kalgutkar, Amit S. / van de Waterbeemd, Han / Walker, Don K.
Pharmacokinetics and Metabolism in Drug Design
Third, Revised and Updated Edition
2012
ISBN: 978-3-527-32954-0
Vol. 51

De Clercq, Erik (Ed.)
Antiviral Drug Strategies
2011
ISBN: 978-3-527-32696-9
Vol. 50

Klebl, Bert / Müller, Gerhard / Hamacher, Michael (Eds.)
Protein Kinases as Drug Targets
2011
ISBN: 978-3-527-31790-5
Vol. 49

Sotriffer, Christoph (Ed.)
Virtual Screening Principles, Challenges, and Practical Guidelines
2011
ISBN: 978-3-527-32636-5
Vol. 48

Rautio, Jarkko (Ed.)
Prodrugs and Targeted Delivery
Towards Better ADME Properties
2011
ISBN: 978-3-527-32603-7
Vol. 47

Smit, Martine J. / Lira, Sergio A. / Leurs, Rob (Eds.)
Chemokine Receptors as Drug Targets
2011
ISBN: 978-3-527-32118-6
Vol. 46

Ghosh, Arun K. (Ed.)
Aspartic Acid Proteases as Therapeutic Targets
2010
ISBN: 978-3-527-31811-7
Vol. 45

Ecker, Gerhard F. / Chiba, Peter (Eds.)
Transporters as Drug Carriers
Structure, Function, Substrates
2009
ISBN: 978-3-527-31661-8
Vol. 44

Faller, Bernhard / Urban, Laszlo (Eds.)
Hit and Lead Profiling
Identification and Optimization of Drug-like Molecules
2009
ISBN: 978-3-527-32331-9
Vol. 43
Aldose reductase bound to NADP (PDB code: 1ads; dark blue) as well as bound to NADPH and the inhibitor tolrestat (PDB code: 2fzd; light blue). The protein shows pronounced movements of Phe122 and Leu300 to accommodate hydrophobic parts of the inhibitor. Such movements can be detected by perturbations of NMR chemical shifts, as schematically shown around the protein.
Contents

List of Contributors XIII
Preface XVII
A Personal Foreword XIX

Part I Binding Thermodynamics 1

1 Statistical Thermodynamics of Binding and Molecular Recognition Models 3
Kim A. Sharp
1.1 Introductory Remarks 3
1.2 The Binding Constant and Free Energy 3
1.3 A Statistical Mechanical Treatment of Binding 4
1.3.1 Binding in a Square Well Potential 6
1.3.2 Binding in a Harmonic Potential 7
1.4 Strategies for Calculating Binding Free Energies 9
1.4.1 Direct Association Simulations 9
1.4.2 The Quasi-Harmonic Approximation 10
1.4.3 Estimation of Entropy Contributions to Binding 11
1.4.4 The Molecule Mechanics Poisson–Boltzmann Surface Area Method 13
1.4.5 Thermodynamic Work Methods 14
1.4.6 Ligand Decoupling 15
1.4.7 Linear Interaction Methods 15
1.4.8 Salt Effects on Binding 16
1.4.9 Statistical Potentials 17
1.4.10 Empirical Potentials 18
References 19

2 Some Practical Rules for the Thermodynamic Optimization of Drug Candidates 23
Ernesto Freire
2.1 Engineering Binding Contributions 25
2.2 Eliminating Unfavorable Enthalpy 25
2.3 Improving Binding Enthalpy 26
2.4 Improving Binding Affinity 27
2.5 Improving Selectivity 28
2.6 Thermodynamic Optimization Plot 28

Acknowledgments 30
References 31

3 Enthalpy–Entropy Compensation as Deduced from Measurements of Temperature Dependence 33
Athel Cornish-Bowden

3.1 Introduction 33
3.2 The Current Status of Enthalpy–Entropy Compensation 34
3.3 Measurement of the Entropy and Enthalpy of Activation 34
3.4 An Example 35
3.5 The Compensation Temperature 38
3.6 Effect of High Correlation on Estimates of Entropy and Enthalpy 39
3.7 Evolutionary Considerations 40
3.8 Textbooks 40
References 42

Part II Learning from Biophysical Experiments 45

4 Interaction Kinetic Data Generated by Surface Plasmon Resonance Biosensors and the Use of Kinetic Rate Constants in Lead Generation and Optimization 47
U. Helena Danielson

4.1 Background 47
4.2 SPR Biosensor Technology 48
4.2.1 Principles 48
4.2.2 Sensitivity 49
4.2.3 Kinetic Resolution 50
4.2.4 Performance for Drug Discovery 51
4.3 From Interaction Models to Kinetic Rate Constants and Affinity 53
4.3.1 Determination of Interaction Kinetic Rate Constants 53
4.3.2 Determination of Affinities 54
4.3.3 Steady-State Analysis versus Analysis of Complete Sensorgrams 54
4.4 Affinity versus Kinetic Rate Constants for Evaluation of Interactions 55
4.5 From Models to Mechanisms 56
4.5.1 Irreversible Interactions 57
4.5.2 Induced Fit 57
4.5.3 Conformational Selection 58
4.5.4 Unified Model for Dynamic Targets 58
4.5.5 Heterogeneous Systems/Parallel Reactions 59
4.5.6 Mechanism-Based Inhibitors 60
4.5.7 Multiple Binding Sites and Influence of Cofactors 61
4.6 Structural Information 61
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3 Binding Free Energy of Trypsin and Benzamidine Analogs</td>
<td>110</td>
</tr>
<tr>
<td>6.4 Implicit Solvent Calculation Using AMOEBA Polarizable Force Field</td>
<td>113</td>
</tr>
<tr>
<td>6.5 Conclusions and Future Directions</td>
<td>115</td>
</tr>
<tr>
<td>References</td>
<td>116</td>
</tr>
<tr>
<td>7 Quantum Mechanics in Structure-Based Ligand Design</td>
<td>121</td>
</tr>
<tr>
<td>Pär Söderhjelm, Samuel Genheden, and Ulf Ryde</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>121</td>
</tr>
<tr>
<td>7.2 Three MM-Based Methods</td>
<td>122</td>
</tr>
<tr>
<td>7.3 QM-Based Force Fields</td>
<td>123</td>
</tr>
<tr>
<td>7.4 QM Calculations of Ligand Binding Sites</td>
<td>125</td>
</tr>
<tr>
<td>7.5 QM/MM Calculations</td>
<td>126</td>
</tr>
<tr>
<td>7.6 QM Calculations of Entire Proteins</td>
<td>127</td>
</tr>
<tr>
<td>7.6.1 Linear Scaling Methods</td>
<td>128</td>
</tr>
<tr>
<td>7.6.2 Fragmentation Methods</td>
<td>129</td>
</tr>
<tr>
<td>7.7 Concluding Remarks</td>
<td>133</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>134</td>
</tr>
<tr>
<td>References</td>
<td>134</td>
</tr>
<tr>
<td>8 Hydrophobic Association and Volume-Con fined Water Molecules</td>
<td>145</td>
</tr>
<tr>
<td>Riccardo Baron, Piotr Setny, and J. Andrew McCammon</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>145</td>
</tr>
<tr>
<td>8.2 Water as a Whole in Hydrophobic Association</td>
<td>146</td>
</tr>
<tr>
<td>8.2.1 Background</td>
<td>146</td>
</tr>
<tr>
<td>8.2.2 Computational Modeling of Hydrophobic Association</td>
<td>150</td>
</tr>
<tr>
<td>8.2.2.1 Explicit versus Implicit Solvent: Is the Computational Cost Motivated?</td>
<td>152</td>
</tr>
<tr>
<td>8.3 Confined Water Molecules in Protein–Ligand Binding</td>
<td>153</td>
</tr>
<tr>
<td>8.3.1 Protein Hydration Sites</td>
<td>153</td>
</tr>
<tr>
<td>8.3.2 Thermodynamics of Volume-Con fined Water Localization</td>
<td>154</td>
</tr>
<tr>
<td>8.3.3 Computational Modeling of Volume-Con fined Water Molecules</td>
<td>156</td>
</tr>
<tr>
<td>8.3.4 Identifying Hydration Sites</td>
<td>158</td>
</tr>
<tr>
<td>8.3.5 Water in Protein–Ligand Docking</td>
<td>160</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>161</td>
</tr>
<tr>
<td>References</td>
<td>161</td>
</tr>
<tr>
<td>9 Implicit Solvent Models and Electrostatics in Molecular Recognition</td>
<td>171</td>
</tr>
<tr>
<td>Tyler Luchko and David A. Case</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>171</td>
</tr>
<tr>
<td>9.2 Poisson–Boltzmann Methods</td>
<td>173</td>
</tr>
<tr>
<td>9.3 The Generalized Born Model</td>
<td>175</td>
</tr>
<tr>
<td>9.4 Reference Interaction Site Model of Molecular Solvation</td>
<td>176</td>
</tr>
<tr>
<td>9.5 Applications</td>
<td>179</td>
</tr>
</tbody>
</table>
9.5.1 The “MM-PBSA” Model 180
9.5.2 Rescoring Docking Poses 182
9.5.3 MM/3D-RISM 182
Acknowledgments 185
References 185

10 Ligand and Receptor Conformational Energies 191
Themis Lazaridis
10.1 The Treatment of Ligand and Receptor Conformational Energy in Various Theoretical Formulations of Binding 191
10.1.1 Double Decoupling Free Energy Calculations 192
10.1.2 MM-PB(GB)SA 192
10.1.3 Mining Minima 193
10.1.4 Free Energy Functional Approach 194
10.1.5 Linear Interaction Energy Methods 195
10.1.6 Scoring Functions 196
10.2 Computational Results on Ligand Conformational Energy 196
10.3 Computational Results on Receptor Conformational Energy 198
10.4 Concluding Remarks 199
Acknowledgments 199
References 199

11 Free Energy Calculations in Drug Lead Optimization 207
Thomas Steinbrecher
11.1 Modern Drug Design 207
11.1.1 In Silico Drug Design 210
11.2 Free Energy Calculations 212
11.2.1 Considerations for Accurate and Precise Results 215
11.3 Example Protocols and Applications 217
11.3.1 Example 1: Disappearing an Ion 219
11.3.2 Example 2: Relative Ligand Binding Strengths 221
11.3.3 Applications 223
11.4 Discussion 226
References 227

12 Scoring Functions for Protein–Ligand Interactions 237
Christoph Sotriffer
12.1 Introduction 237
12.2 Scoring Protein–Ligand Interactions: What for and How to? 237
12.2.1 Knowledge-Based Scoring Functions 238
12.2.2 Force Field-Based Methods 240
12.2.3 Empirical Scoring Functions 242
12.2.4 Further Approaches 244
12.4 Thermodynamic Contributions and Intermolecular Interactions: Which Are Accounted for and Which Are Not? 248
12.5 Conclusions or What Remains to be Done and What Can be Expected? 254
Acknowledgments 255
References 255

Part IV Challenges in Molecular Recognition 265

13 Druggability Prediction 267
Daniel Alvarez-Garcia, Jesus Seco, Peter Schmidtke, and Xavier Barril
13.1 Introduction 267
13.2 Druggability: Ligand Properties 267
13.3 Druggability: Ligand Binding 268
13.4 Druggability Prediction by Protein Class 270
13.5 Druggability Predictions: Experimental Methods 270
13.5.1 High-Throughput Screening 270
13.5.2 Fragment Screening 271
13.5.3 Multiple Solvent Crystallographic Screening 272
13.6 Druggability Predictions: Computational Methods 272
13.6.1 Cavity Detection Algorithms 272
13.6.2 Empirical Models 273
13.6.2.1 Training Sets 273
13.6.2.2 Applicability and Prediction Performance 274
13.6.3 Physical Chemistry Predictions 275
13.7 A Test Case: PTP1B 276
13.8 Outlook and Concluding Remarks 278
References 278

14 Embracing Protein Plasticity in Ligand Docking 283
Manuel Rueda and Ruben Abagyan
14.1 Introduction 283
14.2 Docking by Sampling Internal Coordinates 284
14.3 Fast Docking to Multiple Receptor Conformations 285
14.4 Single Receptor Conformation 285
14.5 Multiple Receptor Conformations 286
14.5.1 Exploiting Existing Experimental Conformational Diversity 286
14.5.2 Selecting “Important” Conformations 288
14.5.3 Generating In Silico Models 288
14.6 Improving Poor Homology Models of the Binding Pocket 289
14.7 State of the Art: GPCR Dock 2010 Modeling and Docking Assessment 290
14.8 Conclusions and Outlook 290
Acknowledgments 292
References 292
15 Prospects of Modulating Protein–Protein Interactions 295

15.1 Introduction 295
15.2 Thermodynamics of Protein–Protein Interactions 297
15.3 CADD Methods for the Identification and Optimization of Small-Molecule Inhibitors of PPIs 298
15.3.1 Identifying Inhibitors of PPIs Using SBDD 299
15.3.1.1 Protein Structure Preparation 299
15.3.1.2 Binding Site Identification 300
15.3.1.3 Virtual Chemical Database 302
15.3.1.4 Virtual Screening of Compound Database 302
15.3.1.5 Rescoring 304
15.3.1.6 Final Selection of Ligands for Experimental Assay 306
15.3.2 Lead Optimization 307
15.3.2.1 Ligand-Based Optimization 307
15.3.2.2 Computation of Binding Free Energy 308
15.4 Examples of CADD Applied to PPIs 308
15.4.1 ERK 309
15.4.2 BCL6 311
15.4.3 S100B 313
15.4.4 p56Lck Kinase SH2 Domain 313
15.5 Summary 315
Acknowledgments 315
References 315

Index 331
List of Contributors

Ruben Abagyan
University of California, San Diego
Skaggs School of Pharmacy and Pharmaceutical Sciences
9500 Gilman Drive
La Jolla, CA 92093
USA
and
University of California, San Diego
San Diego Supercomputer Center
La Jolla, CA 92093
USA
and
Molsoft LLC
11199 Sorrento Valley Road, S209
San Diego, CA 92121
USA

Riccardo Baron
The University of Utah
Department of Medicinal Chemistry
College of Pharmacy
and
The Henry Eyring Center for Theoretical Chemistry
Salt Lake City
UT 84112-5820
USA
Email: r.baron@utah.edu

Xavier Barril
Universitat de Barcelona
Facultat de Farmàcia
Departament de Fisicoquímica
Av. Joan XXIII s/n
08028 Barcelona
Spain
and
Institut de Biomedicina de la Universitat de Barcelona (IBUB)
Barcelona
Spain
and
Catalan Institution for Research and Advanced Studies (ICREA)
Passeig Lluis Companys 23
08010 Barcelona
Spain
List of Contributors

David A. Case
Rutgers University
Department of Chemistry and Chemical Biology and BioMaPS Institute
610 Taylor Road
Piscataway, NJ 08854-8087
USA

Athel Cornish-Bowden
CNRS
Bioénergétique et Ingénierie des Protéines
B.P. 71, 31 chemin Joseph-Aiguier
13402 Marseille Cedex 20
France

U. Helena Danielson
Uppsala University
Department of Biochemistry and Organic Chemistry
BMC, Box 576
75123 Uppsala
Sweden

Ernesto Freire
Johns Hopkins University
Department of Biology
114A Mudd Hall, 3400 North Charles Street
Baltimore
MD 21218-2685
USA

Samuel Genheden
Lund University
Department of Theoretical Chemistry
Chemical Centre
P.O. Box 124
221 00 Lund
Sweden

Bernd W. Koenig
Forschungszentrum Jülich
IBI-2
52425 Jülich
Germany

Themis Lazaridis
City University of New York
City College of New York
Department of Chemistry
138th Street & Convent Avenue
New York, NY 10031
USA

Tyler Luchko
Rutgers University
Department of Chemistry and Chemical Biology and BioMaPS Institute
610 Taylor Road
Piscataway, NJ 08854-8087
USA

Alexander D. MacKerell Jr.
University of Maryland Baltimore
School of Pharmacy
Department of Pharmaceutical Sciences
20 Penn Street
Baltimore, MD 21201
USA

J. Andrew McCammon
University of California
Department of Chemistry and Biochemistry
Center for Theoretical Biological Physics
La Jolla
CA 92093-0365
USA
Taiji Oashi
University of Maryland Baltimore
School of Pharmacy
Department of Pharmaceutical Sciences
20 Penn Street
Baltimore, MD 21201
USA

Pengyu Ren
The University of Texas at Austin
Department of Biomedical Engineering
BME 5.202M, 1 University Station, C0800
Austin
TX 78712-1062
USA

Manuel Rueda
University of California, San Diego
Skaggs School of Pharmacy and Pharmaceutical Sciences
9500 Gilman Drive
La Jolla, CA 92093
USA

Ulf Ryde
Lund University
Department of Theoretical Chemistry
Chemical Centre
P.O. Box 124
221 00 Lund
Sweden

Peter Schmidtke
Universitat de Barcelona
Facultat de Farmàcia
Departament de Fisicoquímica
Av. Joan XXIII s/n
08028 Barcelona
Spain

and

Institut de Biomedicina de la Universitat de Barcelona (IBUB)
Barcelona
Spain

Sven Schünke
Forschungszentrum Jülich
IBI-2
52425 Jülich
Germany

Jesus Seco
Universitat de Barcelona
Facultat de Farmàcia
Departament de Fisicoquímica
Av. Joan XXIII s/n
08028 Barcelona
Spain

and

Institut de Biomedicina de la Universitat de Barcelona (IBUB)
Barcelona
Spain

Piotr Setny
Technical University Munich
Department of Physics
Munich
Germany

Paul Shapiro
University of Maryland Baltimore
School of Pharmacy
Department of Pharmaceutical Sciences
20 Penn Street
Baltimore, MD 21201
USA
List of Contributors

Kim A. Sharp
University of Pennsylvania
Department of Biochemistry and Biophysics
37th and Hamilton Walk
Philadelphia
PA 19104-6059
USA

Yue Shi
The University of Texas at Austin
Department of Biomedical Engineering
BME 5.202M, 1 University Station,
C0800
Austin
TX 78712-1062
USA

Pär Söderhjelm
ETH Zürich
Department of Chemistry and Applied Biosciences
Computational Science
Via Giuseppe Buffi 13
6900 Lugano
Switzerland

Christoph Sotriffer
University of Würzburg
Institute of Pharmacy and Food Chemistry
Department of Pharmaceutical Chemistry
Am Hubland
97074 Würzburg
Germany

Thomas Steinbrecher
Karlsruher Institut für Technologie
Institut für Physikalische Chemie
Gebäude 30.45, Kaiserstr. 12
76131 Karlsruhe
Germany

Matthias Stoldt
Forschungszentrum Jülich
IBI-2
52425 Jülich
Germany

Dieter Willbold
Forschungszentrum Jülich
IBI-2
52425 Jülich
Germany

Wenbo Yu
University of Maryland Baltimore
School of Pharmacy
Department of Pharmaceutical Sciences
20 Penn Street
Baltimore, MD 21201
USA

Jiajing Zhang
The University of Texas at Austin
Department of Biomedical Engineering
BME 5.202M, 1 University Station,
C0800
Austin
TX 78712-1062
USA

Shijun Zhong
School of Life Science and Technology
Dalian University of Technology
2 Linggong Road, Dalian
Liaoning Province, 116024, China
Phone: (086)0411-84707913
Email: sjzhong@dlut.edu.cn,
sjzhong@gmail.com
Preface

“Um ein Bild zu gebrauchen, will ich sagen, dass Enzym und Glucosid wie Schloss und Schlüssel zueinander passen müssen, um eine chemische Wirkung aufeinander ausüben zu können” [To use a picture, I would like to say that enzyme and glucoside have to fit like a lock and a key, in order to exert a chemical action on each other] wrote Emil Fischer in 1894, to illustrate his concept on protein-ligand interactions. Well, our picture of the protein-ligand interaction has developed further. Instead of a rigid fit, the concepts of induced fit and, later, flexible fit were formulated. Indeed, we have to understand the interaction like a handshake, where the one partner adapts to the other, in a mutual fit. Of course, this accommodation should not waste too much conformational energy, otherwise the affinity of the ligand would be significantly reduced. Correspondingly experience shows that compounds where the bioactive conformation is fixed or at least stabilized are most often high-affinity ligands. On the other hand, ligands that cannot achieve such a conformation will have no affinity at all. However, these geometric requirements are only part of the story. In addition, there must be complementary properties - similia similibus. Lipophilic groups should find their counterpart, charges or partial charges should have opposite signs, and hydrogen bond donor and acceptor groups should find together. The better this complementarity, the higher will be the affinity, provided that there are no steric clashes. Now, whereas this is a correct description of the requirements of a protein-ligand interaction, it is a very simple one.

Holger Gohlke assembled a team of leading experts in this field to describe not only the thermodynamics of binding but also the underlying biophysical approaches. The major part of the book is devoted to the discussion of factors that are responsible for the intermolecular interactions. Finally some challenges in molecular recognition are discussed. In a logical and didactic way, this volume is organized in four sections. The three introductory chapters review statistical thermodynamics of binding and molecular recognition models, practical rules for the thermodynamic optimization of drug candidates, and the puzzling concept of enthalpy-entropy compensation, as deduced from measurements of temperature dependence. A section on the impact of biophysical experiments focuses, in particular, on interaction kinetic data generated by surface plasmon resonance biosensors as well as NMR methods for the determination of protein-ligand interactions. The central and most comprehensive section is dedicated to aspects of modeling
protein-ligand interactions including polarizable force fields, quantum mechanics in structure-based ligand design, the role of water in hydrophobic association, implicit solvation models and electrostatics in molecular recognition, conformational aspects, free energy calculations in drug lead optimization, as well as scoring functions for protein-ligand interactions. The final section on challenges for protein-ligand interaction modelling considers druggability prediction, protein plasticity, and protein-protein interactions.

The series editors are grateful to Holger Gohlke for his enthusiasm to organize this volume and to work with such a selection of excellent authors. We believe that this book adds a fascinating new facet to our book series on “Methods and Principles in Medicinal Chemistry”. Last, but not least we thank the publisher Wiley-VCH, in particular Frank Weinreich and Heike Nöthe, for their valuable contributions to this project and the entire series.

February 2012
Düsseldorf
Weisenheim am Sand
Zürich

Raimund Mannhold
Hugo Kubinyi
Gerd Folkers
A Personal Foreword

Ever since I started my scientific work I have been fascinated by the questions what makes two molecules bind to each other and how can one make use of this knowledge to modulate biological processes: After all, “corpora non agunt nisi fixata”, as Paul Ehrlich put it almost 100 years ago. Ehrlich’s statement that “bodies do not act if they are not bound” is strikingly exemplified by about 130,000 binary interactions in the human protein-protein “interactome” [1]. Along the same lines and more oriented towards the topic of this book, the famous wall chart “Biochemical Pathways” introduced by Gerhard Michal [2] is a vivid picture in the eyes of a life science scientist, with its comprehensive view on metabolic pathways and cellular and molecular processes, particularly involving interactions between proteins and endogenous small-molecules.

For a xenobiotic ligand to exert an influence on an organism, it must bind to a biological target, too. While this statement seems unspectacular nowadays, it still has far-reaching consequences because it provides a valuable handle to explain and predict biological activity, both beneficial and detrimental, in terms of affinity, a well-defined thermodynamic property, of a ligand towards a (or multiple) targets. In fact, the fields of medicinal chemistry and drug design have made use of different variations of this theme over time depending on which type of information about binding was available in each case.

From an inductive point of view, already since the very early days of modern chemistry [3] structures of ligands and, hence, their binding properties, have been correlated to activities. Further milestones on this route were the establishment of quantitative structure-activity relationships and the comparison of ligands based on concepts of similarity or dissimilarity of shape and chemical properties. From a deductive point of view, the above theme summons medicinal chemists to look at biological activity from the perspective of processes and contributions that lead to binding, with structural information of the binding partners being of invaluable help. As such, the event of (reversible) binding is a consequence of association and dissociation processes and involves enthalpic and entropic components. If and how these separate processes and components can be modulated by modification of a ligand’s structure for the sake of overall optimized binding properties is a “hot topic” at present in drug research. Furthermore, the deductive point of view allows one to
apply a divide-and-conquer strategy when it comes to understanding and predicting binding from a theoretical perspective. As a first approximation, binding can be attributed to direct interactions between the binding partners mediated by an aqueous environment, to which contributions due to changes in the conformation and configuration of the binding partners add. While this approximation is valuable in that it allows optimizing the description of each of these terms separately, it also provokes the question to what extent does it hold or, phrased differently, when do cooperativity or compensation effects prevail over additivity?

The majority of topics for this book were selected following this deductive point of view, with an emphasis on rigorous approaches because I believe that these will be more successful in the long term than ad hoc ones. The selection also focused on topics that, at that time, had most quickened interests, had seen considerable progress, or had still been major stumbling blocks in the description and prediction of binding. Unsurprisingly, while much has been achieved in all of the covered areas as undoubtedly laid out in each of the chapters, not in all cases have methods or approaches lived up to one’s expectations so far. I am grateful to the authors for pointing this out clearly – such insights will drive further developments that aim at improving our understanding of protein-ligand interactions. Finally, I also tried to balance topics related to biophysical experiments against theoretical and computational approaches, because I have learnt from my own work how well both sides can complement and enhance each other, and what joy this gives.

Last but not least, I express my gratitude to all contributors for providing insightful accounts on the topic of protein-ligand interactions, to the series editors Raimund Mannhold, Hugo Kubinyi, and Gerd Folkers for giving me the opportunity to address this topic, to my current working group for providing fruitful comments about the chapters, and to Frank Weinreich and Heike Nöthe from the publisher Wiley-VCH for their continuous support, great help, and even greater patience.

Düsseldorf, Germany

Holger Gohlke

References

Part I
Binding Thermodynamics
1
Statistical Thermodynamics of Binding and Molecular Recognition Models

Kim A. Sharp

1.1 Introductory Remarks

Equilibrium binding or association of two molecules to form a bimolecular complex, A + B ↔ AB, is a thermodynamic event. This chapter will cover some of the fundamental thermodynamics and statistical mechanics aspects of this event. The aim is to introduce general principles and broad theoretical approaches to the calculation of binding constants, while later chapters will provide examples. Only the noncovalent, bimolecular association under ambient pressure conditions will be considered. However, extension to higher order association involves no additional principles, and extension to high pressure by inclusion of the appropriate pressure–volume work term is straightforward. In terms of the binding reaction above, the association and dissociation constants are defined as $K = [AB]/[A][B]$ and $K_D = [A][B]/[AB]$ respectively, where $[]$ indicates concentration. Either K or K_D is the primary experimental observable measured in binding reactions. K_D is sometimes obtained indirectly by inhibition of binding of a different ligand as a K_i. From a thermodynamic perspective, the information content from K, K_D, and K_i is the same.

1.2 The Binding Constant and Free Energy

To connect the experimental observable K to thermodynamics, one often finds in the literature the relationship

$$\Delta G_{\text{bind}} = -kT \ln K,$$

where k is the Boltzmann constant, T is the absolute temperature, and ΔG_{bind} is the “absolute” or “standard” binding free energy. Several comments are given to avoid misuse of this expression. First, one cannot properly take the logarithm of a quantity with units such as K, so Eq. (1.1) is implicitly

$$\Delta G_{\text{bind}} = -kT \ln \frac{K}{V_{\text{ref}}},$$

where V_{ref} is a reference volume.
where V_{ref} is the reference volume in units consistent with the units of concentration in K, that is, 1 l/mol or about 1660 Å3/molecule for molarity units. The choice of V_{ref} is often referred to as the “standard state” problem. Equivalently, one says that ΔG_{bind} is the free energy change when reactants A and B and the product AB are all at the reference concentration. Second, although the units of concentration used in K are almost always moles/liter, this is entirely a convention, so the actual numerical value for ΔG_{bind} obtained from Eq. (1.2) is arbitrary. Put another way, any method for calculating the free energy of binding must explicitly account for a particular choice of V_{ref} before it can meaningfully be compared with experimental values of ΔG_{bind} obtained using Eq. (1.2). Furthermore, ligand efficiency-type measures, such as $\Delta G_{\text{bind}}/n$ where n is the number of heavy atoms in a ligand or the molecular weight of a ligand [1], can change radically with (arbitrary) choice of concentration units. Of course, differences in ΔG_{bind} can be sensibly compared provided the same reference state concentration is used. Finally, in Eq. (1.2), the free energy actually depends on the ratio of activities of reactants and products, not on concentrations. For neutral ligands and molecules of low charge density at less than micromolar concentrations, the activity and concentration are nearly equal and little error is introduced. However, this is not true for high charge density molecules such as nucleic acids and many of the ligands and proteins that bind to nucleic acids. Here, the activity coefficient can be substantially different from unity even at infinitely low concentration. Indeed, much of the salt dependence of ligand–DNA binding can be treated as an activity coefficient effect [2–4]. The issue of standard state concentrations, the formal relationship between the binding constant and the free energy, and the effect of activity coefficients are all treatable by a consistent statistical mechanical treatment of binding, as described in Section 1.3.

1.3 A Statistical Mechanical Treatment of Binding

Derivation of a general expression for the binding constant follows closely the approach of Luo and Sharp [5], although somewhat different treatments using chemical potentials, which provide the same final result, are given elsewhere [6–8]. It is a statistical mechanical principle that any equilibrium observable can be obtained as an ensemble, or Boltzmann weighted average, of the appropriate quantity. Here, the binding constant $K = [AB]/[A][B]$ is the required observable. Consider a single molecule each of A and B in some volume V (Figure 1.1) and for convenience define a coordinate system centered on B (the target) in a fixed orientation. Over time, the ligand (A) will explore different positions and orientations (poses) relative to B, where r and Ω represent the three position and three orientation coordinates of A with respect to B. Now A and B interact with each other with an energy that depends not only on their relative position (r, Ω) but in general also on the conformations of A, B, and the surrounding solvent. If n_a, n_b, n_s are the number of atoms in A, B, and solvent, then the energy is a function of $3n_a + 3n_b + 3n_s − 6$ coordinates. In principle, one could keep all these degrees of freedom explicit. From a
practical standpoint, this would be a complicated and expensive function to evaluate. However, one may integrate over the solvent coordinates and the \((3n_a - 6) + (3n_b - 6)\) internal coordinates so that the interaction between A and B for a given \((r, \Omega)\) is described by an interaction potential of mean force (pmf) \(\omega(r, \Omega)\). If one defines the pmf between A and B at infinite separation in their equilibrium conformations to be 0, then \(\omega(r, \Omega)\) is the thermodynamic work of bringing A and B from far apart to some mutual pose \((r, \Omega)\), accounting for both solvent effects and internal degrees of freedom of A and B. A will sample each pose \((r, \Omega)\) with a probability given by the Boltzmann factor of the pmf:

\[
p(r, \Omega) \propto e^{-\beta \omega(r, \Omega)},
\]

where \(\beta = 1/kT\). Indeed, one may consider the pmf to be defined by this equation. The binding constant will then be given by the fraction of time A is in the bound state, \(f_{\text{ab}}\), relative to that in the free state, \(f_{\text{f}}\):

\[
K = \frac{[AB]}{[A][B]} = \frac{f_{\text{ab}}/V}{(f_{\text{f}}/V)(f_{\text{f}}/V)} \xrightarrow{V \to \infty} f_{\text{ab}} V,
\]

where in the dilute limit \(f_{\text{f}} \to 1\). It is convenient to introduce a function \(H(r, \Omega)\) that takes a value of 1 for poses where A is bound and a value of 0 when it is free. Then, the fraction of the time A is bound is given by the ensemble average of \(H\):

\[
f_{\text{ab}} = \int dr \int d\Omega H(r, \Omega)e^{-\beta \omega(r, \Omega)} / \int dr \int d\Omega e^{-\beta \omega(r, \Omega)}.
\]

The integrals are taken over all orientations and over the entire volume of the solution, so the denominator gives \(8\pi^2V\). Substituting into Eq. (1.4), the final expression for the association constant is
\[
K = \frac{1}{8\pi^2} \int \, d\Omega H(\mathbf{r}, \Omega) e^{-\beta \omega(\mathbf{r}, \Omega)}. \tag{1.6}
\]

One may then convert this to an “absolute” binding free energy using Eq. (1.2):
\[
\Delta G_{\text{bind}} = kT \ln (8\pi^2 V_{\text{ref}}) - kT \ln \int \, d\Omega H(\mathbf{r}, \Omega) e^{-\beta \omega(\mathbf{r}, \Omega)}. \tag{1.7}
\]

- Equation 1.6 is a general and exact expression for the association constant. The integral depends explicitly on just six variables describing the pose of A with respect to B. The other degrees of freedom are included implicitly, but exactly through the thermodynamic quantity \(\omega(\mathbf{r}, \Omega) \), the potential of mean force.
- The different treatment of coordinates for translation/orientation versus the others is a formal one: Any subset of coordinates may in principle be kept explicit, with the appropriate pmf being used for the rest. For example, one may keep the internal coordinates of A and B explicit, making the solvent coordinates implicit. The choice here is designed to highlight the translation/rotation contribution to binding that has been widely discussed, with some disagreement, in the literature \([5, 6, 9–13]\). It also reflects the practical fact that in many docking and screening applications, a particular pose is generated explicitly, that is, \((\mathbf{r}, \Omega) \) is specified, and then the pose is “scored” in some way. The pmf also provides a natural way to introduce approximations necessary for any practical calculation of \(K \) in biological systems, for example, in the treatment of solvent.
- The integral has the correct units of volume, with the length scale for the translation coordinates being determined by the units of concentration used in \(K \). The first term in Eq. (1.7) is the contribution of the rotation/translation (R/T) entropy in the unbound state, which depends on the reference concentration. The integral term in Eq. (1.6) is the Boltzmann phase volume of the bound state.
- Through \(H(\mathbf{r}, \Omega) \), there is explicit consideration of what constitutes the bound complex, in terms of the relative position and orientation of A with respect to B. For example, if B has more than one binding site for A, this would be taken into account in the specification of where \(H = 1 \).
- Either Cartesian coordinates or the bond length, bond angle, and dihedral angle coordinates may be used. The trend now is toward the latter, as they lend themselves more naturally to the analysis of different internal motions of the molecules and their contribution to binding.

The meaning of Eq. (1.6) is illustrated by two simple examples.

1.3.1

Binding in a Square Well Potential

Let the pmf be approximated by a simple, three-dimensional square well potential of depth \(\epsilon \) and width \(b \) in each of the \(x, y, z \) directions and the bound complex be the region in the well only. From Eq. (1.6), the association constant is
and Eq. (1.2) yields

\[\Delta G_{\text{bind}} = -\varepsilon + kT \ln\left(\frac{V_{\text{ref}}}{b^3}\right). \]

The first term, the well depth, makes a direct, linear contribution to the binding free energy. The second term is positive and comes from the restriction of the ligand to the square well. It is the translation entropy penalty for binding, and it depends on the ratio of the volumes available to the ligand in the free state at say 1 M (the entire volume \(V_{\text{ref}} \)) versus that in the bound state. In this simple example, there is no rotational entropy penalty because in the bound state the ligand can rotate freely in \(8\pi^2 \) of orientation phase volume, just as in the free state. However, restriction in rotation in the bound state will add another positive term to \(\Delta G_{\text{bind}} \), the rotation entropy penalty, with a similar form: \(kT \ln\left(\frac{8\pi^2}{V_{\Omega}}\right) \), where \(V_{\Omega} \approx 8\pi^2 \) is the orientation phase volume in the bound state. We can see even from this simple example that for any meaningful degree of binding, the translational and rotational phase volumes available to a ligand in the bound state must be less than \(V_{\text{ref}} \) and \(8\pi^2 \), respectively, so there is always a R/T entropy penalty to be overcome for binding to occur. The question is how much is it in specific cases. A related point is that even though the depth of the well may be known, for example, from some calculation (in the parlance of the field, from a single point energy determination), this cannot be directly compared with \(\Delta G_{\text{bind}} \) because the second term is not included. The numerical value of the binding free energy depends on the reference concentration, which is nowhere in the single point calculation. One way or another, the residual R/T entropy of A in the bound state must be accounted for.

1.3.2 Binding in a Harmonic Potential

If one is starting from a known complex structure derived from, for example, X-ray, NMR, or molecular mechanics minimization, one is presumably close to the minimum energy (pmf) configuration. The pmf in this region may be close to harmonic or at least expandable in a Taylor expansion, which to second order is harmonic. It is, therefore, instructive to consider binding in a harmonic potential, although this is a simplified model of the real situation. Let the potential well be a three-dimensional harmonic potential of the form

\[\omega(r) = \varepsilon \left(\frac{r}{b}\right)^2 - 1 \quad (r < b), \quad \omega(r) = 0 \quad (r \geq b), \]

where \(\varepsilon \) is the depth of the well at the minimum, \(r \) is the radial distance from the minimum, and \(b \) defines the width so that for \(r \geq b \), \(\omega = 0 \) (Figure 1.2). Again, the bound complex is defined to be the region in the well only. Substituting Eq. (1.10) into Eq. (1.6) and integrating, the association constant for this truncated harmonic potential is
\[K = b^3 e^\beta \left(4\pi \sum_{n=0}^{\infty} \frac{-1^n(\beta \varepsilon)^n}{(2n+3)n!} \right) \approx b^3 e^\beta \left(\frac{\pi}{\beta \varepsilon} \right)^{3/2}. \]

(1.11)

The approximate equality comes from using an untruncated harmonic potential (i.e., the potential goes to infinity as the complex is dissociated), which for this case gives a binding free energy of

\[\Delta G_{\text{bind}} = -\varepsilon + kT \ln(V_{\text{ref}}/b^3) - 3/2kT \ln(\pi/\beta \varepsilon). \]

(1.12)

Comparing the square well and harmonic potential models, one sees that the “depth” and “volume” factors, \(e^{\beta \varepsilon} \) and \(b^3 \), contribute in the same way to the binding constant, the difference being a “well shape” factor. We see from the form of the expression for the association constant that the lower the pmf, the more the contribution to the integral by that region, so most of the contribution to binding should come from the near minimum energy configuration. This is illustrated in Figure 1.2, using a well half-width of 2 A and a depth 19.6kT (inset) that has \(K_d = 10 \mu M \).

Figure 1.2 Contributions to the binding-phase integral. *Dotted line:* Value of the integrand of Eq. (1.6) at \(r \). *Solid line:* Value of the resulting integral from 0 to \(r \). Both are expressed as a percentage of the total association constant.

Contribution were calculated for a truncated three-dimensional harmonic well potential, half-width 2 A, and depth 19.6kT (inset) that has \(K_d = 10 \mu M \).