Hemovigilance is a "quality process" which aims to improve the quality and safety of blood transfusions by surveying all activities of the blood transfusion chain, from donors to recipients.

Hemovigilance programs have now been in existence for over 15 years, but many countries and centers are still at the development stage. This valuable resource brings together the main elements of such programs and shows the different types of models available. A general introduction includes chapters on hemovigilance as a quality tool for transfusion, as well as concepts of, and models for hemovigilance. The core of the book describes how hemovigilance systems have been set up and how they work in hospitals, blood establishments, and at a national level. These chapters are written according to a structured template: products and processes, documentation of jobs, monitoring and assessment, implementation and evaluation of measures, for improvement, and education and training. Chapters on hemovigilance at the international level, achievements and new developments complete the picture.

Hemovigilance: An Effective Tool for Improving Transfusion Safety is above all a practical guide to setting up and improving hemovigilance systems, while raising awareness for reporting adverse events and reactions. This is the first international book on hemovigilance, assembling all the vital issues in one definitive reference source – it is essential reading for all staff involved in the transfusion process.
Hemovigilance
Hemovigilance

An Effective Tool for Improving Transfusion Safety

EDITED BY

René R.P. De Vries MD
Past President of the International Haemovigilance Network (IHN) and Head of the Blood Transfusion Service, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands

Jean-Claude Faber MD
President of the International Haemovigilance Network (IHN) and retired as Medical Director, Blood Transfusion Service of the Luxembourg Red Cross, Luxembourg
This edition first published 2012, © 2012 by John Wiley & Sons, Ltd

Copyright is not claimed for chapters 19 and 27, which are in the public domain.

Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley's global Scientific, Technical and Medical business with Blackwell Publishing.

Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK
 The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
 111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting a specific method, diagnosis, or treatment by physicians for any particular patient. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. Readers should consult with a specialist where appropriate. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

p. : cm.
Includes bibliographical references and index.
I. Vries, René R. P. de. II. Faber, Jean-Claude. III. Robillard, Pierre.
615.3'90289–dc23
2012002552

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Set in 9/12pt Meridien by Aptara Inc., New Delhi, India
Contents

List of Contributors, viii
Foreword, xii

Part 1 General Introduction

1 Introduction, 3
 René R.P. de Vries

2 Hemovigilance: A Quality Tool for the Blood Transfusion Chain, 5
 René R.P. de Vries

3 Concepts and Models, 12
 René R.P. de Vries and Jean-Claude Faber

Part 2 Hemovigilance of the Blood Transfusion Chain (Blood Establishment and Hospital)

Section 2.1: Setting up a Hemovigilance System

4 Setting Up or Consolidating a System for Donor Hemovigilance at the Level of a Blood Establishment, 21
 Johanna Wiersum-Osselton, Wim de Kort, Tanneke Marijt-van der Kreek, and Jeroen de Wit

5 Preparation of Blood Components, 36
 Tomislav Vuk

6 Establishment of Hemovigilance for the Testing, Storage, Distribution, Transport, and Issuing of Blood and Blood Components: The Example of Greece, 52
 Constantina Politis

7 Medical Decision, Ordering, Administration of Component, and Monitoring of the Patient, 61
 Mickey B.C. Koh, Ramir Alcantara, Mark Grumbridge, and Ai Leen Ang

Section 2.2: How the System Works

8 Blood Donation: An Approach to Donor Vigilance, 77
 Peter Tomasulo, Madhav Errajjunta, and Hany Kamel

9 Preparation of Blood Components, 99
 Erhard Seifried, Reinhard Henschler, Juergen Luhm, Thea Mueller-Kuller, Hans-Ulrich Pfeiffer, Walid Sireis, and Markus M. Mueller
Contents

10 Testing, Issuing, and Transport of Blood Components, 113
 Constantina Politis

11 Clinical Activities: Medical Decision-making, Sampling, Ordering Components, Administration, and Patient Monitoring, 126
 Clare Taylor

Part 3 National or Regional Hemovigilance Systems

12 The French Hemovigilance Network: From the Blood Scandal to Epidemiologic Surveillance of the Transfusion Chain, 147
 Philippe Renaudier

13 The Japanese Hemovigilance System, 159
 Hitoshi Okazaki, Naoko Goto, Shun-ya Momose, Satoru Hino, and Kenji Tadokoro

14 Setting up a National Hemovigilance System: SHOT, 168
 Hannah Cohen and Lorna M. Williamson

15 The Dutch Hemovigilance System: Transfusion Reactions in Patients (TRIP), 180
 Martin R. Schipperus, Johanna Wiersum-Osselton, Pauline Y. Zijlker-Jansen, and Anita J.W. van Tilborgh-de Jong

16 Regulatory, Public Health, and International Aspects of Hemovigilance in Canada, 191
 Peter R. Ganz and Jun Wu

17 Setting up and Implementation of the National Hemovigilance System in Italy, 204
 Giuliano Grazzini and Simonetta Pupella

18 The Australian Hemovigilance System, 209
 Erica M. Wood, Lisa J. Stevenson, Simon A. Brown, and Christopher J. Hogan

19 Biovigilance in the United States, 220
 D. Michael Strong, Barbee Whitaker, Matthew J. Kuehnert, and Jerry A. Holmberg

20 Arab Hemovigilance Network, 226
 Salwa Hindawi, Magdy Elekiaby, and Gamal Gabra

Part 4 Hemovigilance at the International Level

21 Hemovigilance in the European Community, 235
 Jean-Claude Faber

22 International collaboration, 253
 Paul F.W. Strengers

23 Hemovigilance in Developing Countries, 260
 Jean-Claude Faber

Part 5 Achievements

24 Achievements Through Hemovigilance, 281
 Jean-Claude Faber and Fátima Nascimento
Part 6 Developments

25 Vigilance of Alternatives for Blood Components, 305
 Dafydd Thomas

26 Surveillance of Clinical Effectiveness of Transfusion, 322
 Brian McClelland and Katherine Forrester

27 Biovigilance, 326
 Jerry A. Holmberg, Matthew J. Kuehnert, and D. Michael Strong

Appendices

Appendix A Glossary, 343

Appendix B Proposed standard definitions for surveillance of non infectious adverse transfusion reactions, 351

Appendix C Standard for surveillance of complications related to blood donation, 360

Index, 369
List of Contributors

Ramir Alcantara MD
Registrar
Blood Services Group
Health Sciences Authority
Singapore

Ai Leen Ang MD, FRCPath
Consultant
Blood Services Group
Health Sciences Authority
Singapore;
Department of Haematology
Singapore General Hospital
Singapore

Simon A. Brown MBBS, MD, FRCP, FRCPA,
FRACP, FRCPath
Clinical Advisor and Consultant Haematologist
Queensland Blood Management Program & Pathology
Queensland
Brisbane, Australia

Hannah Cohen MD, FRCP, FRPath
Consultant Haematologist and Honorary Senior Lecturer
University College London Hospitals and University College London
Department of Haematology
London, UK

Magdy Elekiaby MSc, MD
Head of Blood Transfusion Center
Shabrawishi Hospital
Giza, Egypt

Madhav Erraguntla PhD
Senior Research Scientist
Knowledge Based Systems Inc
College Station, TX, USA

Katherine Forrester PhD
Transfusion Researcher
Scottish National Blood Transfusion Service
Edinburgh, UK

Gamal Gabra MD
Transfusion Medicine Consultant
Birmingham Blood Transfusion Center
Birmingham, UK

Peter R. Ganz PhD
Director, Centre for Biologics Evaluation
Health Canada
Ottawa, ON, Canada;
Adjunct Professor
Faculty of Medicine
University of Ottawa
Ottawa, ON, Canada

Naoko Goto MS
Deputy Director
Safety Vigilance Division
Blood Service Headquarters
Japanese Red Cross Society
Tokyo, Japan

Giuliano Grazzini MD, PhD
Director, National Blood Centre
Istituto Superiore di Sanità
Rome, Italy

Mark Grumbridge RGN BSc Dip N
Transfusion Practitioner
Department of Haematology
St George’s Hospital and Medical School
London, UK

Reinhard Henschler MD
Head, Department of Production
Institute for Transfusion Medicine and Immunohaematology
Clinics of the Johann Wolfgang Goethe University
Frankfurt/Main
German Red Cross Blood Donor Services
Baden-Wuerttemberg-Hessen
Frankfurt/Main, Germany
Salwa Hindawi MD, FRCPath, CTM
President of Saudi Society of Transfusion Medicine
ISBT Eastern Mediterranean Regional Director
Member of WHO Advisory Panel on Blood Safety
Director of Blood Transfusion Services
King Abdulaziz University, Jeddah
Saudi Arabia

Satoru Hino MPharm
Deputy Director General
(Blood Service Headquarters)
Japan Red Cross Society
Tokyo, Japan

Christopher J. Hogan MBBS, BSc (Hons), FRCPA
Principal Medical Officer
National Blood Authority, Canberra;
Chair, Australian Haemovigilance Advisory Committee
Canberra, Australia

Jerry A. Holmberg PhD
Director, Scientific Affairs
Novartis Vaccines and Diagnostics Inc.
Emeryville, CA, USA

Hany Kamel MD
Corporate Medical Director
Blood Systems Inc.
Scottsdale, AZ, USA

Mickey B.C. Koh MD, PhD, FRCPath
Consultant Haematologist
Director, Stem Cell Transplant Programme
St George’s Hospital and Medical School
London, UK;
Medical Director, Cell Therapy Facility
Health Sciences Authority
Singapore;
Division Director
Blood Services Group
Health Sciences Authority
Singapore

Wim de Kort MD, PhD
Director, Donor Services
Sanquin Blood Supply Foundation
Nijmegen, The Netherlands

Matthew J. Kuehnert MD
Director, Office of Blood, Organ, and Other Tissue Safety
Division of Healthcare Quality Promotion
Centers for Disease Control and Prevention (CDC)
Atlanta, GA, USA

Juergen Luhm PhD
Quality Manager
Institute for Transfusion Medicine and Immunohaematology
Clinics of the Johann Wolfgang Goethe University
Frankfurt/Main
German Red Cross Blood Donor Services
Baden-Wurttemberg-Hessen
Frankfurt/Main, Germany

Tanneke Marijt-van der Kreek MD
Chief Donor Physician in Southwestern Region
Sanquin Blood Supply Foundation
Rotterdam, The Netherlands

Brian McClelland MD
Scottish National Blood Transfusion Service
Edinburgh, UK

Shun-ya Momose BPharm
Director
(Safety Management Supervisor)
Blood Service Headquarters
Japan Red Cross Society
Tokyo, Japan

Markus M. Mueller
Consultant in Transfusion Medicine
Department Head of Blood Donation
Institute for Transfusion Medicine and Immunohaematology
Clinics of the Johann Wolfgang Goethe University
Frankfurt/Main
German Red Cross Blood Donor Services
Baden-Wurttemberg-Hessen
Frankfurt/Main, Germany

Thea Mueller-Kuller PhD
Quality Manager
Institute for Transfusion Medicine and Immunohaematology
Clinics of the Johann Wolfgang Goethe University
Frankfurt/Main
German Red Cross Blood Donor Services
Baden-Wurttemberg-Hessen
Frankfurt/Main, Germany

Fátimas Nascimento MD
Senior Consultant in Transfusion Medicine
General Directorate of Health
Lisbon, Portugal

Hitoshi Okazaki MD, PhD
Senior Director
Research and Development Department
Central Blood Institute
Blood Service Headquarters
Japanese Red Cross Society
Tokyo, Japan
List of Contributors

Hans-Ulrich Pfeiffer Dipl Biol
Production Manager
Institute for Transfusion Medicine and Immunohaematology
Clinics of the Johann Wolfgang Goethe University
Frankfurt/Main
German Red Cross Blood Donor Services
Baden-Wuerttemberg-Hessen
Frankfurt/Main, Germany

Constantina Politis MD
Associate Professor of Medicine
Athens University;
Head of the Hellenic Coordinating Haemovigilance Centre (SKAE)
Athens, Greece

Simonetta Pupella MD
Responsible Medical Area, National Blood Centre
Istituto Superiore di Sanità
Rome, Italy

Philippe Renaudier MD, MS
French Society of Vigilance and Transfusion Therapeutics (SFVTT)
Regional Coordination of Hemovigilance
Agence Régionale de Santé Lorraine
Nancy, France

Martin R Schipperus MD, PhD
Hematologist
Head, Department of Hematology
Haga Teaching Hospital;
President, TRIP Dutch National Hemovigilance Office
The Hague, The Netherlands

Erhard Seifried MD, PhD
Professor of Transfusion Medicine
Chair for Transfusion Medicine and Immunohaematology
Medical Director and CEO
German Red Cross Blood Transfusion Service
Baden-Wuerttemberg—Hessen
Institute for Transfusion Medicine and Immunohaematology
JW Goethe University Frankfurt/Main
Frankfurt/Main, Germany

Walid Sireis MUDr
Head, Quality Management
Institute for Transfusion Medicine and Immunohaematology
Clinics of the Johann Wolfgang Goethe University
Frankfurt/Main
German Red Cross Blood Donor Services
Baden-Wuerttemberg-Hessen
Frankfurt/Main, Germany

Lisa J. Stevenson RN, Grad Dip Health Med Law, Cert Transfus Practice, Cert Crit Care
Transfusion Nurse Consultant
Blood Matters Program
Department of Health and Australian Red Cross Blood Service
Melbourne, Victoria, Australia

Paul F.W. Strengers MD, FFPM
Director, Medical Affairs and Product Development
Division of Plasma Products
Sanquin Blood Supply Foundation
Amsterdam, The Netherlands

D. Michael Strong PhD
Affiliate Professor
Department of Orthopaedics and Sports Medicine
University of Washington School of Medicine
Seattle, WA, USA

Kenji Tadokoro MD, PhD
Executive Officer
Blood Service Board of Management;
Director General
Central Blood Institute
Blood Service Headquarters
Japanese Red Cross Society
Tokyo, Japan

Clare Taylor PhD FRCP FRCPath
Consultant in Haematology and Transfusion Medicine
Former Medical Director of SHOT
c/o SHOT Office, Manchester Blood Centre
Manchester, UK

Dafydd Thomas MBChB, FRCA
Consultant in Intensive Care Medicine
Morriston Hospital
Swansea, Wales

Anita van Tilborgh-de Jong MD
Senior Hemovigilance Physician
TRIP Dutch National Hemovigilance Office
The Hague, The Netherlands

Peter Tomasulo MD
Chief Medical and Scientific Officer
Blood Systems Inc.
Scottsdale, AZ, USA

Tomislav Vuk MD
Specialist in Transfusion Medicine
Head of Quality Control and Quality Assurance Department
Croatian Institute of Transfusion Medicine
Zagreb, Croatia
List of Contributors

Barbara I. Whitaker PhD
Director, Data and Special Programs
AABB
Bethesda, MD, USA

Johanna Wiersum-Osselton MD
National Coordinator
TRIP Dutch National Hemovigilance Office
The Hague, The Netherlands
and
Senior Donor Physician
Sanquin Blood Supply Foundation
Rotterdam, The Netherlands

Lorna M. Williamson BSc, MD, FRCP, FRCPath
Medical and Research Director
NHS Blood and Transplant
Watford, UK

Jeroen de Wit PharmD
Vice Chair, Executive Board
Sanquin Blood Supply Foundation
Amsterdam, The Netherlands

Erica M. Wood MBBS, FRACP, FRCPA
Consultant Haematologist
Chair, Serious Transfusion Incident Reporting (STIR) Expert Group
Blood Matters Program
Department of Health and Australian Red Cross Blood Service
and
Department of Clinical Haematology, Monash University
Melbourne, Victoria, Australia

Jun Wu MD, PhD
Blood Safety Surveillance and Health Care Acquired Infection Division
Public Health Agency of Canada
Ottawa, ON, Canada

Pauline Y. Zijlker-Jansen MD
Hemovigilance and Tissue Vigilance Physician
TRIP Dutch National Hemovigilance Office
The Hague, The Netherlands
Foreword

Hemovigilance is one of the most important activities for those of us who are active in the field of blood transfusion. Irrespective of your profession, whether blood banker, quality manager, donor physician, nurse, phlebotomist, laboratory technician, transfusing physician or hospital nurse, the safety of blood products from their “origin” in the blood donor until their use in the recipient is of utmost importance. The phrase “safety from vein to vein” was coined to illustrate the breadth of the field. Today, the field of hemovigilance is even more wide-ranging, covering blood components, tissues and cell preparations including donor vigilance, materiovigilance and safety of the patient.

While hemovigilance is well known to those who work in the field of transfusion medicine, there are important differences between countries when it comes to the implementation of national hemovigilance programs.

The International Hemovigilance Network (IHN) has done an excellent job in establishing common definitions and in bringing together the different national activities. Today in Europe, EU directives define our common standards in blood transfusion and similar approaches are taken in other regions of the world.

In June 2009, René de Vries, then President of the International Hemovigilance Network, was asked by Maria Khan, responsible for transfusion publications at Wiley-Blackwell, about the need for a handbook on hemovigilance that would outline and guide the reader on procedures of the transfusion chain. Maria asked René whether he believed such a book would be beneficial and, if so, who might make suitable editors and authors for the project.

The request from Wiley-Blackwell fell on fertile soil. After consultation with the IHN Board, René confirmed the need for such a book and moreover advised that the IHN Board had recently been discussing a similar idea. They were therefore willing to embark on the project. Finally, two IHN Board members agreed to take on the editorship of this book: René de Vries and Jean-Claude Faber.

Hemovigilance: An Effective Tool for Improving Transfusion Safety is the first book on this subject and its aim is to become the textbook on hemovigilance. This may well be the case since all the ingredients to achieve this aim are present: the editors developed a master plan and communicated this to all the authors, gathering the best experts from all over the world. Contributors demonstrated their commitment, writing their chapters according to the uniform instructions and definitions set out by the editors. The book is as comprehensive as is possible for such a big subject and many diverse examples from different settings are given.

It not only provides clear-cut answers to the ‘Whats?’ and ‘Whys?’, but also to the ‘How do Is?’ Examples of national and international hemovigilance systems and a summary of past achievements as well as new developments and future challenges will help readers to integrate their local or national experience into the global scheme.

We are very pleased with the new hemovigilance book and we hope that many readers from both within the field of transfusion medicine and from other fields such as quality and safety management, and regulatory affairs, will enjoy it. We are confident that Hemovigilance: An Effective Tool for Improving Transfusion Safety will contribute to the improvement of safety and quality of blood transfusion.

Erhard Seifried* and Markus M. Mueller
Frankfurt/Main, Germany
March 2012

*past president of the International Society for Blood Transfusion (ISBT).
PART 1

General Introduction
CHAPTER 1
Introduction
René R.P. de Vries
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands

Why did we produce this book?
Hemovigilance deals with the safety of blood transfusion. Although such safety has been a major concern ever since blood transfusions started being given, both the concept and the name “hemovigilance” were born less than 20 years ago. Today hemovigilance is an established but also quickly developing field in transfusion medicine, for which a comprehensive text has thus far been lacking.

This book is the first book on hemovigilance. The only other book that comes somewhat near is Blood Safety and Surveillance, which mainly deals with product safety and has a quite different scope. Apart from that, there are only less detailed and less complete chapters on hemovigilance in books on transfusion medicine, such as in Rossi’s Principles of Transfusion Medicine and reviews in journals.

Our aim is that this book becomes the book on hemovigilance.

What can you expect to find in this book?
This book is an introduction to and a manual for the subject of hemovigilance.

You will find both “the how” examples of the actual information derived, and what is done with it. Of course, a book like this cannot be comprehensive with regard to all information, and so we include references to the most pertinent papers on the subject and links to websites with more details.

One thing we don’t include is detailed descriptions of different types of transfusion reactions in patients and how to deal with them. For this type of information, please consult general textbooks on transfusion medicine or, for example, the monograph on transfusion reactions written by Popovský. The same advice applies to information on complications in donors.

Part 1: General Introduction

How to use this book?

After reading the General Introduction (Part 1), you can go straight to one or more of the next parts depending on your area of interest. The content of each part is briefly summarized below:

• Part 1, a general introduction, contains (in addition to this introduction to the book), an introduction to hemovigilance (Chapter 2) and to its concepts and models (Chapter 3).

• Part 2, Surveillance of the Blood Transfusion Chain, is split into two sections. If you want to know how to establish a hemovigilance system in your hospital or blood establishment, go to Section 2.1 where the different parts of the transfusion chain are discussed: Setting up or consolidating a system (Chapter 4); preparation of blood components (Chapter 5); testing, issuing, and transport (Chapter 6); and clinical activities (Chapter 7). Section 2.2 (Chapters 8 to 11) describes how established hemovigilance systems work at the level of a blood establishment and a hospital.

• Part 3 deals with national and regional hemovigilance systems. The nine chapters provide examples of how different national hemovigilance systems function and what data they generate. The results of one of the best functioning hemovigilance systems (SHOT) are also presented and discussed in Part 5, Chapter 24.

• Part 4 covers hemovigilance at the international level. The European system is discussed as an example of international frameworks in Chapter 21. Chapter 22 deals with international collaboration, specifically the International Hemovigilance Network (IHN). Hemovigilance is still mainly confined to developed countries (as reflected by the membership of the IHN) and so the objectives and obstacles encountered in developing countries may be quite different. Therefore, we include a separate chapter on hemovigilance in developing countries (Chapter 23).

• Part 5 summarizes the most important achievements of more than 15 years of hemovigilance activities.

• Part 6 discusses three important new developments in hemovigilance: Vigilance of alternatives for blood components (Chapter 25); Surveillance of clinical effectiveness of transfusion (Chapter 26); and Biovigilance (Chapter 27).

• The three appendices include a Glossary with the main terms peculiar to the field of hemovigilance, and lists of definitions of adverse reactions in patients and donors.

For a more detailed guide to the book’s various parts and sections, please take a look at Chapter 2.

References

CHAPTER 2
Hemovigilance: A Quality Tool for the Blood Transfusion Chain

René R.P. de Vries
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands

This chapter is an introduction to hemovigilance, starting with a brief historical overview of the safety of blood transfusion as background.

History of blood transfusions

The first blood transfusions were attempts to transfuse humans with animal blood (lambs were the favorite creatures) to “treat” all kinds of illnesses in the 17th century. In the 18th century, however, the French king Louis XIV forbade the transfusion of animal blood to people by law because it was considered too dangerous.1 In the 19th century, Henri Leacock and James Blundell pioneered interhuman transfusion as a life-saving therapy for severe blood loss.2 Blundell warned others, however, to apply this therapy only as ultimum refugium because it was, again, considered dangerous.1 Particularly after the discovery of the ABO blood groups by Landsteiner,4 blood transfusion became less dangerous but certainly still not without risk.

There is only scattered documentation of the surveillance of the safety of blood transfusion and blood components in the literature (for example, see Reference 5) although this situation is improving.

Introducing hemovigilance

The word “hemovigilance” comes from the French hémovigilance and is derived from the Greek haema meaning “blood” and the Latin vigilans meaning “watchful.” It was coined in France in 1994 to function in the same way as the term “pharmacovigilance” does for drugs. Figure 2.1 shows a beautiful picture of a lion, already the symbol of vigilance in the 17th century.

Pharmacovigilance started in France in the 1970s in order to prevent a repeat of anything along the lines of the thalidomide/Softenon drama (also known as the Contergan scandal), in which more than 10,000 children were born with severe congenital deformities due to the use of thalidomide by their mothers during pregnancy. Similarly, as a reaction to the HIV/AIDS scandal in the 1980s and early 1990s, a complete surveillance system for blood transfusion was initiated in France in 1994, and was the start of hemovigilance.

Several definitions exist for hemovigilance and you will encounter several of them throughout this book. The International Hemovigilance Network (IHN) has formulated the following definition:

A set of surveillance procedures covering the whole transfusion chain (from the collection of blood and its components to the follow-up of recipients), intended to collect and assess
Plasma derivatives such as clotting factor concentrates, immunoglobulins, and albumin are called blood products. In Europe, these products are considered to be pharmaceuticals, and the manufacturers have to comply with regulations different to usual hemovigilance ones. The same applies to drugs that are used as alternatives for, or to minimize the use of, blood components, such as Erythropoietin, Tranexamic acid, and Clopidogrel.

Quality system

Hemovigilance is an important part of the quality system for blood transfusion (see Figure 2.2). Other methods for identifying errors, adverse events, and reactions include audits of practice and the investigation of complaints.

Like any discipline, hemovigilance involves the use of specific terms with precise meanings as follows:

- An **adverse event** is an undesirable and unintended occurrence in the blood transfusion chain (which consists of the collection, testing, preparation, storage, distribution, ordering, issuing, and administration of blood and blood components). It may or may not be the result of an error or an incident (see below) and it may or may not result in an adverse reaction in a donor or recipient.

- An **incident** is a case in which the patient is transfused with a blood component that did not meet all the requirements for a suitable transfusion for that patient, or that was intended for another patient. Incidents thus comprise transfusion errors and deviations from standard operating procedures (SOPs) or hospital policies that have lead to unexpected or undesirable effects resulting from the therapeutic use of labile blood products, and to prevent their occurrence or recurrence.

Blood components

There are three kinds of labile blood components: erythrocytes (red blood cells), platelets, and fresh-frozen plasma.

Figure 2.1 This picture, from an edition printed in Brussels in 1649 and kept in the library of Leiden University, the Netherlands, is from Saavedra’s *Idea de un Príncipe Polítiu Cristiano* (Idea of a Political-Christian Prince) (http://www.emblematica.com/en/cd01-saavedra.htm). The lion was a symbol of vigilance because he needs little sleep. If he does sleep, it was believed that he was doing so with his eyes open because he knows that he is not safe in his majesty (non majestate securus). Reproduced from Bibliotheca Thysiana with permission from Leiden University Library.

Information on unexpected or undesirable effects resulting from the therapeutic use of labile blood products, and to prevent their occurrence or recurrence.

Figure 2.2 Hemovigilance as part of a quality management system for healthcare.
Adverse reaction
Incident
Errors including deviations from SOPs
Near-miss

Figure 2.3 Adverse events: Relationship between adverse reactions, incidents, and near-misses (source: ISBT proposed standard definitions for surveillance of non-infectious adverse transfusion reactions, July 2011; developed by the ISBT working party on hemovigilance in collaboration with the International Hemovigilance Network; reproduced by permission www.isbtweb.org/working-parties/haemovigilance/definitions).

Another aspect in this regards is the imputability, which is the likelihood that an adverse reaction in a recipient can be attributed to the blood component transfused.

There are many different types of transfusion reactions (see Table 2.1 on page 9), which can be subdivided in several ways according to their pathogenesis. A common subdivision is into infectious and noninfectious transfusion or adverse reactions. We also use some internationally accepted definitions throughout this book (see Appendix B).7

Adverse reactions or complications in donors
Because the etiology of adverse reactions in a donor is quite different from those in a recipient, they are also known as complications. For several reasons, the severity of donor complications are graded according to a different scale to adverse reactions in recipients, although the two scales are similar. This donor scaling is also internationally accepted and evaluated (see Appendix C and/or www.isbt-web.org/members_only/files/society/StandardSurveillanceDOCO.pdf).

Legal framework
In the European Union (EU), certain aspects of hemovigilance (mainly product-related adverse events) are legal requirements that are governed by Directives. One important distinction made in the EU Directives concerning blood products is between Blood Establishments (BEs) and Hospital Blood Banks (hBBs):

- A Blood Establishment is any structure or body that is responsible for any aspect of the collection and testing of human blood or blood components, whatever their intended purpose, and their processing, storage, and distribution when intended for transfusion. This does not include hBBs.8
- A Hospital Blood Bank is a hospital unit that stores, distributes, and may perform compatibility tests on blood and blood components exclusively for use within hospital facilities, including hospital-based transfusion activities.8

Adverse reactions in recipients
An adverse reaction to the transfusion of a blood component is synonymous with a transfusion reaction. The severity of an adverse reaction in a recipient is graded according to an internationally accepted scale (see Appendix B).7
Summary
Hemovigilance is a system for
• observing, recording, reporting, and analyzing when something goes wrong in the blood transfusion chain (see the next section);
• using the lessons learned to take action to avoid that problem going wrong again.9
Hemovigilance systems exist at three levels:
• blood establishment and the hospital level (the blood transfusion chain);
• regional or national level;
• international level.

Hemovigilance in the blood establishment and the hospital:
The blood transfusion chain (Part 2)

Soon after the establishment of hemovigilance programs, it was recognized that blood products were actually extremely safe in the developed countries where these programs were functioning, but that transfusion safety consists of more than blood component safety. Notably the UK Serious Hazards of Transfusion (SHOT) scheme draws attention to the fact that transfusion errors are serious and unacceptably common (see Chapter 14). Later it also became clear that many adverse reactions are unavoidable and therefore they are a calculated risk of blood transfusion, as can be seen from Table 2.1.9

More recently the donor has received due attention in hemovigilance programs. Because the safety of the donor (rather than of the donated blood) is also the subject of vigilance, this part of hemovigilance is also called donor vigilance.

A donor can also be seen as the start of the blood transfusion chain (see Figure 2.4). We use this scheme of the blood transfusion chain throughout the book.

Establishing a hemovigilance system (Part 2, Section 2.1)

Hemovigilance systems exist at three levels: (i) the hospital and BE from which that hospital obtains the blood components for transfusion (the basic unit of hemovigilance); (ii) regional and national; and (iii) international.

The basic unit of hemovigilance is the blood transfusion chain shown in Figure 2.4. In order to establish a functioning hemovigilance system in this unit, one needs to follow general principles of a quality system and adapt these to the local situation. Section 2.1 provides a framework and guidance and gives practical tips and examples illustrating the do’s and don’ts.

Although there are certainly many similarities with hemovigilance in one transfusion chain, the establishment of a regional or national hemovigilance system faces some quite different challenges, such as confidentiality issues, governance, contact with media, and so on. These are discussed in Part 3. The establishment of an international hemovigilance system is discussed in Part 4.

Hemovigilance systems at three levels (Parts 3 and 4)

Regional and preferably national hemovigilance programs have added value compared to local systems as regards improving the safety of transfusion.

The first hemovigilance system was established in 1993 in Japan (see Chapter 13). As a reaction to the HIV scandal, the first national hemovigilance system in Europe was initiated in France in 1994. Soon after, other European countries followed this initiative, starting with the UK in 1996. Today almost all EU countries have established a hemovigilance system and the number of hemovigilance systems outside Europe is also steadily increasing.

The functioning of a European hemovigilance system meant to stimulate the development of a coordinated approach to the safety of blood and blood products is described in Chapter 21. In 1997, the initiative was taken to found the European Hemovigilance Network with the aim of increasing the safety of clinical blood transfusion medicine in Europe. Members of the network are (national) hemovigilance systems. The network started with five members and grew to over 25 members, including some from outside Europe. As a result of this growth, the scope and the name
Table 2.1 Preventable and nonpreventable adverse events.9

<table>
<thead>
<tr>
<th>Type of adverse reaction</th>
<th>Related to the quality of blood component?</th>
<th>Related to failure in clinical transfusion process?</th>
<th>Preventable by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfusion-transmitted bacterial infection</td>
<td>Yes</td>
<td>Possibly due to failure to inspect component before transfusion</td>
<td>Donor skin cleansing, Diversion pouch on donation line, Pathogen reduction, Correct storage conditions</td>
</tr>
<tr>
<td>Transfusion-transmitted viral infection (HBV, HCV, HIV-1/2, other)</td>
<td>Yes</td>
<td>No</td>
<td>Donor selection, Donation testing, Pathogen reduction</td>
</tr>
<tr>
<td>Transfusion-transmitted parasitic infection (malaria, other)</td>
<td>Yes</td>
<td>No</td>
<td>Donor selection, Donation testing, Pathogen reduction</td>
</tr>
<tr>
<td>Hemolysis due to incorrect storage</td>
<td>No</td>
<td>Yes</td>
<td>Quality assured clinical transfusion process</td>
</tr>
<tr>
<td>Immunological hemolysis due to ABO incompatibility</td>
<td>No</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Immunological hemolysis due to other alloantibody</td>
<td>No</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Anaphylaxis or hypersensitivity</td>
<td>No</td>
<td>No</td>
<td>Unpredictable and unavoidable</td>
</tr>
<tr>
<td>Post-transfusion purpura</td>
<td>No</td>
<td>No</td>
<td>Unpredictable and unavoidable</td>
</tr>
<tr>
<td>Transfusion Related Acute Lung Injury (TRALI)</td>
<td>Yes</td>
<td>No</td>
<td>TRALI risk may be reduced with Fresh Frozen Plasma (FFP) from male donors</td>
</tr>
<tr>
<td>Graft-Versus-Host Disease</td>
<td>Yes</td>
<td>Yes, due to failure to select component or failure to recognize patient at risk</td>
<td>Use of irradiated components for at-risk patients; use of amotosalen treated platelets</td>
</tr>
<tr>
<td>Transfusion Associated Circulatory Overload (TACO)</td>
<td>No</td>
<td>Yes, due to failure to recognize patient at risk</td>
<td>Avoid over-infusion</td>
</tr>
<tr>
<td>Febrile non-hemolytic TR</td>
<td>Yes</td>
<td>No</td>
<td>Incidence may be reduced by leucodepletion</td>
</tr>
</tbody>
</table>

Figure 2.4 The blood transfusion chain.
Part 1: General Introduction

was changed to the International Hemovigilance Network (IHN). See Chapter 3 for more on the IHN.

Results and achievements (Part 5)

Probably the most important result of hemovigilance has been that it has shown that since the mid-1990s, blood transfusion in Europe is quite safe and notably that blood products are extremely safe compared with other activities and products in healthcare.

The majority of the serious adverse reactions and events that nevertheless do occur happen in the hospital part of the blood transfusion chain. Particularly, the data from the UK hemovigilance system Serious Hazards of Transfusion (SHOT, see Chapter 14) have drawn attention to the fact that about 50% of these are due to administrative errors. The measures installed subsequently resulted in a further increase of the safety of clinical blood transfusion in the hospital.

Well-functioning hemovigilance systems, such as AFSSAPS in France (Chapter 12), Serious Hazards of Transfusion (SHOT) in the UK (Chapter 14), and TRIP in the Netherlands (Chapter 15), have documented the success of various measures to even further improve the safety of blood products. Two examples—(i) the deviation pouch applied during blood drawing from a blood donor in order to minimize the risk on contaminating skin bacteria and (ii) the decision to use only plasma from male donors—have been demonstrated to result in significant decreases of serious adverse reactions due, respectively, to bacterial contamination of blood products (particularly platelets) and TRALI reactions.

The results of many activities of the EHN/IHN, such as the contribution to the high quality of hemovigilance in Europe through digital information exchange, meetings, and seminars, are difficult to measure but are certainly important. Concrete results include: (i) the standardization of definitions and reporting of serious adverse events and reactions in collaboration with the International Society of Blood Transfusion (ISBT) Working Party for Hemovigilance (see Appendix C); (ii) the stimulation and structuring of donor vigilance also in collaboration with the Working Party for Hemovigilance (see Appendix C).

These definitions (see www.isbt-web.org/documentation and www.ihn-org.com) are being used by the European Commission for the reporting according to the EU Directives requirements.

After completing the standardization of the definitions, IHN decided to embark on an ambitious project to establish an international hemovigilance database. The compliance with the international definitions was not yet optimal and the database project will contribute to improving that situation. With these results, it will be possible to make comparisons between data generated by different systems.

New developments: Vigilance of alternatives for and appropriateness of transfusion and tissue-/bio-vigilance (see Part 6)

Data from an anesthesiology survey in France indicated that many more perioperative deaths are due to under-transfusion or delayed transfusion than to adverse reactions of transfusions given in time.10 Also the safety of measures that are often proposed to stimulate blood saving strategies (e.g., cell savers) and medicinal products (e.g., anti-fibrinolytics) have to be taken into account. Presently, not enough is known about the safety of these alternatives to be sure whether they can be recommended.

Another issue is optimal blood usage. The awareness that apart from vital indications the efficacy of blood transfusions is often unknown, not established, or even negative has resulted in a significant reduction of the use of blood products as documented by many hemovigilance systems. One step further would be the surveillance of appropriate or optimal blood use in a more detailed way, for example, through the collection of a set of indicators, which may be provided easily by most hospital information systems. In a still broader framework, there is also a need for data on the benefit of transfusion of a blood component in different clinical
Chapter 2: Hemovigilance: A Quality Tool for the Blood Transfusion Chain

Audit methods may sometimes be more appropriate to measure and analyze critical parameters for optimal blood use, such as compliance with guidelines (see www.optimalblooduse.eu). Nevertheless, it is expected that existing hemovigilance systems, including the hemovigilance officials in hospitals, may in the near future also contribute to the surveillance of optimal blood use.12

Hemovigilance systems will also be exposed to the vigilance and surveillance of other human products that are transplanted: first, cells and tissues, and at a later stage, organs for transplantation. In the USA, the word “biovigilance” has already been coined for this combined activity (www.aabb.org/programs/biovigilance). The European Commission has combined these activities in one directorate. It is clear that there are many similarities with hemovigilance and this will present opportunities for other activities to be shared and based on the expertise obtained in hemovigilance.

Appendices

The appendices of this book contain a Glossary with the main terms peculiar to the field of hemovigilance (Appendix A), definitions for the surveillance of noninfectious adverse transfusion reactions (Appendix B), and complications related to blood donation (Appendix C).

References

CHAPTER 3

Concepts and Models

René R.P. de Vries1 and Jean-Claude Faber2
1Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
2Blood Transfusion Service, Luxembourg Red Cross, Luxembourg

This chapter introduces you to the concepts and models of hemovigilance.

Introduction

Current hemovigilance systems contain significant conceptual and organizational differences, related to scope and structure. In effect, many roads lead to Rome, and irrespective of the structure of the system hemovigilance can provide valuable data for priority settings and evaluation of corrective strategies.

These system differences, however, may have important implications for the interpretation and comparison of the data from different systems. On the one hand, as shown in Table 3.1, there are more reports per 1000 units in systems where all reactions are reported compared to those where only serious reactions need to be reported. On the other hand, whether the reporting is mandatory (as in France) or voluntary (as in the Netherlands) does not have to affect the reporting rate and differences in reporting rate may be observed in systems using the same concepts and models.

Some systems and methods are more efficient and/or cheaper than others. Certainly, there has been a learning process during the establishment of hemovigilance systems. For instance, lessons were learned from both the early French and UK systems,1,2 despite them being quite different, and later systems have been developed according to hybrid and novel models.

It is still too early to draw conclusions regarding cost-effectiveness of the different concepts and models.

Scope

Products and processes

The discipline of hemovigilance was triggered by the fact that blood components were unsafe. Therefore, in the beginning activities were mainly focused on product safety, the products in this case being blood components. Soon, however, it became clear that hemovigilance should not be confined only to product safety, because some processes in the blood transfusion chain appeared to be weaker links than the blood components themselves.3

In Europe, an international scheme has been operating since 2008, in which each EU member state has to provide the European Commission (EC) annually with blood component-related incidents.4–8 (See also Chapter 21 on page 244–247.)

Recipients and donors

At first, hemovigilance focused exclusively on the safety of the recipient of a blood component. But as the concept of the blood transfusion chain extended “from vein (of the donor) to vein (of the recipient)”,3 donor safety also became a subject for hemovigilance. Since 2006, an increasing number of systems have also started to collect data of donor complications data.9
Table 3.1 Reporting in different hemovigilance systems.

<table>
<thead>
<tr>
<th>Country/region</th>
<th>*Reports/1000 units</th>
<th>What is reportable</th>
<th>Type of system (at creation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>0.20</td>
<td>Serious reactions + IBCT</td>
<td>Voluntary</td>
</tr>
<tr>
<td>Ireland</td>
<td>1.22</td>
<td>Serious reactions + IBCT</td>
<td>Voluntary</td>
</tr>
<tr>
<td>France</td>
<td>2.83</td>
<td>All reactions</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2.90</td>
<td>All reactions</td>
<td>Voluntary</td>
</tr>
<tr>
<td>Québec</td>
<td>7.07</td>
<td>All reactions</td>
<td>Voluntary</td>
</tr>
</tbody>
</table>

*P. Robillard, personal communication; data are from 2006.

"Hot and cold" hemovigilance

"Hot" hemovigilance means the immediate reporting of an incident. This allows immediate corrective measures to be taken, which is very important for product-related incidents and hemovigilance at the level of the hospital or the blood establishment. (See also the Rapid Alert System discussed on page 15.)

Regional, national, and international hemovigilance systems and activities mainly deal with "cold" hemovigilance, for instance the analysis of data and trends on an annual basis and the follow-up of corrective measures proposed on the basis of these data and/or trends.

Report all adverse events/reactions or only the serious ones?

The reporting of all adverse events is better for vigilance purposes and for creating awareness, because serious adverse events are rare. It does, of course, require more resources, however.

In most hemovigilance systems, all adverse events (AE) are reported, and in most countries only the reporting of serious adverse reactions (AR) is compulsory. The advantage of also reporting incidents and near-misses, is that these reports offer more and "relatively cheap" (namely, no harm is done) learning opportunities.

Data on more than just blood components?

Safety data of measures that proposed to stimulate blood-saving strategies (e.g., cell savers) and the use of medicinal products (e.g., anti-fibrinolytics or erythrocyte stimulating agents) as compared with blood components are lacking. Some hemovigilance systems (e.g., the Dutch system TRIP) are considering broadening their scope in order to help with providing the data on which an advice on the treatment with blood components or blood alternatives should be based.10

Structure

Integration in quality systems

Hemovigilance should be part of a quality system for the blood transfusion chain. In several systems this is indeed the case and some are able to close the Deming quality circle of plan, do, check, act for their system. However, other systems do not go much beyond the reporting of transfusion reactions.

Errors and adverse events occur in many aspects of the process of healthcare. For most patients and clinicians, blood transfusion is only one element of the whole process of clinical care and transfusion risks are a small proportion of the risks to which patients are exposed. Moreover, compared to medicinal drugs, blood components are very safe.11,12 For these reasons a quality management system for blood transfusion should be part of a hospital’s wider quality system in general and an integrated part of the quality system of the patient’s safety activities in particular.

Integration in other patient safety activities

Blood safety activity globally is not well integrated into other aspects of patient safety, which are very
active in many countries. Efforts need to be made to improve this situation. For instance, in Italy there are plans to integrate the hemovigilance program with the program for clinical risk management for other patient safety movements.

International collaboration
We will briefly introduce here two activities on the field of international collaboration. The first is the International Hemovigilance Network (IHN), which has operated successfully for more than 10 years and grew from the European Hemovigilance Network (EHN).13,14 The second is the Global Steering Committee on Hemovigilance (GloSCH), a recent initiative with the aim of stimulating hemovigilance particularly in developing countries.

The aim of the IHN is to develop and maintain a worldwide common structure with regards to the safety of blood/blood products and hemovigilance of blood transfusion. The objectives are exchange of valid information between the members of the Network, rapid alert/early warning between the members, joint activities between the members, and educational activities in relation to hemovigilance.

The main activities of the IHN are: a website (www.ihn-org.com) with an open part and a closed part only for official contact persons (OCPs) and participants; an annual general meeting where the Board informs the members of their activities in the past year and important decisions are taken; the organization of an annual Seminar (IHS), which is a scientific two-day meeting; working parties to harmonize definitions and make comparisons on quality indicators, both for safety and appropriate use; and finally the running of an international database on hemovigilance.

In 2008, the World Health Organization, the Government of Canada, the ISBT, and the IHN took the initiative for a Global Steering Committee for Hemovigilance (GloSCH). The goal of this initiative is to promote hemovigilance specifically in developing countries. One of the objectives is the production of a guidance document providing Recommendations for Establishing a National Hemovigilance System.

Reporting structure
Safe incident reporting must be blame-free.15 By creating a failures management culture where physicians and nurses are not afraid of reporting incidents and where reporting is not anonymous but done in an atmosphere of confidence, transfusion practice is improved. In the complex system of healthcare, attention to the safety for the patient therefore also implies attention to the safe functioning of the employer and of the healthcare process.

There are many different reporting structures depending on local situations, legal frameworks, and so on.16,17 Examples may be found in Chapters 4–21.

Governance
Goverance of a hemovigilance system can be organized by a competent authority, a manufacturer, professional organizations, or a Public Health Organization. Combinations are also possible. Examples will be further discussed in Chapters 4–21. Here we briefly summarize the main advantages and disadvantages of each type of governance, by using a particular system as an example:

- Competent Authority (France: afssaps): A competent authority (CA) is any person or organization that has the legally delegated or invested authority, capacity, or power to perform a designated function. Advantages are the creation of a centralized system, with sufficient resources and personnel, and that the hemovigilance system is embedded in a multidisciplinary organization including pharmaco- and materio-vigilance. Disadvantages are a top-heavy system, influenced by politics and public opinion, and that reporting to the competent authority may result in under-reporting of errors.
• **Manufacturer (Singapore):** Advantages are the availability of better qualified people, more impetus for change, and less fear for error reporting. The main disadvantage is that the manufacturer may have a conflict of interest.

• **Professional organizations (the Netherlands, TRIP):** Advantages are high qualities of the reports because they are checked by an expert committee, and the whole transfusion chain is covered. Disadvantages are that reporting is on a voluntary basis and therefore is dependent on the willingness of the professionals to report. Also central steering is lacking.

• **Public Health Authority (Canada):** Advantages are the expertise in surveillance methodology and that the handling and analysis of databases can easily be implemented. Disadvantages are no prior knowledge of blood transfusion and therefore confidence of the blood transfusion community was lacking.

Centralized or not

Hemovigilance systems may be organized in a strictly centralized way or be more or less decentralized.

The classical example of a centralized system is the French system (see Chapter 12). Advantages of such a system are that it may guarantee uniformity of data and thus comparability. Disadvantages may be that it is more expensive and that healthcare professionals may be less motivated to report.

An example of a more decentralized system is the UK system SHOT (see Chapter 14), which has certainly provided valuable data and advices (see Chapters 14 and 24) and at much lower costs.

Legal status

Reporting may be on a voluntary or a mandatory basis, and each arrangement has its advantages and disadvantages.

Within the EU, all legal provisions in the Blood Directives have to be transposed into national law by Member States. This has been achieved by most of the Member States within two years time. Member States are free to go beyond what the Directives require: in the context of hemovigilance and traceability several Member States have done so, for example by requiring mandatory notification of all reactions/events to the Competent Authority or by requiring systematic documented feedback of the transfusion of a blood component in a hospital (user) to the blood establishment (producer). This leads to an extensive corps of data available, but whether such extended national requirements in the context of hemovigilance increase safety for the patient and induce change in transfusion practice is not really known. At least it has the potential of raising penalties when cases of infringements to the laws are encountered.

Passive or active

In general, hemovigilance systems deal with passive hemovigilance. Examples of active hemovigilance would be specific transfusion safety research projects and post-marketing surveillance of new components by manufacturers.

Rapid alert system

The rapid alert system (RAS) is an information channel for very quick diffusion of important information in relation to emerging threats, of whatever kind. It allows for quick and safe transmission of precise, correct, and reliable data to competent contact persons in a system. They may decide on possible action in order to maintain or increase safety (through corrective or preventive action) in the case of a proven problem or defect, a potential problem or risk, or even a justified doubt.

In the case of the IHN, the RAS works via fax, e-mail, and website (protected domain). The OCP in one member country of the IHN is informed that a problem has emerged in his or her country, for example through the national hemovigilance system or by other means. This key person analyses the information and decides whether this information should be diffused to the contact persons in the other country members of the IHN. It is the responsibility of the respective contact persons in the other countries to take up the information, evaluate it, and decide upon the actions in their country. In the past, the RAS has been used on different occasions, including the following:

• appearance of clusters of clinical signs after transfusion;
Part 1: General Introduction

- hidden or apparent defects of disposable material used in transfusion (such as leakages of filter housings, holes in collection bags, defects in apheresis material);
- difficulties with reagents (lack of performance in terms of sensitivity or specificity);
- problems with equipment.

References