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Preface 

Prognostics is the process of predicting the future reliability of a product by assessing 
the extent of deviation or degradation of the product from its expected normal operating 
conditions. Health management systems are programs that respond in a preemptive and 
opportunistic manner to the anticipation of failures. 

There is a growing interest among industry, government, and academia to monitor the 
ongoing reliability, or health, and predict the remaining life of electronic products and 
systems because most complex systems today contain significant electronics content. 
Approaches to implement prognostics in electronic products and systems include using 
expendable devices, such as canaries and fuses that fail earlier than the host product; 
monitoring and trending of parameters that are precursors to failure; and modeling 
accumulated damage (e.g., physics of failure) based on system exposure to life-cycle loads 
and operating conditions. 

If one can assess the extent of deviation or degradation of a system in its application 
environment and predict remaining lifesuccess of a future event or probability of , the 
information can be used to meet the following powerful objectives: 

Provide advanced warning of system failures 
Enable condition-based (predictive) maintenance 
Obtain knowledge of load history for future design, qualification, and root cause 
analysis 
Increase system availability through an extension of maintenance cycles and/or 
timely repair actions 
Lower life-cycle costs of equipment from reductions in inspection costs, downtime, 
and inventory 
Reduce the occurrence of intermittents and no fault founds (NFF) 

At present, there are many organizations conducting research and development into 
prognostics and even more that wish to implement it in their products and systems. 
However, research on prognostics and health management (PHM) for electronics has been 
fragmented, and until now there has been no single reference that describes what is being 
conducted. To address this, this book discusses the activities of the major players in the 
prognostics field, including companies, academia, and government organizations. This book 
also discusses the available sensors that are used for prognostics, the parameters that can be 
monitored, the functions and principles of these sensors, implementation techniques and 
guidelines for sensor selection. The prognostics models and algorithms currently in use are 
also discussed in this book. This book provides an overview of the implementation costs 
including recurring, nonrecurring, and infrastructure costs and the cost avoidance possible 
with PHM. A roadmap is then presented to show the challenges and opportunities for 
research and development of PHM. 

ix 



x Preface 

Chapter 1 provides a basic understanding of PHM and the techniques being developed to 
enable prognostics for electronic products and systems. The general approaches for PHM of 
electronics include (1) the use of fuses and canary devices; ( 2 )  monitoring and trending of 
failure precursors; and (3) monitoring environmental and usage loads for damage modeling. 
Examples are given to demonstrate each of the general approaches. Steps for implementing 
an effective PHM strategy for a complete product or system are presented. 

Chapter 2 presents the state-of-the-art in sensor systems for in situ health and usage 
monitoring. Advances in the areas of sensor fabrication, microprocessors, compact 
nonvolatile memory, battery technology, and wireless telemetry have led to novel sensor 
systems that can be used for in situ life-cycle monitoring of electronic products and systems. 
Characteristics of state-of-the-art sensor systems, including on-board power management 
features, on-board memory, embedded signal processing software, wireless data 
transmission, low size and weight, high reliability, and low cost are presented. Select state- 
of-the-art, commercially available sensor systems are included along with their performance 
characteristics. A final section on emerging trends in sensor system technology is presented. 

Chapter 3 discusses the various data-driven models and algorithms that can be utilized for 
prognostics and health management. The discussion covers statistical, usage-based, state 
estimation, and general pattern recognition models and algorithms. 

Chapter 4 discusses the physics-of-failure-based prognostics approach. This approach 
permits the assessment of system reliability under its actual application conditions by 
integrating sensor data with models that enable in situ assessment of the deviation or 
degradation of a product from an expected normal operating condition. A formal 
implementation procedure, which includes failure modes, mechanisms, effects analysis, data 
reduction and feature extraction from the life-cycle loads, and damage accumulation, is 
presented. 

Chapter 5 presents the economics of PHM. This chapter provides an overview of the 
implementation costs and the cost avoidance possible with PHM. Implementation costs, 
including recurring, nonrecurring and infrastructure costs are discussed. Maintenance 
planning is described and an example return-on-investment analysis is performed. 

Chapter 6 presents the challenges and opportunities for research and development in PHM 
of electronics. Included are recommendations on the essential next steps for continued 
advancement of PHM technologies. A PHM technology roadmap is then provided. 

It is acknowledged that the field of PHM is evolving rapidly. Furthermore, due to the 
large amount of published work in PHM, any assessment inevitably leaves out some 
organizations and topics that we either were not aware of or did not consider relevant in the 
context of this book 
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Chapter 1 

Introduction 

As a result of intense global competition, companies are considering novel approaches 
to enhance the operational efficiency of their products. For many products and systems, high 
in-service reliability can be a means to ensure customer satisfaction. In addition, global 
competitive demands for increased warranties and the severe liability of product failures are 
encouraging manufacturers to improve field reliability and operational availability’, and 
provide knowledge of in-service use, life-cycle operational and environmental conditions. 

Interest has been growing in monitoring the ongoing health of products and systems in 
order to provide advance warning failure and assist in administration and logistics. Here, 
health is defined as the extent of degradation or deviation from an expected normal 
condition. Prognostics is the prediction of the future state of health based on current and 
historical health conditions [ 11. 

Electronics are integral to the functionality of most systems today, and their reliability 
is often critical for system reliability [2]. This chapter provides a basic understanding of 
prognostics and health monitoring of products and systems and the techniques being 
developed to enable prognostics for electronic systems. 

1.1 Reliability and Prognostics 

Reliability is the ability of a product or system to perform as intended (i.e., without 
failure and within specified performance limits) for a specified time, in its life-cycle 
environment. Traditional reliability prediction methods for electronic products include Mil- 
HDBK-217 [3], 217-PLUS, Telcordia [4], PRISM [ 5 ] ,  and FIDES [ 6 ] .  These methods rely 
on the collection of failure data and generally assume the components of the system have 
failure rates (most often assumed to be constant) that can be modified by independent 
“modifiers” to account for various quality, operating, and environmental conditions. There 
are numerous well-documented concerns with this type of modeling approach [7-lo]. The 
general consensus is that these handbooks should never be used, because they are inaccurate 
for predicting actual field failures and provide highly misleading predictions, which can 
result in poor designs and logistics decisions [S][ 111. 

Prognostics and Health hlanagement ofElectronics. By Michael G. Pecht 
Copyright ‘C 2008 John Wiley & Sons, Inc. 
’ Operational availability is defined as the degree (expressed as a decimal between 0 and 1, or the percentage 

equivalent) to Lvhich a piece of equipment or system can be expected to work properly when required. Operational 
a\ailability is often calculated by dividing uptime by the sum of uptime and downtime. 
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2 Prognostics and Health Management of Electronics 

The traditional handbook method for the reliability prediction of electronics started with 
Mil-HDBK-217A, published in 1965. In this handbook, there was only a single point failure 
rate for all monolithic integrated circuits, regardless of the stresses, the materials, or the 
architecture. Mil-HDBK-2 17B was published in 1973, with the RCAIBoeing models 
simplified by the U.S. Air Force to follow a statistical exponential (constant failure rate) 
distribution. Since then, all the updates were mostly “band-aids” for a modeling approach 
that was proven to be flawed [12]. In 1987-1990, the Center for Advanced Life Cycle 
Engineering (CALCE) at the University of Maryland was awarded a contract to update 
Mil-HDBK-217. It was concluded that this handbook should be canceled and the use of this 
type of modeling approach discouraged. 

In 1998, the Institude of Electrical and Electronics Engineers (IEEE) 1413 standard, 
“IEEE Standard Methodology for Reliability Prediction and Assessment for Electronic 
Systems and Equipment,” was approved to provide guidance on the appropriate elements of 
a reliability prediction [ 131. A companion guidebook, IEEE 1413.1, “IEEE Guide for 
Selecting and Using Reliability Predictions Based on IEEE 1413,” provides information and 
an assessment of the common methods of reliability prediction for a given application [14]. 
It is shown that the Mil-HDBK-217 is flawed. There is also discussion of the advantage of 
reliability prediction methods that use stress and damage physics-of-failure (PoF) technique. 

The PoF approach and design-for-reliability (DfR) methods have been developed by 
CALCE [ 151 with the support of industry, government and other universities. PoF is an 
approach that utilizes knowledge of a product’s life-cycle loading and failure mechanisms to 
perform reliability modeling, design, and assessment. The approach is based on the 
identification of potential failure modes, failure mechanisms, and failure sites for the 
product as a function of its life-cycle loading conditions. The stress at each failure site is 
obtained as a function of both the loading conditions and the product geometry and material 
properties. Damage models are then used to determine fault generation and propagation. 

Prognostics and health management (PHM) is a method that permits the assessment of 
the reliability of a product (or system) under its actual application conditions. When 
combined with PoF models, it is thus possible to make continuously updated predictions 
based on the actual environmental and operational conditions. PHM techniques combine 
sensing, recording, interpretation of environmental, operational, and performance-related 
parameters to indicate a system’s health. PHM can be implemented through the use of 
various techniques to sense and interpret the parameters indicative of: 

Performance degradation, such as deviation of operating parameters from their 
expected values 
Physical or electrical degradation, such as material cracking, corrosion, interfacial 
delamination, or increases in electrical resistance or threshold voltage 
Changes in a life-cycle profile, such as usage duration and frequency, ambient 
temperature and humidity, vibration, and shock 

The framework for prognostics is shown in Figure 1.1. Performance data from various 
levels of an electronic product or system can be monitored in situ and analyzed using 
prognostic algorithms. Different implementation approaches can be adopted individually or 
in combination. These approaches will be discussed in subsequent sections. Ultimately, the 
objective is to predict the advent of failure in terms of a distribution of remaining life, level 
of degradation, or probability of mission survival. 
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Figure 1.1: Framework for prognostics and health management. 

3 

1.2 PHM for Electronics 

Most products and systems contain significant electronics content to provide needed 
functionality and performance. If one can assess the extent of deviation or degradation from 
an expected normal operating condition for electronics, this information can be used to meet 
several powerful goals, which include (1) providing advanced warning of failures; (2) 
minimizing unscheduled maintenance, extending maintenance cycles, and maintaining 
effectiveness through timely repair actions; (3) reducing the life-cycle cost of equipment by 
decreasing inspection costs, downtime, and inventory; and (4) improving qualification and 
assisting in the design and logistical support of fielded and future systems [l] .  In other 
words, since electronics are playing an increasingly large role in providing operational 
capabilities for today’s products and systems, prognostic techniques have become highly 
desirable. 

Some of first efforts in diagnostic health monitoring of electronics involved the use of a 
built-in test (BIT), defined as an on-board hardware-software diagnostic means to identify 
and locate faults. A BIT can consist of error detection and correction circuits, totally 
self-checking circuits, and self-verification circuits [ 11. Two types of BIT concepts are 
employed in electronic systems: interruptive BIT (I-BIT) and continuous BIT (C-BIT). The 
concept behind I-BIT is that normal equipment operation is suspended during BIT 
operation. The concept behind C-BIT is that equipment is monitored continuously and 
automatically without affecting normal operation. 

Several studies [16, 171 conducted on the use of BIT for fault identification and 
diagnostics showed that BIT can be prone to false alarms and can result in unnecessary 
costly replacement, requalification, delayed shipping, and loss of system availability. BIT 
concepts are still being developed to reduce the occurrence of spurious failure indications. 
However, there is also reason to believe that many of the failures actually occurred but were 
intermittent in nature [18]. The persistence of such issues over the years is perhaps because 
the use of BIT has been restricted to low-volume systems. Thus, BIT has generally not been 
designed to provide prognostics or remaining useful life due to accumulated damage or 
progression of faults. Rather, it has served primarily as a diagnostic tool. 
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PHM has also emerged as one of the key enablers for achieving efficient system-level 
maintenance and lowering life-cycle costs in military systems. In November 2002, the U.S. 
Deputy under secretary of Defense for Logistics and Materiel Readiness released a policy 
called condition-based maintenance plus (CBM+). CBM+ represents an effort to shift 
unscheduled corrective equipment maintenance of new and legacy systems to preventive 
and predictive approaches that schedule maintenance based upon the evidence of need. A 
2005 survey of 11 CBM programs highlighted “electronics prognostics” as one of the most 
needed maintenance-related features or applications without regard for cost [ 191, a view also 
shared by the avionics industry [20]. Department of Defense 5000.2 policy document on 
defense acquisition states that “program managers shall optimize operational readiness 
through affordable, integrated, embedded diagnostics and prognostics, embedded training 
and testing, serialized item management, automatic identification technology, and iterative 
technology refreshment [ 181 .” Thus, a prognostics capability has become a requirement for 
any system sold to the U.S. Department of Defense. 

PHM is also emerging as a high-priority issue in space applications. NASA’s Ames 
Research Center (ARC) in California is focused on conducting fundamental research in the 
field of integrated systems health management (ISHM). ARC is involved in design of health 
management systems, selection and optimization of sensors, in situ monitoring, data 
analysis, prognostics, and diagnostics. The prognostics center for excellence at ARC 
develops algorithms to predict the remaining life of NASA’s systems and subsystems. 
ARC’S current prognostics projects involve power semiconductor devices (investigation of 
the effects of aging on power semiconductor components, identification of failure precursors 
to build a PoF model, and development of algorithms for end-of-life prediction), batteries 
(algorithms for batteries prognosis), flight actuators (PoF modeling and development of 
algorithms for estimation of remaining life), solid rocket motor failure prediction, and 
aircraft wiring health management [2 11. 

In addition to in-service reliability assessment and maintenance, health monitoring can 
also be effectively used to support product take-back and end-of-life decisions. Product 
take-back indicates the responsibility of manufacturers for their products over the entire life 
cycle, including disposal. The motivation driving product take-back is the concept of 
extended producer responsibility (EPR) for post-consumer electronic waste [22]. The 
objective of EPR is to make manufacturers and distributors financially responsible for their 
products when they are no longer needed. 

End-of-life product recovery strategies include repair, refurbishing, remanufacturing, 
reuse of components, material recycling, and disposal. One of the challenges in end-of-life 
decision making is to determine whether product lines can be extruded, whether any 
components could be reused, and what subset should be disposed of in order to minimize 
system costs [23]. Several interdependent issues must be considered concurrently to 
properly determine the optimum component re-use ratio, including assembly/disassembly 
costs and any defects introduced by the process, product degradation incurred in the original 
life cycle, and the waste stream associated with the life cycle. Among these factors, the 
estimate of the degradation of the product in its original life cycle could be the most 
uncertain input to end-of-life decisions. This could be effectively carried out using health 
monitoring, with knowledge of the entire history of the product’s life cycle. 

Scheidt et al. [24] proposed the development of special electrical ports, referred to as 
green ports, to retrieve product usage data that could assist in the recycling and reuse of 
electronic products. Klausner et al. [25, 261 proposed the use of an integrated electronic 
data log (EDL) for recording parameters indicative of product degradation. The EDL was 
implemented on electric motors to increase the reuse of motors. In another study, [27] 
domestic appliances were monitored for collecting usage data by means of electronic units 
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fitted on the appliances. This work introduced the life cycle data acquisition unit, which can 
be used for data collection and also for diagnostics and servicing. Middendorf et al. [28] 
suggested developing life information modules to record the cycle conditions of products for 
reliability assessment, product refurbishing, and reuse. 

Designers often establish the usable life of products and warranties based on 
extrapolating accelerated test results to assumed usage rates and life-cycle conditions. These 
assumptions may be based on worst-case scenarios of various parameters composing the 
end-user environment. Thus if the assumed conditions and actual use conditions are the 
same, the product would last for the designed time, as shown in Figure 1.2 a. However, this 
is rarely true. and usage and environmental conditions could vary significantly from those 
assumed. For example, consider products equipped with life consumption monitoring 
systems for providing in situ assessment of remaining life. In this situation, even if the 
product is used at a higher usage rate and in harsh conditions, it can still avoid unscheduled 
maintenance and catastrophic failure, maintain safety, and ultimately save cost. These are 
typically the motivational factors for use of health monitoring or life consumption 
monitoring, as shown in Figure I .2 b. 

One of the vital inputs in making end-of-life decisions is the estimate of degradation 
and the remaining life of the product. Figure 1.2 c illustrates a scenario in which a working 
product is returned at the end of its designed life. Using the health monitors installed within 
the product, the reusable life can be assessed. Unlike testing conducted after the product is 
returned, this estimate can be made without having to disassemble the product. Ultimately, 
depending on other factors such as cost of the product, demand for spares, cost, and yield in 
assembly and disassembly, the manufacturer can choose to reuse or dispose. 

Failure 

Designed 
severity 

Time 

Design life 

(a) Usage as per design 
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(c) Less severe usage than intended design 

Figure 1.2: Application of health monitoring for product reuse. 

1.3 PHM Concepts and Methods 

The general PHM methodology is shown in Figure 1.3 [29]. The first step involves a 
virtual life assessment, where design data, expected life-cycle conditions, failure modes. 
mechanisms, and effects analysis (FMMEA), and PoF models are the inputs to obtain a 
reliability (virtual life) assessment. Based on the virtual life assessment, it is possible to 
prioritize the critical failure modes and failure mechanisms. The existing sensor data, bus 
monitor data, and maintenance and inspection record can also be used to identify the 
abnormal conditions and parameters. Based on this information, the monitoring parameters 
and sensor locations for PHM can be determined. 
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Based on the collected operational and environmental data, the health status of the 
products can be assessed. Damage can also be calculated from the PoF models to obtain the 
remaining life. Then PHM information can be used for maintenance forecasting and 
decisions that minimize life-cycle costs, or maximize availability or some other utility 
function. 

Figure 1.3: CALCE PHM methodology. 

The different approaches to prognostics and the state of research in electronics PHM are 
presented here. Three current approaches include (1) the use of fuses and canary devices; (2) 
monitoring and reasoning of failure precursors; and ( 3 )  monitoring environmental and usage 
loading for PoF-based stress and damage modeling. 

1.3.1 Fuses and Canaries 

Expendable devices, such as fuses and canaries, have been a traditional method of 
protection for structures and electrical power systems. Fuses and circuit breakers are 
examples of elements used in electronic products to sense excessive current drain and to 
disconnect power. Fuses within circuits safeguard parts against voltage transients or 
excessive power dissipation and protect power supplies from shorted parts. For example, 
thermostats can be used to sense critical temperature limiting conditions and to shut down 
the product, or a part of the system, until the temperature returns to normal. In some 
products, self-checking circuitry can also be incorporated to sense abnormal conditions and 
to make adjustments to restore normal conditions or to activate switching means to 
compensate for a malfunction [30]. 

The word “canary” is derived from one of coal mining’s earliest systems for warning of 
the presence of hazardous gas using the canary bird. Because the canary is more sensitive to 
hazardous gases than humans, the death or sickening of the canary was an indication to the 
miners to get out of the shaft. The canary thus provided an effective early warning of 
catastrophic failure that was easy to interpret. The same approach has been employed in 
prognostic health monitoring. Canary devices mounted on the actual product can also be 
used to provide advance warning of failure due to specific wearout failure mechanisms. 
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Mishra et al. [3 11 studied the applicability of semiconductor-level health monitors by 
using pre-calibrated cells (circuits) located on the same chip with the actual circuitry. The 
prognostics cell approach, known as Sentinel SemiconductorTu technology, has been 
commercialized to provide an early warning sentinel for upcoming device failures [32]. The 
prognostic cells are available for 0.35-pm, 0.25-pm, and 0.18-pm complementary 
metal-oxide-semiconductor (CMOS) processes; the power consumption is approximately 
600 pW, The cell size is typically 800 pm2 at the 0.25-pm process size. Currently, 
prognostic cells are available for semiconductor failure mechanisms such as electrostatic 
discharge (ESD), hot carrier, metal migration, dielectric breakdown, and radiation effects. 

The time to failure of prognostic canaries can be precalibrated with respect to the time 
to failure of the actual product. Because of their location, these canaries contain and 
experience substantially similar dependencies as does the actual product. The stresses that 
contribute to degradation of the circuit include voltage, current, temperature, humidity, and 
radiation. Since the operational stresses are the same, the damage rate is expected to be the 
same for both circuits. However, the prognostic canary is designed to fail faster through 
increased stress on the canary structure by means of scaling. 

Scaling can be achieved by controlled increase of the stress (e.g., current density) inside 
the canaries. With the same amount of current passing through both circuits, if the 
cross-sectional area of the current-carrying paths in the canary is decreased, a higher current 
density is achieved. Further control in current density can be achieved by increasing the 
voltage level applied to the canaries. A combination of both of these techniques can also be 
used. Higher current density leads to higher internal (joule) heating, causing greater stress 
on the canaries. When a current of higher density passes through the canaries, they are 
expected to fail faster than the actual circuit [31]. 

Figure 1.4 shows the failure distribution of the actual product and the canary health 
monitors. Under the same environmental and operational loading conditions, the canary 
health monitors wear out faster to indicate the impending failure of the actual product. 
Canaries can be calibrated to provide sufficient advance warning of failure (prognostic 
distance) to enable appropriate maintenance and replacement activities. This point can be 
adjusted to some other early indication level. Multiple trigger points can also be provided 
using multiple canaries spaced over the bathtub curve. 

Failure probability density distribution 
for canary health monitors 

Failure probability density 
distribution for a c t r d  product 

T h e  - 
Figure 1.4: Advanced warning of failure using canary structures. 
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Goodman et al. [33] used a prognostic canary to monitor time-dependent dielectric 
breakdown (TDDB) of the metal-oxide-semiconductor field-effect transistor (MOSFET) on 
the integrated circuits. The prognostic canary was accelerated to failure under certain 
environmental conditions. Acceleration of the breakdown of an oxide could be achieved by 
applying a voltage higher than the supply voltage to increase the electric field across the 
oxide. When the prognostics canary failed, a certain fraction of the circuit lifetime was used 
up. The fraction of consumed circuit life was dependent on the amount of over voltage 
applied and could be estimated from the known distribution of failure times. 

The extension of this approach to board-level failures was proposed by Anderson et al. 
[34], who created canary components (located on the same printed circuit board) that 
include the same mechanisms that lead to failure in actual components. Anderson et al. 
identified two prospective failure mechanisms: (1) low cycle fatigue of solder joints, 
assessed by monitoring solder joints on and within the canary package, and (2) corrosion 
monitoring, using circuits that are susceptible to corrosion. The environmental degradation 
of these canaries was assessed using accelerated testing, and degradation levels were 
calibrated and correlated to actual failure levels of the main system. The corrosion test 
device included an electrical circuitry susceptible to various corrosion-induced mechanisms. 
Impedance spectroscopy was proposed for identifying changes in the circuits by measuring 
the magnitude and phase angle of impedance as a function of frequency. The change in 
impedance characteristics can be correlated to indicate specific degradation mechanisms. 

There remain unanswered questions with the use of fuses and canaries for PHM. For 
example, if a canary monitoring a circuit is replaced, what is the impact when the product is 
re-energized? What protective architectures are appropriate for postrepair operations? What 
maintenance guidance must be documented and followed when fail-safe protective 
architectures have or have not been included? The canary approach is also difficult to 
implement in legacy systems because it may require requalification of the entire system with 
the canary module. Also, the integration of fuses and canaries with the host electronic 
system could be an issue with respect to real estate on semiconductors and boards. Finally, 
the company must ensure that the additional cost of implementing PHM can be recovered 
through increased operational and maintenance efficiencies. 

1.3.2 

A failure precursor is a data event or trend that signifies impending failure. A precursor 
indication is usually a change in a measurable variable that can be associated with 
subsequent failure. For example, a shift in the output voltage of a power supply might 
suggest impending failure due to a damaged feedback regulator and opto-isolator circuitry. 
Failures can then be predicted by using causal relationships between measured variables that 
can be correlated with subsequent failure and for PoF. 

A first step in failure precursor PHM is to select the life-cycle parameters to be 
monitored. Parameters can be identified based on factors that are crucial for safety, that are 
likely to cause catastrophic failures, that are essential for mission completeness, or that can 
result in long downtimes. Selection can also be based on knowledge of the critical 
parameters established by past experience. field failure data on similar products, and 
qualification testing. More systematic methods, such as FMMEA [35], can also be used to 
determine parameters that need to be monitored. 

Pecht et al. [36] proposed several measurable parameters that can be used as failure 
precursors for electronic products, including switching power supplies, cables and 
connectors, CMOS integrated circuits (ICs), and voltage-controlled high-frequency 
oscillators (see Table 1.1). 

Monitoring and Reasoning of Failure Precursors 
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Table 1.1: Potential Failure Precursors for Electronics [36] 

Electronic Subsystem 

Switching powrer supply 

Cables and connectors 

I/ 
CMOS 1C 

Voltage-controlled oscillator 

Field effect transistor (I 
Ceramic chip capacitor ! 

Electrolytic capacitor 

RF power amplifier 

Failure Precursor 

Direct-current (DC) output (voltage and current levels) 
Ripple 
Pulse width duty cycle 
Efficiency 
Feedback (voltage and current levels) 
Leakage current 
Radio frequency (RF) noise 

Impedance changes 
Physical damage 
High-energy dielectric breakdown 

Supply leakage current 
Supply current variation 
Operating signature 
Current noise 
Logic-level variations 

Output frequency 
Power loss 
Efficiency 
Phase distortion 
Noise 

Gate leakage currentiresistance 
Drain-source leakage currentiresistance 

Leakage currentiresistance 
Dissipation factor 
RF noise 

Reverse leakage current 
Forward voltage drop 
Thermal resistance 
Power dissipation 
RF noise 

Leakage currentiresistance 
Dissipation factor 
RF noise 

Voltage standing wave ratio (VSWR) 
Power dissipation 
Leakage current 

In general, to implement a precursor reasoning-based PHM system, it is necessary to 
identify the precursor variables for monitoring and then develop a reasoning algorithm to 
correlate the change in the precursor variable with the impending failure. This 
characterization is typically performed by measuring the precursor variable under an 
expected or accelerated usage profile. Depending on the characterization, a model is 


