Biological pigmentation is a vast topic, and the enormous diversity that has emerged through the process of evolution is astounding. Even if the scope of enquiry is limited to vertebrate melanin pigmentation, there is still a profusion of complex interactions that have hitherto hampered the attainment of a ‘Standard Model’ of melanogenesis.

Melanins and Melanosomes is a compendium of thirteen chapters by experts in the relevant fields, encompassing vertebrate melanin pigmentation from the biology of melanocytes, the biogenesis of melanosomes, and their regulation, distribution, and transfer, the process of melanogenesis, the nature and properties of melamins, and their biological and clinical significance.

Edited by Jan Borovanský and Patrick Riley, this book is intended as an encyclopaedia of current knowledge of vertebrate melanin and its formation. With its discussion of the latest ideas and advances it is essential reading for students, academics, researchers, and clinicians, as well as being a valuable reference volume for professional pigmentologists.

Jan Borovanský (left) was born in Prague in 1943. He graduated from the Faculty of General Medicine at Charles University in 1966, gained his PhD under Prof. J. Duchon in 1976 and was appointed Full Professor of Biochemistry in 2004. He received the Annual Award of the Czechoslovak Oncological Society in 1975 and was Honorary Research Fellow at University College London in 1980 and again in 1984. In 1981 he was General Secretary of the 3rd European Workshop on Melanin Pigmentation and in 1998 President of the 8th Meeting of the ESPCR. Jan Borovanský was a member of the ESPCR Council from 1990 until 1998 and was elected an honorary member in 2010. As a member of the organizing committee of the 14th FERS Meeting in 2009 he was responsible for arranging the symposium on ‘Melanins and Melanogenesis’ from which this book stems. His research has focused on biochemical studies of melanosomes, metal binding by melamins and the cytotoxicity of zinc.

Born in Paris in 1935, Patrick Riley (right) graduated in medicine from University College Hospital Medical School in 1960. He joined Claude Rimington’s department and began a series of cellular studies culminating in his appointment to a chair of cell pathology at UCL in 1984. He was the recipient of the Myron Gordon Award in 1993 and the Centenary Medal of Charles University. Patrick Riley was a founding member of the European Society for Pigment Cell Research and the International Federation of Pigment Cell Societies, as well as organizer and chairman of the XVth International Pigment Cell Conference. He was a founding editor of Melanoma Research, is on the editorial boards of several journals and has published extensively on melanocytes, melanogenesis and melanoma. His work has covered many fundamental aspects of cell pathology, including free radical pathology, cell size control, regulation of cell proliferation, and cancer.
Edited by
Jan Borovanský and Patrick A. Riley

Melanins and Melanosomes
Related Titles

Sobin, L. H., Gospodarowicz, M. K., Wittekind, C. (eds.)

TNM Classification of Malignant Tumours
2009
ISBN: 978-1-4443-3241-4

Rajpar, S., Marsden, J.

ABC of Skin Cancer
2008
ISBN: 978-1-4051-6219-7

Schwartz, R. A.

Skin Cancer
2008
ISBN: 978-1-4051-5961-6

The Pigmentary System
Physiology and Pathophysiology
2006
ISBN: 978-1-4051-2034-0
Melanins and Melanosomes

Biosynthesis, Biogenesis, Physiological, and Pathological Functions
Dedication

“All nature is but art, unknown to thee;
All chance, direction which thou canst not see”

Alexander Pope: An Essay on Man

Were we to ascribe to chance the existence of this volume we should have to begin with the moment in July 1952 when Professor A.F. Richter, Head of the Second Institute of Medical Chemistry at Charles University in Prague, opened a dust-covered cabinet from which he took, apparently at random, a bottle containing a dark powder and handed it to a young assistant with the words: “Young man, study the contents of this flask.” The assistant was Jiri Duchon and the label on the flask read: “Human melanosarcoma, prepared by H. Waelsch.”

Jiri Duchon was born on 27 July 1927, the only son of an eminent scientist. On graduating in medicine in 1952 he joined Richter’s laboratory and his careful analysis of the sample given to him set him upon the course of studies that were to occupy him for the rest of his life. He defended his PhD thesis in 1962 on the topic of “Urinary melanogens in melanoma” and he subsequently made many important contributions to quantitative analysis of the products of melanogenesis. In recognition of his early work, Jiri Duchon was awarded a Roosevelt Fellowship that enabled him to spend 15 months at Harvard in the laboratory of T.B. Fitzpatrick. This was in 1967–1968 when he met and established a friendship with Makoto Seiji who had just developed the methods for melanosome isolation. On his return to Prague, Jiri Duchon set about improving the isolation technique and analyzing these newly discovered organelles. Under his direction and inspiration the Prague laboratory became the leading European center for the detailed biochemical investigation of melanosomes. Jiri Duchon was Head of the Institute for 26 years and many of his collaborators have continued to contribute significantly to the field of study that he promoted.

Professor Duchon was an internationally recognized and highly respected member of the pigment cell fraternity, and was elected an Honorary Member of the European Society for Pigment Cell Research in 1998. It was partly in his honor that the scientific session on “Melanin and Melanosomes” was arranged at the Federation of European Biochemical Societies (FEBS) Congress in 2009, but
tragically he was taken ill on the very day of the Symposium. He was full of encouragement for the project that grew out of the meeting, namely that of publishing a definitive volume devoted to the subject of his academic endeavors, but died on 2 November 2009, long before it was completed.

In recognition of his seminal role in the events that led to the production of this book we dedicate this volume to Jiri Duchon with affectionate remembrance of a fine scientist, an inspirational teacher, a kindly and cultivated companion, and a true friend.

Professor Jiri Duchon MD, PhD, DrSc (1927–2009)
(Photograph by K. Meister)
Contents

Dedication V
Preface XV
List of Contributors XIX

1 History of Melanosome Research 1
Jan Borovanský
1.1 Introduction 1
1.2 Melanosome Research in the Pre-Seiji Era 1
1.3 Melanosome Research in the Seiji Era 5
1.3.1 Terminology of Melanosomes 5
1.3.2 Ultrastructural and Histochemical Studies 6
1.3.3 Biochemical Studies 7
1.4 Melanosome Research in the Post-Seiji Era 9
1.5 Other Historical Aspects 11
Acknowledgments 12
References 13

2 Classical and Nonclassical Melanocytes in Vertebrates 21
Sophie Colombo, Irina Berlin, Véronique Delmas, and Lionel Larue
2.1 Definition of Melanogenic Cells 21
2.2 Distribution and Function of Melanogenic Cells 24
2.2.1 Classical Melanocytes 25
2.2.1.1 Melanocytes in the Epidermis 25
2.2.1.2 Melanocytes in the Dermis 27
2.2.1.3 Melanophores in Lower Vertebrates 28
2.2.2 Nonclassical Melanocytes 28
2.2.2.1 Melanocytes of the Eye 28
2.2.2.2 Melanocytes of the Inner Ear 31
2.2.2.3 Melanocytes of the Heart 33
2.2.2.4 Melanocytes of the Brain and Neuromelanins 36
2.2.2.5 Melanin in Adipose Tissue 37
2.3 Embryonic Development of Melanogenic Cells 37
2.3.1 Classical Melanocytes 38
2.3.1.1 Early Determined Melanoblasts: The Dorsolateral Pathway 38
2.3.1.2 Late Determined Melanoblasts: A Common Origin with SCPs and the Dorsoventral Migratory Pathway 40
2.3.2 Nonclassical Melanocytes 41
2.3.2.1 Melanocytes of the Murine Eye 42
2.3.2.2 Melanocytes of the Murine Heart 44
2.3.2.3 Other Nonclassical Murine Melanocytes 45
2.3.2.4 Other Organisms 45
2.4 Transfer of Melanin from Classical and Nonclassical Melanocytes 45
2.4.1 Melanosome Transport 46
2.4.2 Melanosome Transfer 46
2.4.2.1 Melanosome Transfer from Classical Melanocytes 47
2.4.2.2 Transfer of Melanin from Nonclassical Melanocytes 51

References 52

3 Biological Chemistry of o-Quinones 63
Patrick A. Riley, Christopher A. Ramsden, and Edward J. Land
3.1 General Biological Significance of o-Quinones 63
3.1.1 Antibiosis 63
3.1.2 Defensive Secretions 64
3.1.3 Balanid Adhesion 64
3.1.4 Cuticular Hardening in Insects 65
3.1.5 Pigmentation 65
3.2 o-Quinone Reactivity 66
3.2.1 Structure and Reactivity 66
3.2.2 Reduction 68
3.2.3 Addition Reactions: Intermolecular addition 71
3.2.4 Polymerization 71
3.2.5 Intramolecular Addition (Cyclization) 72
3.2.6 Addition–Elimination (Substitution) Reactions 73
3.3 Role of o-Quinones in Melanogenesis 74
3.3.1 Nonenzymatic Formation of Melanogenic Intermediates 74
3.3.1.1 Contributions from Pulse Radiolysis to the Chemistry of Eumelanogenesis and Pheomelanogenesis 74
3.3.2 Balance between Eumelanogenesis and Pheomelanogenesis 78
3.3.3 Control of Melanogenesis: Phase I Melanogenesis 78
3.3.4 Tyrosinase Activation 78
3.3.5 Tyrosinase Inactivation 79
References 83

4 Biosynthesis of Melanins 87
José Carlos García-Borrón and M. Concepción Olivares Sánchez
4.1 Introduction 87
4.2 Raper–Mason Pathway 88
Contents

4.2.1 Phase I Melanogenesis: The Proximal Raper–Mason Pathway—From L-tyrosine to L-dopachrome 88
4.2.2 Distal Melanogenic Steps: From L-Dopachrome to Eumelanins 90
4.2.3 Biosynthesis of Pheomelanins 91
4.3 Structural and Functional Properties of the Melanogenic Enzymes 92
4.3.1 Structure of Tyrosinase and Related Proteins 92
4.3.2 Catalytic Cycle of Tyrosinase 95
4.3.2.1 Cresolase (Tyrosine Hydroxylase) Reaction Cycle 96
4.3.2.2 Catecholase (Dopa Oxidase) Reaction Cycle 98
4.3.3 Dct/Tyrp2 98
4.3.4 Tyrp1 100
4.3.5 Other Melanosomal Proteins 101
4.4 Regulation of the Melanogenic Pathway 102
4.4.1 Eumelanogenesis versus Pheomelanogenesis: Regulation of the Type of Melanin Pigments 102
4.4.2 Regulation of the Amount of Pigment 104
4.4.2.1 Regulation of Tyrosinase Levels 104
4.4.2.2 Control of Tyrosinase-Specific Activity 106
4.5 Conclusions and Perspectives 107
Acknowledgments 109
References 109

5 Inhibitors and Enhancers of Melanogenesis 117
Alain Taïeb, Muriel Cario-André, Stefania Briganti, and Mauro Picardo
5.1 Introduction 117
5.1.1 Melanin Biochemistry 118
5.1.1.1 Melanin Biosynthesis 118
5.1.1.2 Tyrosinase Maturation and Degradation 118
5.1.1.3 Catalytic Site 119
5.1.2 Paracrine Signaling and Regulation of Epidermal Melanogenesis 119
5.1.3 Methods of Study 120
5.2 Depigmenting Agents 121
5.2.1 Agents Acting Prior to Melanin Synthesis 121
5.2.1.1 Transcriptional Inhibition of Melanogenic Enzymes 121
5.2.1.2 Post-Translational Modification of Melanogenic Enzymes 128
5.2.1.3 Increased Tyrosinase Ubiquination 129
5.2.2 Agents Acting During Melanin Synthesis 129
5.2.2.1 Interference with Tyrosinase 129
5.2.2.2 TRP-2 Modulation 136
5.2.2.3 Interference with Byproduct Production (Antioxidant and Reducing Agents) 136
5.2.2.4 Interference with the Melanogenic Pathway 138
5.2.2.5 Peroxidase Inhibitors 139
5.2.3 Agents Acting After Melanin Synthesis 139
5.2.3.1 Inhibitors of Melanosome Transfer 139
5.2.3.2 Acceleration of Epidermal Turnover 141
5.3 Enhancers of Melanogenesis 143
5.3.1 Activation Through Receptor Mechanisms 144
5.3.1.1 Melanotropic Peptides 144
5.3.1.2 Cytokines and Growth Factors 145
5.3.2 Non-Receptor-Mediated Activation 147
5.3.2.1 Forskolin and cAMP 147
5.3.2.2 Oligonucleotides and p53 Activation 147
5.3.2.3 Piperin 147
5.3.2.4 Lipids (Sphingolipids and Prostaglandins) 147
5.3.2.5 Phospholipase A2 148
5.3.2.6 PPAR Activators 148
5.3.2.7 Psoralens and Photosensitizing Agents 148
References 149

6 Structure of Melanins 167
Shosuke Ito, Kazumasa Wakamatsu, Marco d’Ischia, Alessandra Napolitano, and Alessandro Pezzella
6.1 Introduction 167
6.2 Classification and General Properties of Melanins 168
6.3 Biosynthetic Studies 169
6.3.1 Early Stages of Melanogenesis 169
6.3.2 Late Stages of Eumelanogenesis 171
6.3.3 Late Stages of Pheomelanogenesis 174
6.3.4 Concept of Mixed Melanogenesis 175
6.4 Degradative Studies 176
6.4.1 Eumelanins 176
6.4.2 Pheomelanins 178
6.5 Analysis of Eumelanins and Pheomelanins 180
6.6 Conclusions 180
References 181

7 Properties and Functions of Ocular Melanins and Melanosomes 187
Małgorzata Różanowska
7.1 Introduction 187
7.2 Biogenesis of Ocular Melanosomes and Melanogenesis 187
7.3 Melanin Content in Pigmented Structures of the Eye 190
7.3.1 Melanin Content in the RPE 190
7.3.2 Melanin Content in the Choroid 193
7.3.3 Melanin Content in the Iris 193
7.4 Structure of Ocular Melanosomes 194
7.4.1 Morphology of Ocular Melanosomes 195
7.4.2 Molecular Composition of Ocular Melanosomes 196
7.4.2.1 Melanosomal Proteins 196
9.2.1 Melanosomes Are Unique Organelles That Develop through Different Stages 249
9.2.2 Melanosomal Components 251
9.3 Endocytic System and Formation of Melanosomes 254
9.3.1 Organelles of the Endocytic Pathway 254
9.3.2 Melanosomes Are LROs but Are Distinct from Lysosomes 256
9.3.3 Pmel17 and Generation of Early-Stage Melanosomes 259
9.3.3.1 Pmel17 Structure 259
9.3.3.2 Pmel17 Forms the Fibrillar Matrix upon Which Melanins Deposit 259
9.3.3.3 Pmel17 Biosynthesis and Amyloid Formation 260
9.3.3.4 Functional Importance of Fibrillar Melanosomes 262
9.3.4 OA Type 1 and Melanosome Biogenesis 263
9.3.5 Origin of the Melanosome 263
9.3.5.1 Early-Stage Melanosomes Originate within the Endocytic Pathway 263
9.3.5.2 Melanosomes Do Not Originate from the ER 265
9.3.5.3 Melanosomes Segregate from the Endocytic Pathway beyond Stage I Melanosomes 266
9.3.5.4 Components of Mature Melanosomes Are Sorted from Distinct Endosomal Intermediates 267
9.4 Melanosome Maturation: Cargo Sorting to Mature Melanosomes 269
9.4.1 Griscelli Syndrome and CHS 269
9.4.2 HPS 271
9.4.2.1 Adaptor Protein (AP) Complexes 271
9.4.2.2 BLOC Complexes 273
9.4.3 Molecular Motors and the Cytoskeleton 276
9.4.4 SNAREs, Rabs, and Other Regulators 277
9.4.5 Lipids 279
9.5 Conclusions 279
Acknowledgments 280
References 281

10 Transport and Distribution of Melanosomes 295
Mireille Van Gele and Jo Lambert
10.1 Introduction 295
10.2 Model Systems to Study Pigment Transport 296
10.2.1 Melanophores from Fish and Amphibians 296
10.2.2 Mammalian Melanocytes 298
10.2.3 RPE Cells 299
10.3 Intracellular Melanosome Transport 299
10.3.1 Microtubule-Based transport 300
10.3.1.1 Kinesin and Dynein 300
10.3.2 Actin-Based Transport 301
10.3.2.1 MYO5A 301
10.3.2.2 RAB27A 302
10.3.2.3 MLPH 303
10.3.2.4 RAB27A–MLPH–MYO5A Tripartite Protein Complex 304
10.3.2.5 RAB27A as a New MITF Target Gene 306
10.4 Melanosome Motility in RPE: The Rab27a–Myrip–Myo7a Tripartite Complex 307
10.5 Melanosome Transfer 309
10.5.1 Modes of Transfer 309
10.5.1.1 Cytophagocytosis 309
10.5.1.2 Exocytosis 310
10.5.1.3 Filopodial-Phagocytosis Model 311
10.5.2 Molecular Players 312
10.5.2.1 PAR-2 and KGF 312
10.5.2.2 Adhesion Molecules: Cadherins and Lectins 313
10.6 Fate of Melanin in the Keratinocyte 313
10.7 Conclusions 315
Acknowledgments 316
References 316

11 Genetics of Melanosome Structure and Function 323
Vincent J. Hearing
11.1 Introduction 323
11.2 Genes Involved in Melanoblast Development, Migration, and Specification 324
11.3 Genes Involved in Melanocyte Differentiation, Survival, and Proliferation 325
11.4 Genes Involved in Regulating Melanocyte Function 327
11.4.1 Regulation of Constitutive Skin, Hair, and Eye Color 330
11.4.2 Hypopigmentation 332
11.4.3 Hyperpigmentation 332
11.5 Genes Involved in the Biogenesis of Melanosomes and Other Lysosome-Related Organelles 333
11.6 Genes Involved in Melanin Production 334
11.7 Genes Involved in Melanosome Movement, Transfer, and Distribution 336
11.7.1 Movement 336
11.7.2 Transfer 337
11.7.3 Distribution 337
11.8 Conclusions 338
References 338

12 Physiological and Pathological Functions of Melanosomes 343
Jan Borovanský and Patrick A. Riley
12.1 Tissue Concentration of Melanosomes 343
12.2 Melanosome Properties and Functions Are Determined by Their Chemical Composition 344
12.3 Functional Microanatomy of the Melanosome 346
12.4 Melanosomes as Centers of Free Radical Activity 350
 12.4.1 Free Radical Nature of Melanins 350
 12.4.2 Radicals and Reactive Species Associated with Melanogenesis 352
 12.4.3 Possible Role of Protein-Bound Dopa 355
 12.4.4 Melanosomes as a Therapeutic Target 356
12.5 Melanosomes as Energy Transducers 358
 12.5.1 Photon/Phonon Conversion 359
 12.5.2 Photochemical Reactions 360
 12.5.3 Sound/Heat Conversion 360
12.6 Melanosomes and Metal Ions 360
12.7 Affinity of Melanosomes for Polycyclic and Other Compounds 364
 12.7.1 Melanoma Detection and Treatment 365
 12.7.2 Participation of Melanosomes in Chemoresistance 366
 12.7.3 Long-Term Deposition of Compounds in Melanosomes 367
12.8 Exploitation of Melanosomal Proteins and Melanin as Specific Targets in Melanoma Therapy 368
12.9 Conclusions 370
 Acknowledgments 370
 References 371

13 Dysplastic Nevi as Precursor Melanoma Lesions 383
 Stanislav Pavel, Nico P.M. Smit, and Karel Pizinger
 13.1 Nevi as Risk Factors for Melanoma 383
 13.1.1 Development of Melanocytic Nevi 383
 13.1.2 Description of Dysplastic Nevi 384
 13.2 Dysplastic Nevi as Precursor Lesions of Melanoma 384
 13.3 Cytological Differences between Normal Skin Melanocytes and Dysplastic Nevus Cells: Melanosomal and Mitochondrial Aberrations 386
 13.4 Metabolic Differences between Normal Skin Melanocytes and Dysplastic Nevus Cells: Preference for Pheomelanogenesis in Dysplastic Nevus Cells 387
 13.5 Pheomelanogenesis as a Possible Cause of Intracellular Oxidative Imbalance 388
 13.6 Dysplastic Nevus Cells as Senescent Cells 389
 13.7 Are Dysplastic Nevus Cells a Class of Cells Exhibiting a Mutator Phenotype? 389
 References 391

Index 395
Preface

“To that small part of ignorance that we arrange and classify we give the name knowledge”

Ambrose Bierce

This book is entitled *Melanin and Melanosomes*, and is about pigment and pigmentation. It is important, however, that we bear in mind that, while the primary function of melanocytes is the production of pigment in melanosomes, these cells have other attributes and perform other significant functions. Some of these are well recognized, such as the involvement of the retinal pigment epithelium in photoreceptor physiology (detailed in Chapter 7). Another interesting possibility is that melanogenesis may be the source of some of the substrate for dopamine synthesis [1], and melanocytes may have other important neuroendocrine functions as pro-propriomelanocortin processing cells and a source of prostaglandin D synthase (reviewed by Takeda et al. [2]). Some of these actions may go some way to explaining the remarkable anatomical distribution of melanocytes, often in locations that are not illuminated, such as the leptomeninges.

However, this volume is devoted to melanin and melanosomes, and is primarily concerned with vertebrate, especially human, pigmentation. We include melanin that is formed by oxidative processes that are enzymatically catalyzed in specialized cells, both the neural crest-derived dendritic melanocytes (named “classical” melanocytes in Chapter 2) and optic cup-derived retinal pigment epithelial cells (“nonclassical” melanocytes), as well as melanin generated by other oxidative pathways, such as the neuromelanin of the midbrain. The importance of this latter pigment, particularly in relation to Parkinson’s disease, is set out in Chapter 8.

The enzymatically generated melanin in vertebrates is synthesized and deposited in specialized intracellular organelles, the melanosomes, and this book concentrates on the many aspects of the formation and functions of these organelles.

The melanosome is a highly specialized organelle, the history of which owes much to the early work at Charles University under the aegis of Jiri Duchon (1927–2009), to whom this book is dedicated.

Many of the important properties of melanosomes were established in Prague in the early 1970s by a series of investigations on isolated and purified preparations of this organelle, and investigators at Charles University have continued to
contribute significantly to the advancement of this field, and to follow the developments that have taken place in elucidating the structure of melanosomes and the complex biological roles in which they are implicated.

This volume grew from a combination of auspicious factors. In 2009, the 34th Congress of the Federation of European Biochemical Societies (FEBS) was organized in Prague. Naturally, with one of us (J.B.) on the Organizing Committee, one of the scientific sessions was devoted to melanosomes and, in the wake of the discussions at this meeting, it was felt that there was a significant body of new data relating to melanosomes that could usefully be assembled in a volume devoted exclusively to this organelle.

It was hoped that such an overview, by integrating the diverse aspects of current knowledge, might help to generate a new understanding of the biological role of melanosomes and stimulate novel research effort in this interesting area of study.

We have been fortunate in our publisher, Wiley-VCH, who recognized the timely nature of the proposed volume, and we thank our commissioning editor, Gregor Cicchetti, and his team, especially Anne Chassin du Guerny, for their help and encouragement in bringing the project to fruition.

Of course, our main thanks go to our panel of distinguished international contributors who have generously given of their time and expertise in preparing the chapters that we hope form a coherent picture of the up-to-date knowledge in the field.

Last, but not least, this book celebrates a long and fruitful collaboration between the Editors involving many visits between Charles University and University College London. It is a pleasure to acknowledge the assistance of the British Council in enabling these exchanges.

We had hoped initially to have the opportunity to arrange the order of the chapters in the light of their ultimate content so that overlapping areas were most rationally ordered to enable the volume to be read more or less in sequence while allowing the, perforce abundant, cross-references to act as a secondary web in a cohesive network. However, pressure of time prevented us from completing this task and readers may find it more convenient to skip between the various contributions according to their interests and predilections. In principle, although the topics are inextricably intertwined, we have elected to place the contributions devoted to melanin—its biosynthesis, chemistry, and properties—at the front of the book, and those dealing with melanosomes—their structure, biogenesis, distribution, and properties—in the following chapters.

The topic is put into chronological context by a historical Introduction in Chapter 1, in which Jan Borovanský traces the steps in the discovery of the melanosome, illustrated by portraits of the important investigators that took part in these exciting early studies.

As this book is directed largely at aspects of human pigmentation, Chapter 2 consists of a detailed overview by Sophie Colombo, Irina Berlin, Véronique Delmas, and Lionel Larue of the specialized cells in vertebrates in which melanin production in melanosomes takes place. In their contribution a distinction is made between “classical” and “nonclassical” melanocytes. Chapter 3, by Patrick Riley,
Christopher Ramsden, and Edward Land, emphasizes the central role of the generation and reactivity of o-quinones in melanogenesis, and is followed by Chapter 4 in which the biosynthesis of melanins is reviewed by José Carlos García-Borrón and Conchita Olivares Sánchez. Chapter 5, by Alain Taïeb, Muriel Cario-André, Stefânia Briganti, and Mauro Picardo, comprises an analysis of inhibitors and enhancers of melanogenesis. The current understanding of the structure of melanins is then reviewed in Chapter 6 by Shosuke Ito, Kasumasa Wakamatsu, Marco d’Ischia, Alessandra Napolitano, and Alessandro Pezzella, and this is followed in Chapter 7 by a description of the properties and functions of ocular melanins and melanosomes by Małgorzata Rózanowska. Chapter 8, by Kay Double, Wakako Maruyama, Makako Naoi, Manfred Gerlach, and Peter Riederer, is devoted to the biological role of neuromelanin in the human brain and its importance in Parkinson’s disease. Chapter 9 consists of a detailed review of the biogenesis of melanosomes by Cédric Delevoye, Francesca Giordano, Michael Marks, and Graça Raposo. This is followed in Chapter 10, by Mireille Van Gele and Jo Lambert, by a description of the transport and distribution of melanosomes. The genetics of melanosome structure and function are skillfully summarized in Chapter 11 by Vincent Hearing. Chapter 12, by Jan Borovanský and Patrick Riley, is devoted to the properties and functions of melanosomes, and, in Chapter 13, the abnormalities of melanosomes and melanogenesis in melanoma precursor lesions are discussed by Stan Pavel, Nico Smit, and Karel Pizinger.

We firmly believe that this compilation of expertise embodies a significant work of scholarship, and we sincerely hope that the combined wisdom embraced by this volume conveys both the breadth of detailed and exciting knowledge that currently exists about melanin and melanosomes, and also reveals those shadowed areas of doubt and ignorance that await illumination in the future.

March 2011

Patrick A. Riley
Jan Borovanský

References

List of Contributors

Irina Berlin
Institut Curie
Developmental Genetics of Melanocytes, INSERM U1021–CNRS
UMR3347
Centre Universitaire
91405 Orsay
France

Jan Borovanský
Charles University
First Faculty of Medicine, Institute of Biochemistry and Experimental Oncology
U nemocnice 5
128 53 Prague 2
Czech Republic

Sophie Colombo
Institut Curie
Developmental Genetics of Melanocytes, INSERM U1021–CNRS
UMR3347
Centre Universitaire
91405 Orsay
France

Marco d’Ischia
University of Naples “Federico II”
Department of Organic Chemistry and Biochemistry
Via Cinthia 4
80126 Naples
Italy

Stefania Briganti
San Gallicano Dermatological Institute
Laboratory of Cutaneous Physiopathology
Elio Chianesi 53
00144 Rome
Italy

Cédric Delevoye
Institut Curie
Centre de Recherche Structure and Membrane Compartments
26 Rue d’Ulm
75248 Paris cedex 05
France

Muriel Cario-André
Université de Bordeaux
INSERM U1035
146 rue Léo Saignat
33076 Bordeaux
France

Véronique Delmas
Institut Curie
Developmental Genetics of Melanocytes, INSERM U1021–CNRS
UMR3347
Centre Universitaire
91405 Orsay
France
Kay L. Double
University of New South Wales
Neuroscience Research Australia
Barker Street
Sydney, NSW 2031
Australia

José Carlos García-Borrón
University of Murcia
Department of Biochemistry and Molecular Biology
Campus de Espinardo
30100 Murcia
Spain

Manfred Gerlach
University of Würzburg
Clinical Neurobiology, Department of Child and Adolescence Psychiatry, Psychosomatics and Psychotherapy
Füchsleinstrasse 15
97080 Würzburg
Germany

Francesca Giordano
Institut Curie
Centre de Recherche
Structure and Membrane Compartments
26 Rue d’Ulm
75248 Paris cedex 05
France

Vincent J. Hearing
National Institutes of Health
Laboratory of Cell Biology
37 Convent Drive
Bethesda, MD 20892
USA

Shosuke Ito
Fujita Health University School of Health Sciences
Department of Chemistry
Toyoake
Aichi 470-1192
Japan

Jo Lambert
Ghent University Hospital
Department of Dermatology
De Pintelaan 185
9000 Ghent
Belgium

Edward J. Land
Keele University
School of Physical and Geographical Sciences, Lennard-Jones Laboratories
Keele Road
Keele ST5 5BG
UK

Lionel Larue
Institut Curie
Developmental Genetics of Melanocytes, INSERM U1021 – CNRS UMR3347
Centre Universitaire, 91405 Orsay
France

Michael S. Marks
University of Pennsylvania
Departments of Pathology and Laboratory Medicine and Physiology,
513 Stellar-Chance Laboratories
422 Curie Boulevard
Philadelphia, PA 19104-6100
USA

Wakako Maruyama
National Research Center for Geriatrics and Gerontology
Department of Cognitive Brain Science
Obu
Aichi 474-8511
Japan
List of Contributors

Makoko Naoi
Gifu International Institute of Biotechnology
Department of Neurosciences
Kakamigahara
Gifu 504-0838
Japan

Alessandra Napolitano
University of Naples “Federico II”
Department of Organic Chemistry and Biochemistry
Via Cintia 4
80126 Naples
Italy

M. Concepción Olivares Sánchez
University of Murcia
Department of Biochemistry and Molecular Biology
Campus de Espinardo
30100 Murcia
Spain

Stanislav Pavel
Leiden University Medical Center
Department of Dermatology
PO Box 9600
2300 RC Leiden
The Netherlands
and
Charles University
Department of Dermatology, Faculty of Medicine
Husova 3
306 05 Pilsen
Czech Republic

Alessandro Pezzella
University of Naples “Federico II”
Department of Organic Chemistry and Biochemistry
Via Cintia 4
80126 Naples
Italy

Mauro Picardo
San Gallicano Dermatological Institute
Laboratory of Cutaneous Physiopathology
Elio Chianesi 53
00144 Rome
Italy

Karel Pizinger
Charles University
Department of Dermatology
Faculty of Medicine
Husova 3
306 05 Pilsen
Czech Republic

Christopher A. Ramsden
Keele University
School of Physical and Geographical Sciences, Lennard-Jones Laboratories
Keele Road
Keele ST5 5BG
UK

Gracija Raposo
Institut Curie
Centre de Recherche
Structure and Membrane Compartments
26 Rue d’Ulm
75248 Paris cedex 05
France

Peter Riederer
University of Würzburg
Clinical Neurochemistry, Department of Psychiatry, Psychosomatics and Psychotherapy, and National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research
Fürthleinstrasse 15
97080 Würzburg
Germany
Patrick A. Riley
Totteridge Institute for Advanced Studies
The Grange
Grange Avenue
London N20 8AB
UK

Małgorzata Różanowska
Cardiff University
School of Optometry and Vision Science
Maindy Road
Cardiff CF24 4LU
UK

Nico P.M. Smit
Leiden University Medical Center
Central Laboratory for Clinical Chemistry
Albinusdreef 2
2333 AC Leiden
The Netherlands

Alain Taïeb
Hôpital St André
Department of Dermatology and Pediatric Dermatology
CHU de Bordeaux
1 rue Jean Burguet
33077 Bordeaux
France

Mireille Van Gele
Ghent University Hospital
Department of Dermatology
De Pintelaan 185
9000 Ghent
Belgium

Kazumasa Wakamatsu
Fujita Health University School of Health Sciences
Department of Chemistry
Toyoake
Aichi 470-1192
Japan
1

History of Melanosome Research

Jan Borovanský

1.1

Introduction

Melanosomes were first proposed as specific organelles, unique to pigment cells, in a preliminary publication that appeared on 30 July 1960 [1]. An announcement had been made at the 21st Annual Meeting of the Society for Investigative Dermatology, at Miami Beach, Florida, USA on 13 June 1960 [2] and the news, that the chemical composition and enzyme activities in melanosomes and mitochondria are completely different, was considered to be of such significance that it appeared in a newspaper report (Figure 1.1). Similar data, with an emphasis on terminology, were published in 1963 [3].

This advance was the result of collaborative work between M. Seiji (1926–1982), at that time working at the Department of Dermatology, Harvard Medical School in Boston under the leadership of T.B. Fitzpatrick (1919–2003) (Figure 1.2), and H. Blaschko and M.S.C. Birbeck, with whom Dr Fitzpatrick established scientific cooperation during his tenure of a Commonwealth Fellowship at the Department of Biochemistry, Radcliffe Infirmary in Oxford.

The history of melanosome research can be formally divided into three parts: (i) the pre-Seiji era (prior to 1960), (ii) the Seiji era (1960–1982), and (iii) the post-Seiji era (1983–).

1.2

Melanosome Research in the Pre-Seiji Era

The first description of mammalian pigment cells was published by Gustav Simon in 1841 [4] who observed round and stellate pigment cells in the hair bulbs of pig embryos. It was preceded in 1838 by Purkyne’s description of pigment in the cells of the substantia nigra, which not only drew attention to pigment granules, but also noted the rise in their numbers with age [5]. We have to admire these early reports because their authors, armed only with primitive light microscopes, were able to ascertain that melanin was not diffusely distributed in the cytoplasm...
of pigmented cells, but was present in the form of discrete aggregates [5, 6] (Figures 1.3 and 1.4).

Deciphering the old literature is problematical as authors often fail to distinguish between melanin (the pigment itself), melanoprotein (the natural melanin–protein complex), and melanin granules (the subcellular organelle). If the method of separation is not adequately described, it is difficult to be certain what material was studied and any conclusions can be misleading [8]. The lack of electron microscopic identification of isolated material led to many misinterpretations; for example, the “melanopseudoglobulin” studied by Greenstein et al. [9] was later shown to be melanosomes [10] and Bolt’s “melanoprotein” [11], widely used in biophysical studies, turned out to consist of damaged melanosomes [12]. Mason et al. [10] posed the question of whether melanin granules were particles with a specific structure or consisted of random aggregates of precipitated metabolic
products. The introduction of electron microscopy was able to resolve this matter and Laxer et al. [13] were able to discern an inner ultrastructure in isolated melanosomes. The first clear pictures were obtained only in 1956 [14].

An avalanche of papers in subsequent years brought with it enormous amounts of information on the ultrastructure of melanosomes and its changes during
melanosomal development (good examples are [15–17]). Other papers (reviewed in [18]) brought together ultrastructural and biochemical data that, in combination, laid the basis for the nomenclature of melanosomal ontogenesis.

By comparison with the morphological data, biochemical investigations of melanosomes were more modest, mainly due to the fact that ultrastructural data were derived from studies of intact cells or tissues, whereas biochemical research used samples prepared by relatively harsh preparative procedures. These samples sometimes consisted of melamins, or altered melanosomes, or their fragments, usually without any check of their nature or homogeneity [18].

The aim of researchers in the nineteenth century was not to prepare subcellular particles or native melanoproteins, but to separate the colored pigment (“Farbstoff” = melanin in the terminology of that time). The presence of protein in the isolated material was considered an unwanted contaminant [19]. Probably the first mild separation protocol was used by J.J. Berzelius [20]. He investigated pigment (melanosomes?) obtained from eye membranes by water extraction, and noticed its insolubility in acids and limited solubility in alkali. Similar mild extraction procedures were used by Landolt [21] and Mörner [22]. The early isolation procedures were reviewed by Waelsch [23]. He studied “natural melanin” from human melanoma metastases and horse choroids, confirmed the presence of protein attached to pigment, and suggested that melanin could be synthesized from the cyclic amino acids present in the protein moiety; this idea has not been
abandoned till now. Herrmann and Boss [24] demonstrated dopa oxidase activity in the fraction of melanin granules from ciliary bodies of cattle eyes, but, as their samples were contaminated with mitochondria, they demonstrated the presence of mitochondrial enzyme markers as well. In 1949, du Buy et al. concluded that melanosomes are modified mitochondria typical of pigment cells [25]. It is interesting that du Buy [26] and other authors [27] did not abandon the mitochondrial theory of melanosome origin even in 1963 (i.e., 2 years after the formulation of Seiji’s melanosomal concept) and even published their papers in the same volume in which Seiji et al. published detailed confirmation of their model [28].

It is interesting that history has disregarded the contribution of Stein [29] who, several years before the work of Seiji et al., using a separation procedure of his own, isolated melanin granules from ox choroids and analyzed their content not only of melanin, but also lipids, carbohydrates, RNA, and metals (including the pioneer finding of a high level of zinc), and concluded that the chemical composition of melanin granules is completely different from mitochondria.

The ability of melanin in melanin granules, isolated from Harding-Passey melanoma and from the ink sac of Loligo opalescens, to act as a cation exchanger [30], and the demonstration of free radical activity in melanin-containing tissues [31] also rank among the observations of the pre-Seiji era.

1.3 Melanosome Research in the Seiji Era

1.3.1 Terminology of Melanosomes

The demonstration of melanosomes as unique pigment cell organelles possessing developmental stages prompted the introduction of a system of terminology that reflected the characteristics of the various states. Until 1961 the common term for all varieties of these organelles was melanin (or pigment) granule [1, 2]. The first system of nomenclature [2] described three stages in the ontogenesis of melanosomes:

i) Premelanosomes: spherical organelles.
ii) Melanosomes: organelles with an internal structure and tyrosinase activity.
iii) Melanin granules: melanoprotein polymer.

A second terminological system was proposed [3, 26] consisting of three developmental stages plus a final product. Thus:

- Stage I (first stage): biosynthesis of protein.
- Stage II (intermediate stage): biosynthesis of organelle.
- Stage III (late phase): biosynthesis of melanin.
- Final product: melanin granule.
These nomenclature systems introduced a certain degree of confusion, particularly as the term melanin granule had been used to describe pigment granules at any developmental stage. In an attempt to establish a consensus, Fitzpatrick et al. [32, 33] circulated a postal questionnaire seeking opinions about the adequacy of the terms in common use in pigment cell research and, with the approval of the participants of the Sixth International Pigment Cell Conference in 1965 in Sofia, Bulgaria, recommended the use of two terms:

- **Melanosome**: a discrete melanin-containing organelle in which melanization is complete as indicated by its almost uniform density by electron microscopy and the absence of demonstrable tyrosinase activity.

- **Premelanosome**: a term applied to all the stages in melanosome biogenesis that precede the fully developed state. Within the restrictions of this general definition, the premelanosomal stage might, at the discretion of the investigator, be subdivided into early, intermediate, and late phases.

The nomenclature in general use today does not adhere to any of the three systems outlined above, but is essentially a system proposed by Toda et al. [34–36] reflecting the earlier descriptions of Birbeck [37, 38] which employs the uniform term “melanosome” with a numerical indication (I–IV) of the degree its ontogenetic development.

However, in practice, chaos prevails. While the system of Toda et al. is widely—if somewhat erratically—used, some European authors refer, often incorrectly, to the stages proposed in the second system of nomenclature [3, 26] and some American authors tend to cite nomenclature introduced in their previous papers or those of their friends.

1.3.2 **Ultrastructural and Histochemical Studies**

The concept of subcellular biosynthesis and localization of melanins and melanoproteins in melanosomes was further confirmed by (i) autoradiographic evidence with $[^3]H$dopa and $[2-^{14}C]$dopa [39–43], (ii) incorporation of $[2-^{14}C]$dopa and monitoring radioactivity in subcellular fractions [44, 45], and (c) isolation of melanosomes and analysis of their chemical composition [46, 47].

Electron microscopy enabled the definition of the basic morphometric data of isolated melanosomes (i.e., their size, shape, and ultrastructural appearance). The most extensive data were published by Hach et al. [48, 49]. For discussion concerning the ultrastructural appearances of melanosomes, see Section 12.3 in Chapter 12.

Various pathological states may be manifested by changes in melanosome morphology. Mishima et al. [50] considered that melanosome polymorphism, such as changes in size, shape, ultrastructural matrix, the manner of melanin deposition, and the degree of melanosome maturation, as a criterion of molecular pathology that could find practical use in the differential diagnosis of various pigmentary disorders.