Abdominal Organ Transplantation
Contents

List of Contributors, vii

Foreword, xi

Chapter 1 Living Donation: The Gold Standard, 1
Leonardo V. Riella and Anil Chandraker

Chapter 2 New Surgical Techniques in Transplantation, 17
Adam D. Barlow and Michael L. Nicholson

Chapter 3 Living-donor Liver Transplantation, 33
Abhideep Chaudhary and Abhinav Humar

Chapter 4 Antibody-incompatible Transplantation, 56
Nizam Mamode

Chapter 5 Pancreas Transplantation, 80
Rajinder Singh, David E.R. Sutherland, and Raja Kandaswamy

Chapter 6 Allotransplantation of Pancreatic Islets, 107
Maciej T. Juszczak and Paul R.V. Johnson

Chapter 7 Novel Cell Therapies in Transplantation, 138
Paul G. Shiels, Karen S. Stevenson, Marc Gingell Littlejohn, and Marc Clancy

Chapter 8 Intestinal Transplantation, 150
Khalid M. Khan, Tun Jie, Chirag S. Desai, and Rainer W.G. Gruessner

Chapter 9 Pediatric Renal Transplantation, 163
Stephen D. Marks

Chapter 10 Immunosuppressive Pharmacotherapy, 177
Steven Gabardi and Anil Chandraker

Chapter 11 Conclusion, 209
Nizam Mamode and Raja Kandaswamy

Index, 213
List of Contributors

Adam D. Barlow
Specialist Registrar in General & Transplant Surgery
Department of Transplant Surgery
University Hospitals of Leicester
Leicester
UK

Anil Chandraker, MD, FASN, FRCP
Associate Professor of Medicine
Medical Director of Transplantation
Renal Division
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA
USA

Abhideep Chaudhary, MD, MBBS, MS
Clinical Fellow in Transplantation Surgery
University of Pittsburgh, Medical Center (UPMC)
Pittsburgh, PA
USA

Marc Clancy
Honorary Clinical Senior Lecturer
School of Medicine
University of Glasgow
Glasgow
UK

Chirag S. Desai, MD
Department of Surgery
University of Arizona College of Medicine
Tucson, AZ
USA
Steven Gabardi, PharmD, BCPS
Renal Division/Departments of Transplant Surgery and Pharmacy Services
Brigham and Women’s Hospital and Department of Medicine
Harvard Medical School
Boston, MA
USA

Marc Gingell Littlejohn
Institute of Cancer Sciences
College of Medical, Veterinary and Life Sciences
University of Glasgow
Glasgow
UK

Rainer W.G. Gruessner, MD, FACS
Professor of Surgery and Immunology Chairman
Department of Surgery
University of Arizona College of Medicine
Tucson, AZ
USA

Abhinav Humar, MD
Professor of Surgery
University of Pittsburgh, Medical Center (UPMC)
Pittsburgh, PA
USA

Tun Jie, MD, MS, FACS
Assistant Professor of Surgery
General Surgery/Abdominal Transplant/Hepatopancreatic and biliary Surgery
Department of Surgery
University of Arizona College of Medicine
Tucson, AZ
USA

Paul R.V. Johnson, MBChB, MA, MD, FRCS(Eng +Edin), FRCS(Paed.Surg), FAAP
Professor of Paediatric Surgery University of Oxford
Director of DRWF Human Islet Isolation Facility and Oxford Islet Transplant Programme
Consultant Paediatric Surgeon
John Radcliffe Hospital
Fellow at St Edmund Hall
University of Oxford
Oxford
UK
Maciej T. Juszczak
Islet Transplant Programme, Oxford Centre for Diabetes, Endocrinology and Metabolism, and Islet Transplant Research Group
Nuffield Department of Surgical Sciences
University of Oxford
Oxford
UK

Raja Kandaswamy, MD, FACS
Professor and Vice-Chief, Division of Transplantation
Department of Surgery
University of Minnesota
Minneapolis, MN
USA

Khalid M. Khan, MBChB, MRCP
Associate Professor Director
Pediatric Liver & Intestine Transplant Program
University of Arizona
Tucson, AZ
USA

Nizam Mamode, BSc, MB ChB, MD, FRCS, FRCS(Gen)
Consultant Transplant Surgeon
Reader in Transplant Surgery
Guy’s and St Thomas’ Hospital
Great Ormond Street Hospital
London
UK

Stephen D. Marks, MD, MSc, MRCP, DCH, FRCPCCH
Consultant Paediatric Nephrologist
Department of Paediatric Nephrology
Great Ormond Street Hospital for Children NHS Trust
London
UK

Michael L. Nicholson, MD, DSc, FRCS
Professor of Transplant Surgery
Department of Transplant Surgery
University Hospitals of Leicester
Leicester
UK
Leonardo V. Riella, MD, PhD
Instructor in Medicine
Transplant Research Center
Renal Division
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA
USA

Paul G. Shiels
Department of Surgery
University of Glasgow
Western Infirmary Glasgow
Glasgow
UK

Rajinder Singh
Consultant Transplant Surgeon
Guy’s and St Thomas’ Hospital
Great Ormond Street Hospital
London
UK

Karen S. Stevenson
Institute of Cancer Sciences
College of Medical, Veterinary and Life Sciences
University of Glasgow
Glasgow
UK

David E.R. Sutherland, MD, PhD
Professor
Department of Surgery
University of Minnesota
Minneapolis, MN
USA
Foreword

This miscellaneous collection of articles on new developments in organ transplantation will be of very considerable interest to organ transplant clinicians. The chapters range from living donation of the kidney and liver to intestinal and pancreas the kidney, with a very good chapter on new surgical techniques in transplantation. In addition there is a comprehensive chapter on ABO incompatible renal transplantation and transplantation in the patient that is highly sensitized to HLA. There is a short review of the current status of pancreatic islet transplantation as well as an extensive review of new developments in pancreas transplantation. Furthermore paediatric renal transplantation is well covered and there are interesting contributions on novel cell therapies in transplantation as well as on immunosuppressive therapies, concentrating on more recent developments in this area. The final chapter by the two editors reviews the status of renal, liver, pancreas and intestinal transplantation, but in particular outlines the problems that still have to be resolved. The editors recognise that the current one year graft survival rates are at a level that was not considered remotely possible even as little as 20 years ago but accept that the longer term outcomes are still disappointing despite the introduction of many new immunosuppressive strategies. But in general they are very optimistic about the future.

Overall this book will be considered a very good read by the transplant clinician.

Sir Peter J Morris AC, FRS
Director, Centre for Evidence in Transplantation,
Royal College of Surgeons of England and London School of Hygiene and Tropical Medicine.
Emeritus Nuffield Professor of Surgery, University of Oxford.
Past President, Royal college of Surgeons.
Honorary Professor, University of London.
1 Living Donation: The Gold Standard

Leonardo V. Riella and Anil Chandraker
Renal Division, Brigham and Women’s Hospital, Harvard Medical School, USA

Introduction

The first successful transplant occurred in Boston in 1954, when a surgical team under the direction of Joseph Murray removed a kidney from a healthy donor and transplanted it into his identical twin, who had chronic glomerulonephritis [1]. The organ functioned immediately and the recipient survived for 9 years, after which time his allograft failed from what was thought to be recurrent glomerulonephritis. More than 50 years have passed since that breakthrough achievement, and transplantation has progressed from an experimental modality to standard of care. The introduction of immunosuppressive drugs such as azathioprine, prednisone, and later calcineurin inhibitors has led to better outcomes and, along with technical breakthroughs, expanded the pool of organs available to deceased and human leukocyte antigen (HLA)-mismatched donors.

Kidney transplantation has become the preferred therapeutic option for patients with end-stage kidney disease (ESKD), leading to better patient survival and quality of life. It is also more cost-effective than dialysis [2–4]. Unfortunately, the incidence of ESKD has risen steadily in the past several decades, creating a shortage of available organs for patients on the kidney-transplant waiting list (Table 1.1).

This growth in ESKD is related to the increased incidence of diabetes, obesity, and hypertension, combined with the improvement in treatment for concurrent health problems such as ischemic heart disease and stroke. The supply of organs from deceased donors has not followed the same upward trend, resulting in an ever-widening gap between eligible potential transplant recipients and available organs (Table 1.2).

In 2009, only 18% of patients on the waiting list for kidney transplantation received an organ [5]. The average waiting time for kidneys from deceased donors in the USA is more than 3 years, and in some geographic areas it is more than 5 years (Table 1.3)—waiting times that are sometimes longer than the average life expectancy of middle-aged and older persons with ESKD [6]. In line with these numbers, a recent study indicates that even...
Table 1.1 Waiting list for different organs in the USA. OPTN, Organ Procurement and Transplantation Network. Data from [5].

<table>
<thead>
<tr>
<th>Waiting list candidates</th>
<th>Number OPTN 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>107,075</td>
</tr>
<tr>
<td>Kidney</td>
<td>84,495</td>
</tr>
<tr>
<td>Pancreas</td>
<td>1,458</td>
</tr>
<tr>
<td>Kidney/Pancreas</td>
<td>2,182</td>
</tr>
<tr>
<td>Liver</td>
<td>15,948</td>
</tr>
<tr>
<td>Intestine</td>
<td>248</td>
</tr>
<tr>
<td>Heart</td>
<td>3,173</td>
</tr>
<tr>
<td>Lung</td>
<td>1,844</td>
</tr>
<tr>
<td>Heart/Lung</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 1.2 Growth of the kidney-transplant waiting list compared to donor type in the USA. Data from [5].

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>1999</th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting List</td>
<td>84,495</td>
<td>40,825</td>
<td>17,786</td>
</tr>
<tr>
<td>All type donors</td>
<td>14,631</td>
<td>10,862</td>
<td>5,929</td>
</tr>
<tr>
<td>Deceased Donors</td>
<td>8,021</td>
<td>5,824</td>
<td>4,011</td>
</tr>
<tr>
<td>Living Donors</td>
<td>6,610</td>
<td>5,038</td>
<td>1,918</td>
</tr>
<tr>
<td>% Living donors</td>
<td>45%</td>
<td>46%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Table 1.3 Time to transplant by organ type in the USA. Data from [5].

<table>
<thead>
<tr>
<th>Organ type</th>
<th>Time to transplant in 2004 (median in days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td>1,219</td>
</tr>
<tr>
<td>Pancreas Transplant Alone</td>
<td>376</td>
</tr>
<tr>
<td>Pancreas after Kidney</td>
<td>562</td>
</tr>
<tr>
<td>Kidney-Pancreas</td>
<td>149</td>
</tr>
<tr>
<td>Liver</td>
<td>400</td>
</tr>
<tr>
<td>Intestine</td>
<td>212</td>
</tr>
<tr>
<td>Heart</td>
<td>166</td>
</tr>
<tr>
<td>Lung</td>
<td>792</td>
</tr>
</tbody>
</table>
major alterations in the organ procurement process cannot reasonably be expected to meet the demand for transplantable kidneys from decreased donors [7]. The imbalance between patient demand and the supply of organs from deceased donors has refocused attention on living kidney donors.

Epidemiology

Living-donor kidney transplantation is rapidly increasing in popularity worldwide and has surpassed the number of deceased donors in many transplant centers [5]. In 2009, approximately 40% of all kidney donations were from living donors, and most major transplant centers in the USA have been increasing the proportion of living donors, reaching more than 60% of total transplants in some. However, wide variations exist worldwide in the use of living and deceased kidney donors. These differences reflect varying medical, ethical, social, and cultural values, as well as the availability of deceased-donor organs. For example, Spain has possibly the most efficient system of deceased-organ collection, with less than 5% of transplants being from living donors. At the other end of the spectrum, strong cultural barriers in Japan have led to a preponderance of living-organ transplantation. Similarly, Turkey and Greece rely mainly on living donation as a source of organ transplantation [8].

Several factors have influenced the expansion of living donation. The advent of laparoscopic nephrectomy has reduced the associated morbidity of kidney removal, making more donors receptive to an interruption of the healthy course of their lives. Just as importantly, epidemiological data have shown that irrespective of the HLA match or the donor–recipient relationship, recipients of living-donor kidneys (LDKs) fare better than those who receive deceased-donor kidneys (DDKs) (Figure 1.1). Finally, the development of stronger immunosuppression and desensitization techniques has overcome many of the biological barriers to successful transplantation,
Abdominal Organ Transplantation

such as ABO incompatibility or the presence of low to medium titers of antidonor HLA antibodies (Abs). Today, any person who is well and willing to donate may potentially be a live-kidney donor.

Advantages of living-kidney donation

It is well recognized that renal dysfunction is associated with accelerated heart disease. It has been estimated that mortality associated with cardiovascular disease is increased approximately 10-fold among patients with ESKD, even after accounting for age, sex, race, and the presence of diabetes [9]. Successful kidney transplantation progressively reduces the incidence of cardiac mortality and is therefore associated with an overall survival benefit in subjects undergoing kidney transplantation [10]. Even in older transplant recipients and patients with ESKD secondary to diabetes or obesity—subgroups with higher perioperative cardiovascular complications—survival benefits persist [4,11].

One-year survival for a functioning transplant is 90% for recipients of deceased-donor transplants and 96% for recipients of transplants from living donors. After surviving the first year with a functioning transplant, 50% of recipients of deceased- and living-donor transplants are projected to be alive with a functioning transplant at 13 and 23 years, respectively.

The waiting time on dialysis has emerged as one of the strongest independent modifiable risk factors for poor renal-transplant outcome [12], as can be seen in Figure 1.2. The presumed negative effect of prolonged dialysis is likely related to the impact of ESKD on cardiovascular morbidity and is observed in both living- and deceased-kidney recipients. However, even after a prolonged wait, patients who eventually receive a kidney transplant still have a lower mortality than those who continued on dialysis [13]. The possibility of undergoing preemptive transplantation without the need for dialysis gives the ESKD patients the best possible outcome [13–15]. With these observations in mind, until an optimal and timely source of organs is developed to decrease the prolonged waiting times, living-kidney-donor transplantation provides the best alternative for most patients [13–15].

Living-kidney donation is an act of profound human generosity and can be a source of much gratification for all parties involved. Many donors describe it as the most meaningful experience of their lives and the quality of life of donors after transplantation is reported to be better than or equivalent to that of controls [16]. Nonetheless, given the highly asymmetric nature of the physical benefits arising from kidney donation, a careful psychiatric evaluation of the donor is essential, to assess the coercion-free, informed, and autonomous decision to proceed with the process.

The number of sensitized recipients has increased dramatically in the past couple of years and these recipients usually face the greatest waiting times, due to the presence of preformed antibodies, and consequently have the greatest mortality. Desensitization protocols have enabled them to plan and receive an LDK at a determined time, but these protocols are expensive
and labor-intensive, and in the USA have been implemented only for small numbers of patients. While successful in the short-term, the long-term outcomes remain unknown; these techniques are discussed further in Chapter 5. Another potential option for such patients is a paired-kidney exchange (PKE), which is discussed in more detail later in this chapter. For many years, immunological barriers were thought to be the largest hurdle in transplantation; today, many cite the acute shortage of organs as the major limitation.

Finally, the administration of donor-derived cells into the recipient in order to induce immunological hyporesponsiveness to the solid-organ transplant and minimize the need for immunosuppression has recently been explored. This hyporesponsiveness was thought to occur due to the generation of mixed chimerism, immune deviation, and/or generation of a regulatory immunological phenotype. Kawai et al. have recently published a report on a small number of successful cases of combined bone-marrow and kidney transplant in HLA single-haplotype mismatched, living, related donors, with the use of a nonmyeloablative preparative regimen. Four out of five recipients were able to discontinue all immunosuppressive therapy 14 months after transplantation, opening new possibilities for the induction of transplant tolerance with living-kidney donation, with consequent improvement in long-term outcomes [17].

In summary, living donation provides one answer to the shortage of donor organs, allows preemptive transplantation, and leads to better long-term
Abdominal Organ Transplantation

Transplantation of abdominal organs, including the liver, heart, and lung, has significant importance in patient care. It also permits the introduction of new, tolerogenic strategies, and for many donors will be a very positive and meaningful experience.

Types of donor

Related versus unrelated donors

Whereas rates of kidney transplantation from living related donors increased during the 1990s, transplantation from living unrelated (including spousal) donors has increased rapidly over the past decade, now accounting for nearly one-quarter of all transplantations from living donors in the USA (Figure 1.3). In 1995, a landmark report by Terasaki and colleagues documented that HLA-mismatched spousal transplants resulted in a graft survival superior to that of anything but identically matched kidneys from deceased donors [14]. This observation has influenced decisions regarding the suitability of live donors who are spouses, friends of the recipient, or anonymous; there is little concern today about the degree of HLA matching for the crossmatch-negative recipient of a kidney from a living donor. With directed donation to loved ones or friends, concerns have arisen about the intense pressure that can be put on people to donate, leading those who are reluctant to do so to feel coerced. Donor evaluation by a team of physicians other than that treating the recipient and a focus on the donor’s interests when evaluating for donation minimize these risks. Furthermore, the general approach of simply reporting an unwilling donor as ‘unsuitable’ is a safe method of protecting the donor’s decision without harming their relationship with the recipient.

![Figure 1.3](image-url) Number of transplants from living donors, by donor relation. (Reproduced from [6] The data reported here have been supplied by the United States Renal Data System (USRDS). The interpretation and reporting of these data are the responsibility of the author(s) and in no way should be seen as an official policy or interpretation of the U.S. government)
Paired-kidney exchange

When available donors are incompatible with their intended recipients due to ABO or HLA antibodies, many transplant centers participate in kidney live-donor paired-exchange programs [18–20]. In a conventional PKE donation (two-way exchange), two donor–recipient pairs surmount each other’s incompatibility problem by simply exchanging donors (Figure 1.4). To ensure that both recipients receive their grafts, the two transplantations are arranged simultaneously. The probability of finding a suitable donor–recipient pair for an exchange is greatly influenced by the pool size. Even in a successful large national PKE program, only around 50% of incompatible pairs usually find a match and undergo a transplant—primarily due to the blood-group imbalance in the pool of incompatible pairs [21]. There is a predominance of group A donors and group O recipients. National matching programs would make the likelihood of finding pairs greater and would likely expand this type of organ transplantation.

PKEs have been performed in the USA for nearly a decade, as either single-center or, increasingly, multiregional programs. A recent report showed that only 334 paired donations had been carried out in the USA since 2000 [22]. Legal and logistical barriers have been regarded as some of the major reasons for this poor success. Multiregional data-sharing has substantially impacted PKE transplants [23]. There are now a number of regional PKE programs within the United Network for Organ Sharing (UNOS), such as the New England Program for Kidney Exchange (NEPKE), with 14 transplant centers in region 2, and the Alliance for Paired Donation, a 22-state coalition of 65 transplant programs. We believe a centralized national PKE program would give the greatest potential for matching incompatible donors. Such national schemes are currently operating in the Netherlands and the UK. The Dutch have reported numerous challenges and barriers in their exchange program, and a flexible organization was key to creating alternative solutions [20]. The rate of kidney transplantation can be increased by an average of 7–15% with a PKE program [24]. A recent study by the Dutch program suggested that the optimal chain length for living-kidney donation is three [25]. In the UK experience, the use of altruistic, nondirected donors to start a
chain of transplants may offer the greatest potential to increase the number of successful paired-kidney-donation transplants [26].

Altruistic donors

The success of living unrelated kidney transplantation has influenced transplant physicians to sanction the requests of individuals who wish to be anonymous donors; that is, “nondirected or altruistic donors” [27]. The motives of the nondirected donor should be established with care in order to avoid a prospective donor’s intention of remedying a psychological disorder via donation. In general, these kidneys are allocated according to the waiting list for deceased-kidney donors [27]. Some centers advocate the allocation of such organs into a PKE program, since this can result in a domino effect and facilitate multiple transplants [23,28]. Directed donation to a stranger—whereby donors choose to give to a specific person with whom they have no prior emotional connection—is generally not supported, primarily because of fears of commercial incentive or psychological coercion [29].

Organ commercialism, which targets vulnerable populations (such as illiterate and impoverished persons, undocumented immigrants, prisoners, and political or economic refugees) in resource-poor countries, has been condemned by international bodies such as the World Health Organization (WHO) for decades. In recent years, as a consequence of the increasing ease of Internet communication and the willingness of patients in rich countries to travel to purchase organs, organ trafficking and transplant tourism have grown into global problems. For example, as of 2006, foreigners received two-thirds of the 2000 kidney transplants performed annually in Pakistan [30].

An international transplantation summit was held in Istanbul in 2008, which resulted in the “Declaration of Istanbul on Organ Trafficking and Transplant Tourism” [30–33]. This proclaims that the poor who sell their organs are being exploited, whether by richer people within their own country or by transplant tourists from abroad. Moreover, transplant tourists risk physical harm by unregulated and illegal transplantation. Participants in the Istanbul summit concluded that transplant commercialism, transplant tourism, and organ trafficking should be prohibited. They also urged their fellow transplant professionals, individually and through their organizations, to put an end to these unethical activities and foster safe, accountable practices that meet the needs of transplant recipients while protecting donors.

Evaluation process for the live donor

Living donation appears contrary to the most fundamental concept of the medical profession: “*primum non nocere*” (“first, do no harm”). It exposes a healthy individual to the combined risks of major surgery and life with a single kidney entirely for the benefit of another person. With that in mind,
LDK transplantation should only be undertaken if five essential conditions are met:

- The risk to the donor is low.
- The donor is fully informed of the risks and benefits as a donor.
- The donor is medically and psychosocially suitable.
- The decision to donate is voluntary and entirely without coercion.
- The transplant has a good chance of providing a successful outcome for the recipient.

The Amsterdam consensus statement emphasizes that the purpose of the evaluation process is to ensure the overall health and well-being of the donor, minimizing unnecessary medical risk to both donor and recipient [34]. It should quantify any potential technical difficulties that might compromise the success of the nephrectomy and subsequent transplantation. By general consensus, the optimal donor is an adult member of the immediate family of a patient with ESKD [29]. However, the use of emotionally related but genetically unrelated living donors has become increasingly common worldwide, and this practice is supported by different guidelines.

It is generally accepted that children (under the age of 18) should not donate. As can be seen in Table 1.4, the majority of donors in the USA are between 35 and 49 years old; nonetheless, the upper age limit has been advancing in recent years. There are no set guidelines for an upper age limit for donation, but most centers accept donors up to 70 years of age, after a thorough investigation for underlying kidney disease, latent cardiovascular disease, or malignancy.

A written informed consent is mandatory in most countries, with the understanding that consent can be withdrawn at any time. Moreover, the donor evaluation should ideally be undertaken by a physician who is not directly involved with the proposed transplantation or the recipient’s care, in order to avoid any bias in the process. If the potential donor decides not to donate, the recipient is usually told that the donor is ‘unsuitable’; detailed information should not be given, nor should untrue statements be

| Table 1.4 Number of kidney donors by age in the USA. Data from [5]. |
|---------------------|-------|-------|-------|-------|-------|
| All Ages | 6,388 | 5,968 | 6,043 | 6,435 | 6,571 |
| 6–10 Years | 0 | 0 | 0 | 0 | 0 |
| 11–17 Years | 3 | 0 | 0 | 1 | 0 |
| 18–34 Years | 1,937 | 1,849 | 1,872 | 2,034 | 2,078 |
| 35–49 Years | 2,746 | 2,593 | 2,675 | 2,938 | 3,103 |
| 50–64 Years | 1,595 | 1,437 | 1,415 | 1,390 | 1,332 |
| 65+ | 107 | 89 | 81 | 71 | 58 |
Abdominal Organ Transplantation

made. Some controversial positions might arise when recipients are HIV positive and the potential live-related donor is not aware of the recipient’s HIV status. The UK guidelines specify that the donor has the right to know the HIV status of the recipient in order to have a fully informed consent [35]. Others might argue that it is essential to inform the donor about the high-risk status of the recipient, but it is not necessary to give additional medical details about the recipient’s condition.

The financial aspects of donation should be discussed, due to the important implications early after transplant. The future donor must be aware of any expenses involved with the surgery and postsurgical care, as well as the loss of income in the first few weeks after transplant, where activity is limited. The latter is minimized significantly by the use of a laparoscopic approach to harvesting the donor kidney. Moreover, congressional legislation in the USA has provided an important model to remove financial disincentives to being a live donor: federal employees are now afforded paid leave and coverage for travel expenses.

During the initial evaluation, the potential donor is assessed for any obvious medical or psychosocial contraindication to donation in order to avoid unnecessary further investigation. Some laboratory information is also collected during this first visit, including serum creatinine, blood count, urine dipstick, and ABO/HLA typing. The major contraindications for kidney donation are known diabetes, significant hypertension or proteinuria, a glomerular filtration rate (GFR) below the stated acceptable value for age, active infection, active malignancy, and recurrent kidney stones [36]. Serology for infectious diseases, chest x-ray (CXR), electrocardiogram (ECG), purified protein derivative (PPD) skin test for tuberculosis, and cancer screening exams appropriate for age are also performed. As a final step, renal imaging is done, typically with a computed tomography (CT) angiogram, in order to assess kidney size, the renal vessels, and the urinary tract. More details of the donor evaluation process can be found in [34] and [36].

Obesity in not considered a contraindication in either US or European guidelines, but it has been documented that a body mass index (BMI) over 30 significantly increases the perioperative complication rate, and some concerns exist about the long-term consequences of nephrectomy.

The evaluation for hypertension should include blood pressure (BP) measurements by an experienced provider on three separate occasions; verification of elevated levels should be undertaken with ambulatory BP monitoring as approximately 10–20% may be found to have normal BP [37,38]. If elevated BP is detected and the prospective donor is still under consideration, a CXR, ECG, echocardiogram, and ophthalmologic evaluation should be performed to look for secondary consequences of hypertension. In addition, a 24-hour urine collection for albumin excretion or a spot urine for albumin–creatinine ratio should be performed, along with a urinalysis and a formal GFR measurement. If donors with hypertension donate, they should be followed longitudinally by the transplant center to ensure optimal treatment and monitoring of complications. Overall, hypertensive donors are increasingly being used in transplant centers due to the limited availability of organs; however, more detailed information