Edited by Kathy Lüdge

Nonlinear Laser Dynamics
Related Titles

Okhotnikov, O. G. (ed.)

Semiconductor Disk Lasers
Physics and Technology
2010
ISBN: 978-3-527-40933-4

Harrison, P.

Quantum Wells, Wires and Dots
Theoretical and Computational Physics of Semiconductor Nanostructures
2009

Kane, D., Shore, A. (eds.)

Unlocking Dynamical Diversity
Optical Feedback Effects on Semiconductor Lasers
2005
In honor of Prof. Dr. Eckehard Schöll’s 60th birthday.
Contents

Preface XV
List of Contributors XVII

Part I Nanostructured Devices 1

1 Modeling Quantum-Dot-Based Devices 3
 Kathy Lüdge
1.1 Introduction 3
1.2 Microscopic Coulomb Scattering Rates 4
1.2.1 Carrier–Carrier Scattering 5
1.2.2 Detailed Balance 8
1.3 Laser Model with Ground and Excited States in the QDs 9
1.3.1 Temperature Effects 14
1.3.2 Impact of Energy Confinement 15
1.3.3 Eliminating the Excited State Population Dynamics 17
1.4 Quantum Dot Switching Dynamics and Modulation Response 18
1.4.1 Inhomogeneous Broadening 19
1.4.2 Temperature-Dependent Losses in the Reservoir 20
1.4.3 Comparison to Experimental Results 20
1.5 Asymptotic Analysis 21
1.5.1 Consequences of Optimizing Device Performance 25
1.6 QD Laser with Doped Carrier Reservoir 26
1.7 Model Reduction 28
1.8 Comparison to Quantum Well Lasers 29
1.9 Summary 30
Acknowledgment 30
References 30

 Jordi Zamora-Munt and Cristina Masoller
2.1 Introduction 35
Contents

2.2 Spin-Flip Model 39
2.3 Polarization Switching 40
2.4 Pulse Generation Via Asymmetric Triangular Current Modulation 44
2.5 Influence of the Noise Strength 48
2.6 Logic Stochastic Resonance in Polarization-Bistable VCSELs 49
2.7 Reliability of the VCSEL-Based Stochastic Logic Gate 52
2.8 Conclusions 53
Acknowledgment 54
References 54

3 Mode Competition Driving Laser Nonlinear Dynamics 57
Marc Sciamanna
3.1 Introduction 57
3.2 Mode Competition in Semiconductor Lasers 58
3.3 Low-Frequency Fluctuations in Multimode Lasers 61
3.4 External-Cavity Mode Beating and Bifurcation Bridges 64
3.5 Multimode Dynamics in Lasers with Short External Cavity 65
3.6 Polarization Mode Hopping in VCSEL with Time Delay 67
3.6.1 Polarization Switching Induced by Optical Feedback 67
3.6.2 Polarization Mode Hopping with Time-Delay Dynamics 69
3.6.3 Coherence Resonance in a Bistable System with Time Delay 71
3.7 Polarization Injection Locking Properties of VCSELs 73
3.7.1 Optical Injection Dynamics 74
3.7.2 Polarization and Transverse Mode Switching and Locking: Experiment 76
3.7.3 Bifurcation Picture of a Two-Mode Laser 81
3.8 Dynamics of a Two-Mode Quantum Dot Laser with Optical Injection 83
3.9 Conclusions 85
Acknowledgments 86
References 86

4 Quantum Cascade Laser: An Emerging Technology 91
Andreas Wacker
4.1 The Essence of QCLs 92
4.1.1 Semiconductor Heterostructures 92
4.1.2 Electric Pumping 94
4.1.3 Cascading 94
4.2 Different Designs 96
4.2.1 Optical Transition and Lifetime of the Upper State 96
4.2.2 Effective Extraction from the Lower Laser Level 96
4.2.3 Injection 97
4.3 Reducing the Number of Levels Involved 98
4.4 Modeling 100
5 Controlling Charge Domain Dynamics in Superlattices
Mark T. Greenaway, Alexander G. Balanov, and T. Mark Fromhold
5.1 Model of Charge Domain Dynamics 112
5.2 Results 117
5.2.1 Drift Velocity Characteristics for $\theta = 0^\circ, 25^\circ$, and 40° 118
5.2.2 Current–Voltage Characteristics for $\theta = 0^\circ, 25^\circ$, and 40° 119
5.2.3 $I(t)$ Curves for $\theta = 0^\circ, 25^\circ$, and 40° 120
5.2.4 Charge Dynamics for $\theta = 0^\circ, 25^\circ$, and 40° 122
5.2.5 Stability and Power of $I(t)$ Oscillations for $0^\circ < \theta < 90^\circ$ 128
5.2.6 Frequency of $I(t)$ for $0^\circ < \theta < 90^\circ$ 130
5.3 Conclusion 132
Acknowledgment 132
References 132

Part II Coupled Laser Device 137

6 Quantum Dot Laser Tolerance to Optical Feedback
Christian Otto, Kathy Lüdge, Evgeniy Viktorov, and Thomas Erneux
6.1 Introduction 139
6.2 QD Laser Model with One Carrier Type 141
6.3 Electron-Hole Model for QD Laser 142
6.3.1 Similar Scattering Times τ_e and τ_h 143
6.3.2 Different Scattering Times τ_e and τ_h 144
6.3.3 Small Scattering Lifetime of the Holes $a = O(1)$ 144
6.3.4 Very Small Scattering Lifetime of the Holes $a = O(\gamma^{-1/2})$ 144
6.4 Summary 145
Acknowledgment 146
6.5 Appendix A: Rate Equations for Quantum Well Lasers 146
6.6 Appendix B: Asymptotic Analysis for a QD Laser Model with One Carrier Type 148
6.7 Appendix C: Asymptotic Analysis for a QD Laser Model with Two Carrier Types 153
References 158

7 Bifurcation Study of a Semiconductor Laser with Saturable Absorber and Delayed Optical Feedback
Bernd Krauskopf and Jamie J. Walker
7.1 Introduction 161
7.2 Bifurcation Analysis of the SLSA 164
Contents

7.3 Equilibria of the DDE and Their Stability 168
7.4 Bifurcation Study for Excitable SLSA 171
7.5 Bifurcation Study for Nonexcitable SLSA 173
7.6 Dependence of the Bifurcation Diagram on the Gain Pump Parameter 176
7.7 Conclusions 178
References 179

8 Modeling of Passively Mode-Locked Semiconductor Lasers 183
Andrei G. Vladimirov, Dmitrii Rachinskii, and Matthias Wolfrum
8.1 Introduction 183
8.2 Derivation of the Model Equations 184
8.3 Numerical Results 189
8.4 Stability Analysis for the ML Regime in the Limit of Infinite Bandwidth 197
8.4.1 New’s Stability Criterion 197
8.4.2 Slow Stage 199
8.4.3 Fast Stage 199
8.4.4 Laser Without Spectral Filtering 200
8.5 The Q-Switching Instability of the ML Regime 203
8.5.1 Laser Without Spectral Filtering 204
8.5.2 Weak Saturation Limit 207
8.5.3 Variational Approach 209
8.6 Conclusion 212
Acknowledgments 213
References 213

9 Dynamical and Synchronization Properties of Delay-Coupled Lasers 217
Cristina M. Gonzalez, Miguel C. Soriano, M. Carme Torrent, Jordi Garcia-Ojalvo, and Ingo Fischer
9.1 Motivation: Why Coupling Lasers? 217
9.2 Dynamics of Two Mutually Delay-Coupled Lasers 218
9.2.1 Dynamical Instability 218
9.2.2 Instability of Isochronous Solution 220
9.3 Properties of Leader–Laggard Synchronization 224
9.3.1 Emergence of Leader–Laggard Synchronization 224
9.3.2 Control of Lag Synchronization 226
9.4 Dynamical Relaying as Stabilization Mechanism for Zero-Lag Synchronization 228
9.4.1 Laser Relay 228
9.4.2 Mirror Relay 230
9.5 Modulation Characteristics of Delay-Coupled Lasers 231
9.5.1 Periodic Modulation 231
9.5.2 Noise Modulation 235
12.3.2.2 Existence of a Local Stable Direction 303
12.3.2.3 Other Stable and Unstable Local Directions 304
12.3.3 Stable Homoclinic Orbit to One-Cluster State 305
12.4 Two-Cluster States 306
12.4.1 Stability of Two-Cluster States 308
12.5 Intermediate State for Symmetric PRC with $\beta = 0.5$ 309
12.6 Conclusions 310
12.7 Appendix: Existence of a Homoclinic Orbit 310
References 315

13 Broadband Chaos 317
Kristine E. Callan, Lucas Illing, and Daniel J. Gauthier
13.1 Introduction 317
13.2 Optoelectronic Oscillators 318
13.3 Instability Threshold 323
13.4 Transition to Broadband Chaos 325
13.5 Asymptotic Analysis 327
13.6 Summary and Outlook 330
Acknowledgments 331
References 331

14 Synchronization of Chaotic Networks and Secure Communication 333
Ido Kanter and Wolfgang Kinzel
14.1 Introduction 333
14.2 Unidirectional Coupling 334
14.3 Transmission of Information 335
14.4 Bidirectional Coupling 336
14.5 Mutual Chaos Pass Filter 339
14.5.1 Protocol 342
14.6 Private Filters 345
14.7 Networks 346
14.8 Outlook 350
References 350

15 Desultory Dynamics in Diode-Lasers: Drift, Diffusion, and Delay 355
K. Alan Shore
15.1 Introduction 355
15.2 Carrier Diffusion in Diode Lasers 357
15.3 Intersubband Laser Dynamics 359
15.4 Carrier Diffusion Effects in VCSELs 362
15.4.1 Transverse Mode Competition and Secondary Pulsations 362
15.4.2 VCSEL Polarization Selection 363
15.4.3 Nanospin VCSELs 363
15.5 Delayed Feedback and Control of VCSEL Polarization 364
15.6 VCSEL Chaos and Synchronization and Message Transmission 365
15.7 Delay Deletion: Nullified Time of Flight 369
15.8 Chaos Communications: Optimization and Robustness 371
15.9 Conclusion 372
Acknowledgments 373
References 373
Further Reading 380

Index 381
Preface

Lasers are paradigmatic examples of nonlinear systems and have played a decisive role in the development of nonlinear dynamics into a cross disciplinary subject over the past 40 years. Already a free running laser represents a nontrivial nonlinear system, but even more interesting phenomena arise when lasers are subjected to feedback or coupled to build large networks. Some of these phenomena already found their way to industrial applications, for example, the creation of ultrashort pulses with the mode locking technique by using integrated multisection devices or the stabilization of laser outputs with optical injection. The technological advances in semiconductor processing technologies also allow to produce a variety of lasers with nanostructured active regions that give rise to interesting physics and allow designing new innovative devices.

Nowadays, nonlinear laser dynamics is a still growing field of active research, and this book focuses and reviews recent advances in this area. In an interdisciplinary approach, it will concentrate on mathematical, physical, as well as experimental aspects. By discussing problems such as the modeling of integrated devices, the creation of networks, exploitation of chaotic lasers for secure communication, and the use of nanostructured lasers for logic gates and memory elements, it will enter innovative grounds and hopefully inspire future research on that topic.

On the occasion of the sixtieth birthday of Prof. Eckehard Schöll, this book is also intended to recognize the work during his scientific career, as he always enforced the connection between rigorous mathematical analysis and physical modeling. For this reason, the contributors are former and future collaborators of Prof. Eckehard Schöll.

The book is separated into three parts. Within the first part, “Nanostructured devices”, the dynamic properties and modeling aspects of Quantum Dot Lasers, Vertical Cavity Surface Emitting Lasers, and Quantum Cascade Lasers are reviewed, while the second part “Coupled Laser Devices” focusses on the complex dynamics and bifurcations induced by self coupling, delay coupling, or mode coupling of lasers. The third part, “Synchronization and Cryptography”, discusses the chaotic dynamics of excitable systems and their application for secure communication or for the generation of synchronized cluster states in networks.
I am grateful to the group of Prof. Schöll for their enduring support during the compilation of this volume and to the staff from Wiley VCH for their excellent help.

Berlin, February 2011

Kathy Lüdge
List of Contributors

Andreas Amann
Tyndall National Institute
University College Cork
Lee Maltings
Cork
Ireland

Alexander G. Balanov
Department of Physics
Loughborough University
Loughborough
LE11 3TU
UK

Kristine E. Callan
Department of Physics
Duke University
Durham
North Carolina 27708
USA

Thomas Erneux
Université Libre de Bruxelles
Optique Nonlinéaire Théorique
Campus Plaine C.P. 231
1050 Bruxelles
Belgium

Ingo Fischer
Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC)
Campus Universitat de les Illes Balears
07122 Palma de Mallorca
Spain

T. Mark Fromhold
School of Physics and Astronomy
University of Nottingham
University Park
Nottingham
NG7 2RD
UK

Jordi Garcia-Ojalvo
Departament de Fisica i Enginyeria Nuclear
Universitat Politecnica de Catalunya
08222 Terrassa
Barcelona
Spain

Daniel J. Gauthier
Department of Physics
Duke University
Durham
North Carolina 27708
USA
List of Contributors

Cristina M. Gonzalez
Centre for Sensors, Instruments and Systems Development
Universitat Politecnica de Catalunya
08222 Terrassa
Barcelona
Spain

Mark T. Greenaway
School of Physics and Astronomy
University of Nottingham
University Park
Nottingham
NG7 2RD
UK

Lucas Illing
Department of Physics
Reed College
Portland
Oregon 97202
USA

Ido Kanter
Department of physics
Bar-Ilan University
Ramat-Gan 52900
Israel

Wolfgang Kinzel
Universität Würzburg
Theoretische Physik
Am Hubland
97074 Würzburg
Germany

Bernd Krauskopf
University of Bristol
Department of Engineering Mathematics
Queen’s Building
University Walk
Bristol BS8 1TR
UK

Leonhard Lücke
Institute of Mathematics
Humboldt University of Berlin
Unter den Linden 6
10099 Berlin
Germany

Kathy Ludge
TU Berlin
Institut für Theoretische Physik
Fakultät Mathematik und Naturwissenschaften
Hardenbergerstr. 36
10632 Berlin
Germany

Cristina Masoller
Departament de Física i Enginyeria Nuclear
Universitat Politècnica de Catalunya
Edifici Gaia, Rambla de Sant Nebridi s/n
08222 Terrassa
Barcelona
Spain

Christian Otto
TU Berlin
Institut für Theoretische Physik
Fakultät Mathematik und Naturwissenschaften
Hardenbergerstr. 36
10632 Berlin
Germany

Dmitrii Rachinskii
University College Cork
Department of Applied Mathematics
Cork
Ireland
Marc Sciamanna
Supélec Campus de Metz
2 Rue Edouard Belin
57070 Metz
France

K. Alan Shore
Bangor University
School of Electronic Engineering
Dean Street
Bangor Gwynedd
LL57 1UT
Wales
UK

Miguel C. Soriano
Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC)
Campus Universitat de les Illes Balears
07122 Palma de Mallorca
Spain

M. Carme Torrent
Departament de Fisica i Enginyeria Nuclear
Universitat Politecnica de Catalunya
08222 Terrassa
Barcelona
Spain

Evgeniy Viktorov
Université Libre de Bruxelles
Optique Nonlinéaire Théorique
Campus Plaine C.P. 231
1050 Bruxelles
Belgium

Andrei G. Vladimirov
Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany

Andreas Wacker
Lund University
Division of Mathematical Physics, Department of Physics
Box 118
22100 Lund
Sweden

Jamie J. Walker
University of Bristol
Department of Engineering Mathematics, Queen’s Building
University Walk, Bristol BS8 1TR
UK

Sebastian M. Wieczorek
Mathematics Research Institute
University of Exeter
EX4 4QF Exeter
UK

Matthias Wolfrum
Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
Serhiy Yanchuk
Institute of Mathematics
Humboldt University of Berlin
Unter den Linden 6
10099 Berlin
Germany

Jordi Zamora-Munt
Departament de Física i Enginyeria Nuclear
Universitat Politècnica de Catalunya
Edifici Gaia, Rambla de Sant Nebridi s/n
08222 Terrassa
Barcelona
Spain
Part I
Nanostructured Devices
1
Modeling Quantum-Dot-Based Devices

Kathy Lüdge

1.1 Introduction

During the past decades, the performance of semiconductor lasers has been dramatically improved from a laboratory curiosity to a broadly used light source. Owing to their small size and low costs, they can be found in many commercial applications ranging from their use in DVD players to optical communication networks. The rapid progress in epitaxial growth techniques allows to design complex semiconductor laser devices with nanostructured active regions and, therefore, interesting dynamical properties. Future high-speed data communication applications demand devices that are insensitive to temperature variations and optical feedback effects, and provide features such as high modulation bandwidth and low chirp, as well as error-free operation. Currently, self-organized semiconductor quantum dot (QD) lasers are promising candidates for telecommunication applications [1]. For an introduction to QD-based devices, their growth process, and their optical properties, see, for example, [2, 3].

This review focuses on the modeling of these QD laser devices and on the discussion of their dynamic properties. It uses a microscopically based rate equation model that assumes a classical light field but includes microscopically calculated scattering rates for the collision terms in the carrier rate equations, as introduced in [4–8]. Following the hierarchy of different semiconductor modeling approaches (for an overview, see [9]), this model aims to be sophisticated enough to permit a quantitative modeling of the QD laser dynamics but still allows an analytic treatment of the dynamics. Different levels of complexity will be explored to enable comprehensive insights into the underlying processes.

In order to reduce the numeric effort and still allow for analytic insights, a variety of effects have been neglected. This way, a different approach has to be chosen if, for example, the photon statistics of the emitted light [10] or changes in the emission wavelength due to Coulomb enhancement effects [11, 12] are to be of interest. For the analysis of ultrafast phenomena, as, for example, the gain recovery in QD-based optical amplifiers [13], coherent effects resulting from the dynamics of the microscopic polarization become important, and the model has to be extended.
to semiconductor Bloch equations. This has been intensively studied in [14, 15] in good agreement with experimental results [16], but it will not be discussed in this review. Note that later on in this book, the experimental results obtained with QD lasers under optical injection are presented in Chapter 3 (by Sciamanna [17]), and the results regarding the sensitivity of QD lasers to optical feedback [18] are discussed in Chapter 6 by Erneux et al. [19].

After a detailed introduction to the microscopical modeling aspects in Section 1.2, the turn-on and switching dynamics of a QD laser with two confined levels is discussed in Sections 1.3 and 1.4, and temperature effects are analyzed in Section 3.1. In Section 1.5, the results of an asymptotic analysis of the rate equation systems are presented, which allows to give analytic expression to relaxation oscillation (RO) frequency and damping of the turn-on dynamics, and thus allows to predict the modulation properties of the laser. Resulting from the analytic predictions, the effect of using a doped carrier reservoir on the laser dynamics is investigated in Section 1.6. At the end, in Section 1.7, the results are discussed and compared to quantum well (QW) laser devices.

1.2 Microscopic Coulomb Scattering Rates

A schematic view of the QD laser structure is shown in Figure 1.1a. The active area of the p–n heterojunction is a dot-in-a-well (DWELL) structure that consists of several InGaAs QW layers that have a height of about 4 nm, and contain embedded QDs that are confined in all three dimensions having a size of approximately 4 nm x 18 nm x 18 nm. During laser operation, an electric current is injected into

![Figure 1.1](image-url)
the QW layers. They form the carrier reservoir where carrier–carrier scattering events take place because of Coulomb interaction and lead to a filling (or depletion) of the confined QD levels. As a result, carrier inversion is reached first between the lowest confined QD levels in the conduction band and its counterpart in the valence band. Since the size and the composition of the zero-dimensional QD structures determine the energetic position of the QD levels, it is possible to design lasers with different emission wavelengths. The lasers discussed here have a ground state (GS) emission wavelength of 1.3 \(\mu \text{m} \), as needed for optical data communication.

For high carrier densities in the reservoir, that is, during electrical pumping, the Coulomb interaction (carrier–carrier Auger scattering) will dominate the scattering rate into (and out of) the QDs, whereas the scattering events resulting from carrier–phonon interaction are negligible [20]. Inside the QD, two confined energy levels are modeled. Thus, direct capture processes for electrons \((b = e)\) and holes \((b = h)\) into or out of the GS labeled as \(S_{\text{cap}}^b\), into or out of the excited state (ES) labeled as \(S_{\text{cap}}^b\), and relaxation processes between GSs and ESs named \(S_{\text{rel}}^b\) are considered as depicted in Figure 1.1b, where gray arrows indicate the in-scattering events.

Section 1.2.1 systematically describes and quantifies the different Auger processes before they are incorporated into the dynamic rate equation model in Section 1.3. Note that although phonon scattering between the carrier reservoir (QW) and the QDs is neglected, the fast phonon-assisted carrier relaxation processes within the QW states are taken into account by assuming a quasi-Fermi distribution with quasi-Fermi levels \(F_{\text{QW}}^e\) and \(F_{\text{QW}}^h\) for electrons in the conduction band and holes in the valence band of the QW, respectively.

1.2.1 Carrier–Carrier Scattering

If the Coulomb interaction is treated in the second-order Born approximation in the Markov limit up to second order in the screened Coulomb potential [21, 22], a Boltzmann equation for the collision terms, which describe the change in the occupation probability in the QD states, can be derived, and subsequently easily incorporated into laser rate equation models (for details, see also [15]). The striking difference from the standard rate equation models is that there are no constant relaxation times. Instead, the detailed modeling of the scattering events inside the reservoir leads to scattering times that are nonlinearly dependent on the carrier densities in the reservoir.

Figure 1.2 gives a systematic overview of all processes leading to in-scattering into the QD electron levels. The gray arrows denote electron transitions of the scattering partners. Panels I and III show pure \(e–e\) processes, while panels II and IV display mixed \(e–h\) processes. The corresponding processes for in-scattering into the QD hole levels are obtained by exchanging all electron and hole states. The out-scattering processes are obtained by inverting all arrows of the electron transitions. The exchange processes of pure \(e–e\) capture processes contributing to the scattering rates are not shown, since there is no qualitative difference from that of the direct processes. In case of mixed \(e–h\) processes (II, IV), the exchange processes lead to
transitions across the band gap, which are neglected since they are unlikely to occur. Note that the process shown in panel III of Figure 1.2b is the exchange process of the one in panel I. In the following, the scattering events shown in Figure 1.2 are decomposed into contributions originating from direct carrier capture from the QW into the QD levels R^cap_m (Figure 1.2a) and relaxation processes between the QD states with one and two intra-QD transitions $R^{\text{rel}'}_b$ and $R^{\text{rel}''}_b$, respectively (Figure 1.2b). Processes involving three QD states are neglected. Thus, the collision term in the Boltzmann equation for the carrier occupation probability in the QD states ρ_{mb}, where m labels the quantum number of the 2D angular momentum of the confined QD states ($m = E$ for the first ES; $m = G$ for the GS) reads:

$$\frac{\partial \rho_{mb}}{\partial t}\big|_{\text{col}} = R^\text{cap}_{b,m} + R^{\text{rel}'}_b + R^{\text{rel}''}_b$$ (1.1)

The contribution to Eq. (1.1) from direct capture processes (Figure 1.2a) can be expressed as

$$R^\text{cap}_{b,m} = S^\text{in,cap}_{b,m} (1 - \rho^m_b) - S^\text{out,cap}_{b,m} \rho^m_b$$ (1.2)

where the direct capture Coulomb scattering rates for in- and out-scattering $(S^\text{in,cap}_{b,m})$ and $(S^\text{out,cap}_{b,m})$ are defined as

$$S^\text{in,cap}_{b,m} = \sum_{k_1k_2k_3,k_3'} \mathcal{W}^{b}_{k_1k_2k_3,k_3'} f_{k_1} f_{k_2} (1 - f_{k_3'}) \left(1 - f_{k_1} \right) \left(1 - f_{k_3} \right) \left(f_{k_2} \right) \left(f_{k_3'} \right)$$ (1.3)

$$S^\text{out,cap}_{b,m} = \sum_{k_1k_2k_3,k_3'} \mathcal{W}^{b}_{m,k_2k_3,k_3'} f_{k_1} (1 - f_{k_2}) \left(1 - f_{k_3} \right) \left(1 - f_{k_1} \right) \left(f_{k_2} \right) \left(f_{k_3'} \right) \left(f_{k_1} \right)$$ (1.4)

States in the QW are labeled by the in-plane carrier momentum k^b_i ($b = e$ and $b = h$ indicate conduction and valence band states, respectively). For both bands in the QW, $f_{k^b_i}$ indicates the electron occupation probability. The transition probability $\mathcal{W}^{b}_{k_1k_2k_3,k_3'}$ for a process where two carriers scatter from initial states k_1 and k_3 to the final states m and k_2, respectively, $(k_1 \rightarrow m, k_3 \rightarrow k_2)$ contains the
screened Coulomb matrix elements for direct and exchange interactions, and the energy-conserving \(\delta \)-function [6, 15]. Owing to the microscopic reversibility of the Coulomb matrix elements, the transition probability is equal for reversed direction

\[
W_{b \rightarrow b'} = W_{b' \rightarrow b}.
\]

The relaxation processes shown in Figure 1.2b describe a redistribution of carriers within the intra-QD levels. The contribution from processes I and II to Eq. (1.1) is given by

\[
R_{b \rightarrow b'}^\text{rel} = S_{\text{in}, \text{rel}}^b (1 - \rho_{b}^G) - S_{\text{out}, \text{rel}}^b (1 - \rho_{b}^E) \rho_{b}^G. \tag{1.5}
\]

The relaxation in-scattering rate is given by

\[
S_{\text{in}, \text{rel}}^b = \sum_{k_2 k_3} W_{b \rightarrow b'}^{k_2 k_3' k_2' k_3} (1 - f_{b'}^G) f_{b'}^E (E \rightarrow G, k_3 \rightarrow k_2). \tag{1.6}
\]

The dynamical equations for the processes III and IV (\(R_{b \rightarrow b'}^\text{rel''} \)) in Figure 1.2b can be obtained in a similar manner as in Eq. (1.5).

For the calculation of the Coulomb scattering rates, a quasiequilibrium within the QW states (fast phonon scattering inside one band) but nonequilibrium between the QW electrons and the QD electrons, the QW holes, and the QD holes is assumed. As a result, the electron occupation probability \(f_{b} \) in the conduction \((b = e)\) and valence band \((b = h)\) of the QW can be expressed by a quasi-Fermi distribution given by

\[
f_{b} = \left[\exp \left(\frac{E_b - F_b^{\text{QW}}}{kT} \right) + 1 \right]^{-1} \quad (b = e, h). \tag{1.7}
\]

The quasi-Fermi levels \(F_b^{\text{QW}} \) are determined by the total carrier density in the respective band via the relation given in Eq. (1.8), as shown in [7, 23],

\[
F_b^{\text{QW}} (w_b) = E_b^{\text{QW}} \pm kT \ln \left[\exp \left(\frac{w_b}{D_{b} kT} \right) - 1 \right] \tag{1.8}
\]

where the + and − signs correspond to electrons and holes, respectively. Furthermore, \(D_b = m_b / (\pi \hbar^2) \) is the 2D density of states, with the effective masses \(m_b \) of electrons \((b = e)\) and holes \((b = h)\), respectively. \(E_b^{\text{QW}} \) are the QW band edges of conduction and the valence band, respectively. Note that the analytic expression Eq. (1.8) is only valid for a 2D electron gas, where the integrals

\[
w_e = \int_{E_e^{\text{QW}}}^{E_e^{\text{QW}}} dE_k D_e f_{k}^e \quad \text{and} \quad w_h = \int_{-E_h^{\text{QW}}}^{E_h^{\text{QW}}} dE_k D_h (1 - f_{k}^h) \tag{1.9}
\]

can be solved. As a result, the quasi-Fermi distributions \(f_{k}^e \) and \(f_{k}^h \) are determined by the QW carrier densities \(w_e \) and \(w_h \), and thus, the scattering rates given in Eqs. (1.3) and (1.6) are calculated as functions of \(w_e \) and \(w_h \). Besides that, the scattering rates parametrically depend on the effective masses of the carriers in the QW bands and on the band structure given by the energetic distances \(\Delta E_b \) and \(\Delta_b \), as indicated in Figure 1.1b. The resulting rates are shown in Figure 1.3 as a function of \(w_e \) along the line \(w_h / w_e = 1.5 \). For the relaxation rates, the sum of all relaxation processes...
Figure 1.3 Coulomb scattering rates of the QDs-in-a-well system versus QW electron density \(w_e\) (\(w_h/w_e = 1.5\)). (a) Intra-QD relaxation rates for electrons (gray) and holes (black); (b) and (c) direct capture rates into the GS (dashed line) and ES (dotted line) for holes and electrons, respectively. Top and bottom panels show in- and out-scattering rates, respectively. Parameters as in Table 1.1.

is plotted but note that the rates involving a transition within the QD accompanied by a QW transition (rel') are much larger than the rates involving two QW–QD transitions (rel''). The relaxation rates are characterized first by a sharp increase and later by a decrease in higher carrier densities because of the effect of Pauli blocking. These relaxation scattering events are on a ps time scale, whereas the direct capture rates plotted in Figure 1.3b,c for holes and electrons are an order of magnitude smaller for small carrier densities. Owing to their small effective mass, the rate for electron capture is much smaller, although the dependence on \(w_e\) is similar to that of the hole rate. For small electron densities inside the QW, the capture rates increase quadratically with \(w_e\), which is expected from mass action kinetics.

1.2.2 Detailed Balance

In thermodynamic equilibrium, there is a detailed balance between the in- and out-scattering rates of the QD level. This allows one to relate the rate coefficients of in- and out-scattering even for nonequilibrium carrier densities [24].

For a single scattering process between two carriers of type \(b\) and \(b'\), the in-scattering rate for capture into the GS (\(m = G\)) or ES (\(m = E\)) is defined in Eq. (1.3), and can be rewritten as

\[
W_{k_1'k_3'}^b k_1 k_2 m f_{k_1k_3}^b(1 - f_{k_2})
\]

\[
= W_{k_1'k_3'}^b k_1 k_2 m (1 - f_{k_1})(1 - f_{k_3}) f_{k_1'}^b f_{k_2'}^b \frac{f_{k_1}}{1 - f_{k_1}} \frac{f_{k_3}}{1 - f_{k_3}} \frac{1 - f_{k_2'}}{f_{k_2'}}
\]

\[
= W_{k_1'k_3'}^b k_1 k_2 m (1 - f_{k_1})(1 - f_{k_3}) f_{k_1'}^b \exp \left[\frac{F_{c}^{QW} - E_{k_1} - E_{k_3} + E_{k_2'}}{kT} \right]
\]