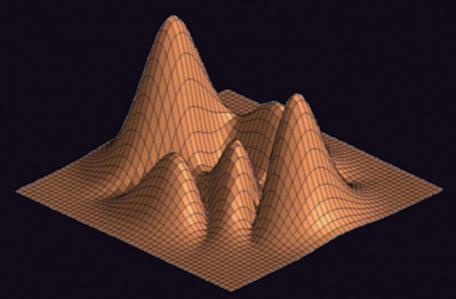
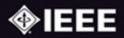
Integrated Tracking, Classification, and Sensor Management

Theory and Applications



Edited by

MAHENDRA MALLICK VIKRAM KRISHNAMURTHY BA-NGU VO



INTEGRATED TRACKING, CLASSIFICATION, AND SENSOR MANAGEMENT

IEEE Press 445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board

John B. Anderson, Editor in Chief

R. Abhari	G. W. Arnold	F. Canavero
D. Goldof	B-M. Haemmerli	D. Jacobson
M. Lanzerotti	O. P. Malik	S. Nahavandi
T. Samad	G. Zobrist	

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

Technical Reviewers

Samuel S. Blackman, *Raytheon* Professor Rob Evans, *University of Melbourne, Australia* Ramanarayanan Viswanathan, *Southern Illinois University Carbondale*

INTEGRATED TRACKING, CLASSIFICATION, AND SENSOR MANAGEMENT

THEORY AND APPLICATIONS

Edited by

Mahendra Mallick Propagation Research Associates, Inc., Marietta, GA, USA

Vikram Krishnamurthy

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada

Ba-Ngu Vo

Department of Electrical and Computer Engineering, Curtin University, Western Australia, Australia

Cover Illustration: Courtesy of Ba-Ngu Vo Cover Design: John Wiley & Sons, Inc.

Copyright © 2013 by The Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-0-470-63905-4

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

PREFACE xv			xvii
CC	ONTRI	BUTORS	xxiii
PA	RT I	FILTERING	
1.	Angl	e-Only Filtering in Three Dimensions	3
		ıdra Mallick, Mark Morelande, Lyudmila Mihaylova, Sanjeev	
		npalam, and Yanjun Yan	
	1.1	Introduction	3
	1.2	Statement of Problem	6
		Tracker and Sensor Coordinate Frames	6
	1.4	Coordinate Systems for Target and Ownship States	7
		1.4.1 Cartesian Coordinates for State Vector and Relative State	
		Vector	7
		1.4.2 Modified Spherical Coordinates for Relative State	
		Vector	8
	1.5	Dynamic Models	9
		1.5.1 Dynamic Model for State Vector and Relative State Vector in	
		Cartesian Coordinates	9
		1.5.2 Dynamic Model for Relative State Vector in Modified	
		Spherical Coordinates	11
	1.6	Measurement Models	14
		1.6.1 Measurement Model for Relative Cartesian State	14
		1.6.2 Measurement Model for Modified Spherical	
		Coordinates	15
	1.7	Filter Initialization	15
		1.7.1 Initialization of Relative Cartesian Coordinates	16
		1.7.2 Initialization of Modified Spherical Coordinates	16
	1.8	Extended Kalman Filters	17
	1.9	Unscented Kalman Filters	19
	1.10	Particle Filters	23
	1.11	Numerical Simulations and Results	28
	1.12	Conclusions	31
	Appe	ndix 1A Derivations for Stochastic Differential Equations in	
		MSC	32

v

	App	endix 1B Transformations Between Relative Cartesian Coordinates and MSC	35
	App	endix 1C Filter Initialization for Relative Cartesian Coordinates and	55
		MSC	35
	Ref	erences	40
2.		icle Filtering Combined with Interval Methods for Tracking	
		lications	43
		lou Gning, Lyudmila Mihaylova, Fahed Abdallah, and Branko Ristic	
	2.1	Introduction	43
		Related Works	44
	2.3	Interval Analysis	46
		2.3.1 Basic Concepts	46
		2.3.2 Inclusion Functions	47
		2.3.3 Constraint Satisfaction Problems	48
		2.3.4 Contraction Methods	50
	2.4	Bayesian Filtering	51
	2.5		52
		2.5.1 Main Steps of the Box Particle Filter	52
	2.6	Box Particle Filtering Derived from the Bayesian Inference Using a	
		Mixture of Uniform Probability Density Functions	56
		2.6.1 Time Update Step	57
		2.6.2 Measurement Update Step	63
	2.7	Box-PF Illustration over a Target Tracking Example	65
	2.0	2.7.1 Simulation Set-Up	65
	2.8	Application for a Vehicle Dynamic Localization Problem	67
	2.9	Conclusions	71
	Kel	erences	72
3.	-	esian Multiple Target Filtering Using Random Finite Sets	75
		gu Vo, Ba-Tuong Vo, and Daniel Clark	75
		Introduction	75
	3.2		76
		Filtering	76 76
		3.2.1 Single-Target Filtering	76 77
		3.2.2 Random Finite Set and Multitarget Filtering	77
	3.3	3.2.3 Why Random Finite Set for Multitarget Filtering? Random Finite Sets	80 81
	3.3	3.3.1 Probability Density	82
		3.3.2 Janossy Densities3.3.3 Belief Functional and Density	83 83
		3.3.4 The Probability Hypothesis Density	83 84
		3.3.5 Examples of RFS	84 84
	3.4	Multiple Target Filtering and Estimation	85
	5.4	3.4.1 Multitarget Dynamical Model	85 86
		3.4.2 Multitarget Observation Model	80
			07

		3.4.3 Multitarget Bayes Recursion	88
		3.4.4 Multitarget State Estimation	88
	3.5	Multitarget Miss Distances	91
		3.5.1 Metrics	91
		3.5.2 Hausdorff Metric	92
		3.5.3 Optimal Mass Transfer (OMAT) Metric	92
		3.5.4 Optimal Subpattern Assignment (OSPA) Metric	94
	3.6	The Probability Hypothesis Density (PHD) Filter	95
		3.6.1 The PHD Recursion for Linear Gaussian Models	97
		3.6.2 Implementation Issues	100
		3.6.3 Extension to Nonlinear Gaussian Models	101
	3.7	The Cardinalized PHD Filter	105
		3.7.1 The CPHD Recursion for Linear Gaussian Models	107
		3.7.2 Implementation Issues	109
		3.7.3 The CPHD Filter for Fixed Number of Targets	110
	3.8		111
	3.9	MeMBer Filter	117
		3.9.1 MeMBer Recursion	117
		3.9.2 Multitarget State Estimation	118
		3.9.3 Extension to Track Propagation	119
		3.9.4 MeMBer Filter for Image Data	119
		3.9.5 Implementations	122
	Refe	erences	122
4.	The	Continuous Time Roots of the Interacting Multiple Model	
	Filte	er	127
		x A.P. Blom	
	4.1	Introduction	127
		4.1.1 Background and Notation	128
	4.2	Hidden Markov Model Filter	129
		4.2.1 Finite-State Markov Process	129
		4.2.2 SDEs Having a Markov Chain Solution	130
		4.2.3 Filtering a Hidden Markov Model (HMM)	131
		4.2.4 Robust Versions of the HMM Filter	133
	4.3	System with Markovian Coefficients	136
		4.3.1 The Filtering Problem Considered	136
		4.3.2 Evolution of the Joint Conditional Density	136
		4.3.3 Evolution of the Conditional Density of x_t Given θ_t	139
		4.3.4 Special Cases	141
		Sector Spectral Classes	
	4.4	Markov Jump Linear System	141
	4.4	-	
	4.4	Markov Jump Linear System 4.4.1 The Filtering Problem Considered 4.4.2 Pre-IMM Filter Equations	141
	4.4	Markov Jump Linear System 4.4.1 The Filtering Problem Considered 4.4.2 Pre-IMM Filter Equations 4.4.3 Continuous-Time IMM Filter	141 141
	4.4	Markov Jump Linear System 4.4.1 The Filtering Problem Considered 4.4.2 Pre-IMM Filter Equations	141 141 142

4.4.5 Relation Between Bjork's Filter and Continuous-Time	
IMM	148
4.5 Continuous-Discrete Filtering	149
4.5.1 The Continuous-Discrete Filtering Problem Considered	149
4.5.2 Evolution of the Joint Conditional Density	149
4.5.3 Continuous-Discrete SIR Particle Filtering	150
4.5.4 Markov Jump Linear Case	152
4.5.5 Continuous-Discrete IMM Filter	152
4.6 Concluding Remarks	154
Appendix 4A Differentiation Rule for Discontinuous	
Semimartingales	155
Appendix 4B Derivation of Differential for $\hat{R}_t(\theta)$	156
References	159

PART II MULTITARGET MULTISENSOR TRACKING

5.	Mul	titarget Tracking Using Multiple Hypothesis Tracking	165
	Mahe	endra Mallick, Stefano Coraluppi, and Craig Carthel	
	5.1	Introduction	165
	5.2	Tracking Algorithms	166
		5.2.1 Tracking with Target Identity (or Track Label)	168
		5.2.2 Tracking without Target Identity (or Track Label)	169
	5.3	Track Filtering	170
		5.3.1 Dynamic Models	171
		5.3.2 Measurement Models	172
		5.3.3 Single Model Filter for a Nonmaneuvering Target	172
		5.3.4 Filtering Algorithms	175
		5.3.5 Multiple Switching Model Filter for a Maneuvering	
		Target	178
	5.4	MHT Algorithms	179
	5.5	Hybrid-State Derivations of MHT Equations	180
	5.6	The Target-Death Problem	185
	5.7	Examples for MHT	186
		5.7.1 Example 1: N-Scan Pruning in Track-Oriented MHT	186
		5.7.2 Example 2: Maneuvering Target in Heavy Clutter	187
	5.8	Summary	189
	Refe	erences	190
6.	Trac	king and Data Fusion for Ground Surveillance	203
	Mich	ael Mertens, Michael Feldmann, Martin Ulmke, and Wolfgang Koch	
	6.1	Introduction to Ground Surveillance	203
	6.2	GMTI Sensor Model	204
		6.2.1 Model of the GMTI Clutter Notch	204
		6.2.2 Signal Strength Measurements	206

	6.3	Bayesian Approach to Ground Moving Target Tracking	209
		6.3.1 Bayesian Tracking Filter	210
		6.3.2 Essentials of GMTI Tracking	212
		6.3.3 Filter Update with Clutter Notch	214
		6.3.4 Target Strength Estimation	217
	6.4	Exploitation of Road Network Data	222
		6.4.1 Modeling of Road Networks	223
		6.4.2 Densities on Roads	225
		6.4.3 Application: Precision Targeting	229
		6.4.4 Track-Based Road-Map Extraction	229
	6.5	Convoy Track Maintenance Using Random Matrices	234
		6.5.1 Object Extent Within the Bayesian Framework	235
		6.5.2 Road-Map Assisted Convoy Track Maintenance	237
		6.5.3 Selected Numerical Examples	242
	6.6	Convoy Tracking with the Cardinalized Probability Hypothesis	
		Density Filter	243
		6.6.1 Gaussian Mixture CPHD Algorithm	244
		6.6.2 Integration of Digital Road Maps	248
		6.6.3 Target State Dependent Detection Probability	249
		6.6.4 Exemplary Results for Small Convoys	250
	Refe	rences	251
7.	Dowf	armona Dounda for Torat Trading Computationally	
/.		ormance Bounds for Target Tracking: Computationally vient Formulations and Associated Applications	255
		el Hernandez	233
		Introduction	255
		Bayesian Performance Bounds	255
	1.2	7.2.1 The Estimation Problem	258
		7.2.2 A General Class of Lower Bounds	258
		7.2.2 A General Class of Lower Bounds 7.2.3 Efficient Fixed Dimensionality Recursions	258
	7.3	PCRLB Formulations in Cluttered Environments	260
	1.5	7.3.1 Measurement Model	262
		7.3.2 Information Reduction Factor Approach	262
		7.3.3 Measurement Sequence Conditioning Approach	263
		7.3.4 Measurement Existence Sequence Conditioning	204
		Approach	265
		7.3.5 Calculation of the Information Reduction Factors	265
	7 4	7.3.6 Relationships Between the Various Performance Bounds	268
	7.4	An Approximate PCRLB for Maneuevring Target Tracking	269
		7.4.1 Motion Model	269
		7.4.2 Best-Fitting Gaussian Approach	269
		7.4.3 Recursive Computation of Best-Fitting Gaussian	050
		Approximation	270
	7.5	A General Framework for the Deployment of Stationary	071
		Sensors	271

		7.5.1 Introduction	271
		7.5.2 Interval Between Deployments	273
		7.5.3 Use of Existing Sensors	276
		7.5.4 Locations and Number of New Sensors	277
		7.5.5 Performance Measure	280
		7.5.6 Efficient Search Technique	281
		7.5.7 Example—Sonobuoy Deployment in Submarine	
		Tracking	282
	7.6	UAV Trajectory Planning	294
		7.6.1 Scenario Overview	294
		7.6.2 Measure of Performance	294
		7.6.3 One-Step-Ahead Planning	295
		7.6.4 Two-Step-Ahead Planning	295
		7.6.5 Adaptive Horizon Planning	296
		7.6.6 Simulations	298
	7.7	Summary and Conclusions	305
	Refe	prences	307
8.	Trac	k-Before-Detect Techniques	311
		el J. Davey, Mark G. Rutten, and Neil J. Gordon	
	8.1	Introduction	311
		8.1.1 Historical Review of TBD Approaches	312
		8.1.2 Limitations of Conventional Detect-then-Track	315
	8.2	Models	318
		8.2.1 Target Model	318
		8.2.2 Sensor Model	321
	8.3	Baum Welch Algorithm	327
		8.3.1 Detection	328
		8.3.2 Parameter Selection	329
		8.3.3 Complexity Analysis	329
		8.3.4 Summary	331
	8.4	Dynamic Programming: Viterbi Algorithm	331
		8.4.1 Parameter Selection	333
		8.4.2 Complexity Analysis	333
		8.4.3 Summary	333
	8.5	Particle Filter	334
		8.5.1 Parameter Selection	336
		8.5.2 Complexity Analysis	336
		8.5.3 Summary	337
	8.6	ML-PDA	337
		8.6.1 Optimization Methods	340
		8.6.2 Validation	340
		8.6.3 Summary	341
	8.7	H-PMHT	341
		8.7.1 Efficient Two-Dimensional Implementation	344

		8.7.2 Nonlinear Gaussian Measurement Function	345
		8.7.3 Track Management	346
		8.7.4 Summary	346
	8.8	Performance Analysis	347
		8.8.1 Simulation Scenario	348
		8.8.2 Measures of Performance	349
		8.8.3 Overall ROC	350
		8.8.4 Per-Frame ROC	350
		8.8.5 Estimation Accuracy	353
		8.8.6 Computation Requirements	353
	8.9	Applications: Radar and IRST Fusion	354
		Future Directions	357
	Refe	prences	358
9.	Adv	ances in Data Fusion Architectures	363
		no Coraluppi and Craig Carthel	
		Introduction	363
		Dense-Target Scenarios	364
		Multiscale Sensor Scenarios	368
		Tracking in Large Sensor Networks	370
	9.5	Multiscale Objects	372
	9.6	Measurement Aggregation	378
		Conclusions	383
	Refe	prences	383
10.		nt Inference and Detection of Anomalous Trajectories: A	
		alevel Tracking Approach	387
		m Krishnamurthy	207
	10.1	Introduction	387
		10.1.1 Examples of Metalevel Tracking	388
		10.1.2 SCFGs and Reciprocal Markov Chains	390
		10.1.3 Literature Survey	391
	10.2	10.1.4 Main Results	392 393
	10.2	Anomalous Trajectory Classification Framework	393 393
		10.2.1 Trajectory Classification in Radar Tracking	393 394
	10.3	10.2.2 Radar Tracking System Overview Trajectory Modeling and Inference Using Stochastic Context-Free	394
	10.5	Grammars	395
		10.3.1 Review of Stochastic Context-Free Grammars	396
		10.3.2 SCFG Models for Anomalous Trajectories	396
		10.3.3 Bayesian Signal Processing of SCFG Models	400
	10.4	Trajectory Modeling and Inference Using Reciprocal	
		Processes (RP)	403
	10.5	Example 1: Metalevel Tracking for GMTI Radar	406
	10.6	Example 2: Data Fusion in a Multicamera Network	407

10.7 Conclusion	413
References	413

PART III SENSOR MANAGEMENT AND CONTROL

11.	Radar Resource Management for Target Tracking—A	
	Stochastic Control Approach	417
	Vikram Krishnamurthy	
	11.1 Introduction	417
	11.1.1 Approaches to Radar Resource Management	419
	11.1.2 Architecture of Radar Resource Manager	420
	11.1.3 Organization of Chapter	421
	11.2 Problem Formulation	422
	11.2.1 Macro and Micromanager Architecture	422
	11.2.2 Target and Measurement Model	423
	11.2.3 Micromanagement to Maximize Mutual Information of	2
	Targets	424
	11.2.4 Formulation of Micromanagement as a Multivariate	
	POMDP	426
	11.3 Structural Results and Lattice Programming for	
	Micromanagement	431
	11.3.1 Monotone Policies for Micromanagement with Mutual	
	Information Stopping Cost	432
	11.3.2 Monotone POMDP Policies for Micromanagement	433
	11.3.3 Radar Macromanagement	436
	11.4 Radar Scheduling for Maneuvering Targets Modeled as Jump	
	Markov Linear System	437
	11.4.1 Formulation of Jump Markov Linear System Model	437
	11.4.2 Suboptimal Radar Scheduling Algorithms	440
	11.5 Summary	444
	References	444
12.	Sensor Management for Large-Scale Multisensor-Multitarget	
	Tracking	447
	Ratnasingham Tharmarasa and Thia Kirubarajan	
	12.1 Introduction	447
	12.1.1 Sensor Management	447
	12.1.2 Centralized Tracking	448
	12.1.3 Distributed Tracking	449
	12.1.4 Decentralized Tracking	450
	12.1.5 Organization of the Chapter	451
	12.2 Target Tracking Architectures	451
	12.2.1 Centralized Tracking	451
	12.2.2 Distributed Tracking	452
	12.2.3 Decentralized Tracking	452

	452
8	453
12.4 Sensor Array Management for Centralized Tracking 4	458
12.4.1 Problem Description 4	458
12.4.2 Problem Formulation 4	458
12.4.3 Solution Technique 4	465
12.4.4 Simulation 4	465
12.4.5 Simulation Results 4	467
12.5 Sensor Array Management for Distributed Tracking 4	473
12.5.1 Track Fusion 4	474
12.5.2 Performance of Distributed Tracking with Full Feedback at	
Every Measurement Step 4	475
12.5.3 PCRLB for Distributed Tracking 4	476
12.5.4 Problem Description 4	476
12.5.5 Problem Formulation 4	477
12.5.6 Solution Technique 4	479
12.5.7 Simulation Results 4	485
12.6 Sensor Array Management for Decentralized Tracking 4	489
12.6.1 PCRLB for Decentralized Tracking 4	490
12.6.2 Problem Description 4	490
12.6.3 Problem Formulation 4	491
12.6.4 Solution Technique 5	500
12.6.5 Simulation Results 5	501
12.7 Conclusions	507
Appendix 12A Local Search 5	510
	512
•••	514
	516

PART IV ESTIMATION AND CLASSIFICATION

13. Efficient Inference in General Hybrid Bayesian Networks for				
Classification	523			
Wei Sun and Kuo-Chu Chang				
13.1 Introduction	523			
13.2 Message Passing: Representation and Propagation	526			
13.2.1 Unscented Transformation	528			
13.2.2 Unscented Message Passing	530			
13.3 Network Partition and Message Integration for Hybrid Model	532			
13.3.1 Message Integration for Hybrid Model	533			
13.4 Hybrid Message Passing Algorithm for Classification	536			
13.5 Numerical Experiments	537			
13.5.1 Experiment Method	537			
13.5.2 Experiment Results	540			
13.5.3 Complexity of HMP-BN	542			

	13.6 Concluding Remarks	544
	References	544
14.	Evaluating Multisensor Classification Performance with	
	Bayesian Networks	547
	Eswar Sivaraman and Kuo-Chu Chang	
	14.1 Introduction	547
	14.2 Single-Sensor Model	548
	14.2.1 A New Approach for Quantifying Classification	
	Performance	548
	14.2.2 Efficient Estimation of the Global Classification Matrix	550
	14.2.3 The Global Classification Matrix: Some Experiments	554
	14.2.4 Sensor Design Quality Metrics	557
	14.3 Multisensor Fusion Systems—Design and Performance	
	Evaluation	560
	14.3.1 Performance Evaluation of Multisensor Models—Good	
	Sensors	560
	14.3.2 Performance Evaluation of Multisensor Fusion	
	Systems—Not-so-Good Sensors	563
	14.4 Summary and Continuing Questions	564
	Appendix 14A Developing a Sensor's Local Confusion Matrix	565
	Appendix 14B Solving for the Off-Diagonal Elements of the Global	
	Classification Matrix	567
	Appendix 14C A Graph-Theoretic Representation of the Recursive	
	Approach for Estimating the Diagonal Elements of the GCM	569
	Appendix 14C.1 The Binomial Case $(n = 2, m = 2)$	569
	Appendix 14C.2 The Multinomial Case $(n, m > 2)$	571
	Appendix 14D Designing Monte Carlo Simulations of the GCM	573
	Appendix 14D.1 Single-Sensor GCM	573
	Appendix 14D.2 Multisensor GCM	574
	Appendix 14E Proof of Approximation 1	574
	References	576
15	Detection and Estimation of Radiological Sources	579
15.	Mark Morelande and Branko Ristic	517
	15.1 Introduction	579
	15.2 Estimation of Point Sources	580
	15.2.1 Model	581
	15.2.2 Source Parameter Estimation	581
	15.2.3 Simulation Results	585
	15.2.4 Experimental Results	587
	15.3 Estimation of Distributed Sources	590
	15.3.1 Model	591
	15.3.2 Estimation	593

15.3.3 Simulation Results	595
15.3.4 Experimental Results	598
15.4 Searching for Point Sources	599
15.4.1 Model	600
15.4.2 Sequential Search Using a POMDP	601
15.4.3 Implementation of the POMDP	603
15.4.4 Simulation Results	608
15.4.5 Experimental Results	611
15.5 Conclusions	612
References	614

PART V DECISION FUSION AND DECISION SUPPORT

16.	Distributed Detection and Decision Fusion with Applications to Wireless Sensor Networks	619
		019
	Qi Cheng, Ruixin Niu, Ashok Sundaresan, and Pramod K. Varshney	(10
	16.1 Introduction	619
	16.2 Elements of Detection Theory	620
	16.3 Distributed Detection with Multiple Sensors	624
	16.3.1 Topology	624
	16.3.2 Conditional Independence Assumption	626
	16.3.3 Dependent Observations	632
	16.3.4 Discussion	634
	16.4 Distributed Detection in Wireless Sensor Networks	634
	16.4.1 Counting Rule in a Wireless Sensor Network with Signal	
	Decay	636
	16.4.2 Performance Analysis: Sensors with Identical Statistics	636
	16.4.3 Performance Analysis: Sensors with Nonidentical	
	Statistics	637
	16.5 Copula-Based Fusion of Correlated Decisions	645
	16.5.1 Copula Theory	645
	16.5.2 System Design Using Copulas	646
	16.5.3 Illustrative Example: Application to Radiation	
	Detection	648
	16.5.4 Remark	650
	16.6 Conclusion	652
	Appendix 16A Performance Analysis of a Network with Nonidentical	
	Sensors via Approximations	653
	Appendix 16A.1 Binomial I Approximation	653
	Appendix 16A.2 Binomial II Approximation	654
	Appendix 16A.3 DeMoivre–Laplace Approximation	654
	Appendix 16A.4 Total Variation Distance	655
	References	656

17. Evidential Networks for Decision Supp	ort in Surveillance	
Systems	6	61
Alessio Benavoli and Branko Ristic		
17.1 Introduction	6	61
17.2 Valuation Algebras	6	62
17.2.1 Mathematical Definitions ar	nd Results 6	64
17.2.2 Axioms	6	65
17.2.3 Probability Mass Functions	as a Valuation Algebra 6	667
17.3 Local Computation in a VA	6	668
17.3.1 Fusion Algorithm	6	668
17.3.2 Construction of a Binary Jo	in Tree 6	570
17.3.3 Inward Propagation	6	572
17.4 Theory of Evidence as a Valuation	Algebra 6	572
17.4.1 Combination	6	576
17.4.2 Marginalization	6	77
17.4.3 Inferring and Eliciting the E	Evidential Model 6	578
17.4.4 Decision Making	6	681
17.5 Examples of Decision Support Syst	tems 6	85
17.5.1 Target Identification	6	85
17.5.2 Threat Assessment	6	i90
Appendix 17A Construction of a BJT	6	599
Appendix 17B Inward Propagation	7	00
References	7	'02
r 1	-	~~~

Index

705

This book has been a long time in the making, starting with a series of conversations in 2007 during the Colloquium on Information Fusion in Xi'an China, followed by many discussions at various conferences as well as phone calls from half way around the globe. These conversations were centered on the ever-growing interest in tracking and sensor management in the wider community and the accessibility of the state-ofthe-art techniques to graduate students, researchers, and engineers.

The research on multitarget tracking and sensor management was driven by aerospace and space applications such as radar, sonar, guidance, navigation, air traffic control, and space exploration in the 1960s. Since then, these research areas have flourished into other diverse disciplines such as image processing, oceanography, autonomous vehicles and robotics, remote sensing, biomedical research, and space debris tracking. Recent efficient multitarget tracking techniques and advances in sensing and computing technology have opened up prospective applications in areas such as driving safety and traffic monitoring, homeland security, and surveillance of public facilities.

While interest in this discipline is rapidly growing with many exciting advances during the last decade, comprehensive and accessible account of significant developments in the field are few and far between. The focus of our book is on expository writing, clear description of theoretical developments, and real-world applications in these areas. The chapters of the book are divided into five groups under the headings: Filtering, Multitarget Multisensor Tracking, Sensor Management and Control, Estimation and Classification, and Decision Fusion and Decision Support. Each chapter is solicited from internationally renowned experts in their respective areas. By providing concise and detailed descriptions, such as pseudo codes for algorithms, we endeavor to facilitate the implementations of the state-of-the-art algorithms, thereby making a wealth of approaches and techniques accessible to a wider audience.

Chapter 1 develops three classes of filtering algorithms for the angle-only filtering problem in 3D using bearing and elevation measurements. The dynamic models used by these filtering algorithms are the nearly constant velocity model for the relative Cartesian state vector, exact discrete-time dynamic model for modified spherical coordinates (MSC), and exact continuous-time dynamic model for MSC. The extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle filter (PF) are developed for each class, of which the UKF and PF based on the exact continuoustime dynamic model for MSC represent new algorithms. Finally, a comparative evaluation of their accuracy and computational complexity is presented using Monte Carlo simulations. Chapter 2 presents a recently introduced approach called box particle filtering which emerged from the synergy between sequential Monte Carlo (SMC) methods and interval analysis. A theoretical derivation of the box particle filter is given based on mixtures of uniform probability density functions with box supports. Experiments with both simulated and real data show the advantages of the box particle filter over the conventional particle filter for certain classes of problems.

Chapter 3 presents an accessible account of developments in the random finite set approach to the multitarget tracking problem. This chapter is classified under the filtering part of the book because fundamentally, the random finite set approach poses the multitarget tracking problem as a Bayesian filtering problem (in the space of finite subsets or simple finite point patterns). In this chapter, we discuss the notion of a mathematically consistent error metric for multitarget tracking and present arguments for the finite set representation of the multitarget state. We also detail random finite set-based algorithms such as the probability hypothesis density (PHD), Cardinalized PHD (CPHD), and Multitarget Multi-Bernoulli filters.

The interacting multiple model (IMM) filter is a well-established and widely used algorithm at present for maneuvering target tracking. Currently, almost all IMM filtering algorithms used are discrete-time filtering algorithms. However, it is rather unknown that the original IMM filter was developed in a purely continuous-time setting, which subsequently led to the development of the discrete-time IMM filter. Chapter 4 presents in detail the mathematical development of exact continuous-time nonlinear filtering for jump Markov systems, including the continuous-time IMM filter as well as continuous-discrete-time IMM and particle filters.

The track-oriented multiple hypothesis tracking (MHT) for multisensor multitarget tracking is regarded as one of the most advanced tracking algorithms at present, relative to which other tracking algorithms are compared. Chapter 5 presents a hybridstate derivation of the track-oriented MHT equations that is closely related to the original treatment by Kurien [1] with some minor modifications. The target death problem inherent in PHD filtering is also addressed and it is shown that it does not arise in the track-oriented MHT. A number of illustrative examples are considered to demonstrate the merits of MHT. In order to make the chapter self-contained, a comprehensive review of the state-of-the-art filtering and tracking algorithms are summarized in the beginning of the chapter, with extensive references.

Chapter 6 describes several strategies to improve airborne ground surveillance by enhanced tracking performance. The following topics are considered: specific sensor modeling, improved data association using signal strength measurements, exploitation of digital road maps, and detection and tracking of target groups. The proposed algorithms are shown to enhance track precision and track continuity over conventional techniques.

Chapter 7 presents a review of recent developments in the calculation of mean square error tracker performance bounds, together with examples that demonstrate how such bounds can be used as a basis for performing online sensor management. The review concentrates on the posterior Cramér–Rao lower bound (PCRLB), and describes computationally efficient formulations of the PCRLB that take account of real-world complexity. Two applications, concerned with the deployment of passive

sonobuoys, and UAV trajectory planning, demonstrate that the PCRLB provides an efficient mechanism for performing sensor management in order to accurately track an evasive target.

Chapter 8 presents a review of the track-before-detect (TBD) problem, namely tracking when the measurement is an intensity map. It describes the different methods that have been applied to this problem and compares their performance on a simple scenario. A case study fusing data from an infra-red camera and microwave radar illustrate the advantages that can be gained through the improved sensitivity offered by the track-before-detect algorithm.

While centralized detection and estimation are known to outperform distributed approaches, the same is not always true when one is confronted with measurement origin uncertainty. Indeed, all known approaches to multitarget tracking are suboptimal. Thus, judicious multistage processing may outperform single-stage processing. In a sense, we are choosing between (suboptimal) distributed and (suboptimal) centralized processing. Chapter 9 identifies a number of scenarios where multistage fusion architectures lead to promising results.

Chapter 10 presents an overview of meta-level tracking algorithms for inferring target intent. Such meta-level trackers are fully compatible with existing target tracking algorithms and form the sensor-human interface. To capture the complex spatial trajectories of targets, stochastic context free grammars are used. Then Bayesian signal processing algorithms are used to estimate the target trajectory.

Chapter 11 presents an overview of stochastic control methods for radar resource management. Radar resource management is intrinsically a partially observed stochastic control problem since decisions need to be made based on the estimates provided by a tracker. Such problems are typically intractable unless the underlying structure is exploited. The chapter shows how supermodularity and lattice programming methods can be used to characterize the structure of the optimal radar scheduling policy.

Chapter 12 addresses the problem of multisensor resource management with application to multitarget tracking. Specifically, sensor selection, sensor placement, and performance evaluation are considered in detail. A particular contribution of this chapter is the derivation of the Posterior Cramér–Rao Lower Bound (PCRLB) to quantify the achievable estimation accuracy in multitarget tracking problem, which is used as the key metric for sensor management.

Chapter 13 on efficient inference in general hybrid Bayesian networks for classification introduces a probabilistic inference framework for hybrid Bayesian networks, in which both discrete and continuous variables are present and their functional relationship can be nonlinear. This type of model is very common in classification applications where discrete random variables representing entity types or situational hypotheses are to be assessed given noisy observations represented by mixed discrete and continuous variables.

Chapter 14 presents a new analytical approach for quantifying the long-run performance of a multisensor classification system modeled by a Bayesian network. The methodology has been applied to fusion performance evaluation of practical tracking and classification systems involving multiple sensor types. It illustrates the use of

XX PREFACE

off-line evaluation to estimate marginal performance gains and sensor mode selection using measures and metrics derived herein.

Chapter 15 considers the problem of detecting, estimating, and searching for point and distributed sources of radiation. A Bayesian approach is adopted with the posterior density approximated using the notion of progressive correction combined with either Monte Carlo approximation or linearization.

In Chapter 16, important problems of distributed detection and decision fusion for a multisensor system are discussed. With known local sensors' performance indices, the design for optimal decision fusion rule at the fusion center and the optimal local decision rules at sensors are presented in both parallel and serial networks under either the Bayesian or Neyman–Pearson criterion. When local sensors are nonidentical and their performance indices are unknown, the counting rule is proposed and its exact as well as approximated performance are analyzed. For the challenging problem of distributed detection with correlated observations, a decision fusion framework using copula theory is described, which is shown particularly useful for non-Gaussian distributed and nonlinearly dependent sensor observations.

Chapter 17 presents the development of an automatic knowledge-based information fusion system to support the decision making process in a reliable, timely, and consistent manner even in conditions of uncertainty. This is obtained by using the framework of valuation algebra for knowledge representation and reasoning under uncertainty together with the algorithms for performing local computations in valuation algebra. These algorithms are then specialized to the theory of belief functions. Two practical examples are discussed: decision support systems for target identification and threat assessment.

ACKNOWLEDGMENTS

We are indebted to Dr. Sankar Basu of National Science Foundation who first suggested the idea of writing a book for Wiley/IEEE to Mahendra Mallick. Dr. Basu emphasized that the book should pay special attention to solving practical problems of interest with sound algorithms and examples.

The editors would like to thank their respective universities for the provision of the facilities for completing this book, namely the University of British Columbia and Curtin University. In the preparation of this book, the third editor, Professor Vo is supported in part by the Australian Research Council under the discovery grant DP0878158.

The contents of the book have greatly benefitted from interactions with numerous researchers from diverse fields. We express our sincere thanks to the late Jean-Pierre Le Cadre (IRISA/CNRS, France), Samuel S. Blackman (Raytheon Systems Company, USA), Barbara La Scala (National Australia Bank, Australia), Yvo Boers (THALES Nederland), and David Salmond (QinetiQ, UK).

Finally, we would like to acknowledge our families for their support and patience during the writing, correcting, and editing of this book.

REFERENCE

1. T. Kurien, Issues in the design of practical multitarget tracking algorithms, in: Y. Bar-Shalom (Ed.), *Multitarget-Multisensor Tracking: Advanced Applications*, Artech House, Norwood, MA, USA, 1990, Chapter 3.

- Fahed Abdallah, HEUDIASYC, UMR CNRS 6599, Université de Technologie de Compi'egne, France
- Sanjeev Arulampalam, Submarine Combat Systems, Maritime Operations Division, Defence Science & Technology Organisation, Edinburgh, South Australia, Australia
- Alessio Benavoli, Istituto "Dalle Molle" di Studi sull'Intelligenza Artificiale (IDSIA), Manno (Lugano), Switzerland
- Henk Blom, National Aerospace Laboratory NLR, Amsterdam, The Netherlands
- Craig Carthel, Compunetix, Inc., Monroeville, PA, USA
- **Kuo-Chu Chang**, Systems Engineering and Operations Research, Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
- **Qi Cheng,** School of Electrical & Computer Engineering, Oklahoma State University, Stillwater, OK, USA
- **Daniel Clark,** Department of Electrical, Electronic and Computing Engineering, Heriot-Watt University, Riccarton, Edinburgh, UK
- Stefano Coraluppi, Compunetix, Inc., Monroeville, PA, USA
- Samuel Davey, Intelligence Surveillance & Reconnaissance Division, Defence Science & Technology Organization, Edinburgh, South Australia, Australia
- Michael Feldmann, Department Sensor Data and Information Fusion, Fraunhofer FKIE Wachtberg, Germany
- Amadou Gning, Department of Computer Science, University College London, London, UK
- **Neil Gordon,** Intelligence Surveillance & Reconnaissance Division, Defence Science & Technology Organisation, Edinburgh, South Australia, Australia
- Marcel Hernandez, Hernandez Technical Solutions Ltd., Malvern, UK
- Thia Kirubarajan, Electrical and Computer Engineering Department, Communications Research Laboratory, McMaster University, Hamilton, Ontario, Canada

- **Wolfgang Koch**, Department Sensor Data and Information Fusion, Fraunhofer FKIE, Wachtberg, Germany
- Vikram Krishnamurthy, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
- Mahendra Mallick, Propagation Research Associates, Inc., Marietta, GA, USA
- Michael Mertens, Department Sensor Data and Information Fusion, Fraunhofer FKIE Wachtberg, Germany
- Lyudmila Mihaylova, School of Computing and Communications, InfoLab21, Lancaster University, Lancaster, UK
- Mark Morelande, Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
- **Ruixin Niu,** Department of Electrical & Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA
- **Branko Ristic,** Intelligence Surveillance & Reconnaissance Division, Defence Science & Technology Organization, Fishermans Bend, Victoria, Australia
- Mark Rutten, Intelligence Surveillance & Reconnaissance Division, Defence Science & Technology Organization, Edinburgh, South Australia, Australia
- Eswar Sivaraman, United Airlines, Enterprise Optimization, Chicago, IL, USA
- Wei Sun, SEOR and C4I Center, George Mason University, Fairfax, VA, USA
- Ashok Sundaresan, GE Global Research, Niskayuna, NY, USA
- **Ratnasingham Tharmarasa**, Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
- Martin Ulmke, Department Sensor Data and Information Fusion, Fraunhofer FKIE, Wachtberg, Germany
- **Pramod Varshney**, Department of Electrical Engineering & Computer Science, Syracuse University, Syracuse, NY, USA
- **Ba-Ngu Vo,** Department of Electrical and Computer Engineering, Curtin University, WA, Australia
- **Ba-Tuong Vo,** Department of Electrical and Computer Engineering, Curtin University, WA, Australia
- Yanjun Yan, ARCON Corporation, Waltham, MA, USA

FILTERING

Angle-Only Filtering in Three Dimensions

MAHENDRA MALLICK, MARK MORELANDE, LYUDMILA MIHAYLOVA, SANJEEV ARULAMPALAM, AND YANJUN YAN

1.1 INTRODUCTION

The angle-only filtering problem in 3D using bearing and elevation measurements is an important problem in many passive tracking applications. For example, it arises in passive ranging using an infrared search and track (IRST) sensor [1, 2], passive sonar, passive radar in the presence of jamming, and satellite to satellite passive tracking [3, 4]. It is the counterpart of the bearings-only filtering problem in 2D. For the 3D case, the objective is to estimate the three-dimensional state of a target, such as position and velocity, using noisy measurements of bearing and elevation from a single maneuvering platform. A great deal of research has been carried out for the bearings-only filtering problem in 2D—see for example, [5–9] and the references therein. However, the number of publications for the angle-only filtering problem in 3D is relatively small [3, 4, 10–18].

Research in angle-only filtering in 3D began by extending the methods developed for the counterpart problem in 2D. For the 2D bearings-only filtering problem, it is well known that, for a target moving with uniform motion, target range cannot be observed without an ownship (sensor) maneuver [19]. Though the prior distribution of the initial state aids in improving observability, its contribution degrades with time. In addition, the accuracy of the state estimate is highly dependent on the nature of the maneuver and the particular target–observer geometry. Early recursive algorithms for this problem were based on the extended Kalman filter (EKF) [20–22] using Cartesian coordinates [23]. Researchers noted that the performance of these algorithms was poor due to premature collapse of the covariance matrix. This led to the formulation of the modified polar coordinates (MPC) [5, 24, 25], in which improved performance was demonstrated.

Integrated Tracking, Classification, and Sensor Management: Theory and Applications, Edited by Mahendra Mallick, Vikram Krishnamurthy, and Ba-Ngu Vo.

^{© 2013} by The Institute of Electrical and Electronics Engineers. Published 2013 by John Wiley & Sons, Inc.

4 ANGLE-ONLY FILTERING IN THREE DIMENSIONS

The state vector in MPC consists of bearing, bearing-rate, range-rate divided by range, and the inverse of range [5, 9, 24]. The important difference between the MPC and the Cartesian coordinates is that in MPC, the first three elements of the state are observable even before an ownship maneuver. By decoupling the observable and unobservable components of the state vector, this approach was demonstrated to prevent ill-conditioning of the covariance matrix which led to better filter performance [5, 24, 25]. The continuous-time dynamic model for the MPC is nonlinear and is represented by four continuous-time stochastic differential equations (SDEs). The key difficulty of using MPC is that the commonly applied nearly constant velocity model (NCVM) for nonmaneuvering targets is highly nonlinear in MPC. In fact, there has been some confusion in the literature as to how to convert the widely used NCVM from Cartesian coordinates to MPC. In the original work on bearings-only filtering in MPC [24, 25], these equations are numerically integrated to obtain the predicted state and covariance at the discrete measurement times. Subsequently, Aidala and Hammel [5] noted that exact, closed-form discrete-time stochastic difference equations in MPC can be obtained by using the nonlinear transformations between MPC and Cartesian coordinates. They proposed an EKF in these coordinates and claimed superior performance relative to its Cartesian counterpart.

Angle-only filtering in 3D is beset by the same observability issues that arise in the 2D case [19, 26]. As such, most of the research in the 3D angle-only filtering problem has focused on developing algorithms in the modified spherical coordinates (MSC) [17]—the 3D equivalent of MPC. The components of MSC are elevation, elevation-rate, bearing, bearing-rate times cosine of elevation, the inverse of range, and range-rate divided by range. As with MPC in 2D filtering, the main problem when using MSC in 3D filtering is the nonlinear dynamic model which arises when a target moves with the NCVM in Cartesian coordinates. Again, a number of ways of transforming the NCVM in Cartesian coordinates to MSC have been proposed.

As with MPC, the derivation of a dynamic model for MSC begins with a given motion model in Cartesian coordinates. The MSC dynamic model can then be obtained by transformation from MSC to relative Cartesian coordinates at time t_{k-1} , prediction using the NCVM for relative Cartesian coordinates during the time interval $[t_{k-1}, t_k]$, and then transformation from relative Cartesian coordinates to MSC at time t_k . In [17], this approach is used only to compute the predicted state estimate. The predicted covariance matrix is found by a linear, discretized approximation of the continuoustime dynamic model. The underlying Cartesian dynamic model is the Singer model [27]. A similar method is adopted in [4, 10, 11]. Li et al. [4] derived closed form analytic expressions for the discrete-time nonlinear dynamic model in MSC using an approach similar to that used by Aidala and Hammel [5] for MPC, but they do not describe calculation of the predicted covariance. In [13], the EKF is implemented using a discretized linear approximation for both the predicted state estimate and covariance matrix. A particle filter (PF) [9, 28, 29] was implemented using a multistep Euler approximation. In [14], first exact SDEs for MSC and log spherical coordinates (LSC) were derived from the NCVM in 3D for the relative Cartesian state vector. Then EKFs were implemented for MSC and LSC by numerically integrating nonlinear differential equations for the predicted state estimate and covariance matrix.