The Claisen Rearrangement

Methods and Applications

Edited by
Martin Hiersemann and Udo Nubbemeyer
The Claisen Rearrangement

Edited by
Martin Hiersemann and
Udo Nubbermeyer
1807–2007 Knowledge for Generations

Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
The Claisen Rearrangement

Methods and Applications

Edited by
Martin Hiersemann and Udo Nubbemeyer
Contents

Preface XV

List of Contributors XVII

1 Chorismate-Mutase-Catalyzed Claisen Rearrangement 1
Hong Guo and Niny Rao

1.1 Introduction 1
1.2 Experimental Studies 2
1.2.1 Substrate Binding 2
1.2.2 Substrate Structural Requirements for Catalysis 3
1.2.3 X-ray Structures of Chorismate Mutase 4
1.2.4 Effects of Mutations 6
1.2.5 Activation Parameters 8
1.3 Catalytic Mechanism of Chorismate Mutase 9
1.3.1 Stabilization of Transition State by Active Site Residues 9
1.3.2 Substrate Conformational Transition and the Role of Active Site Residues 10
1.3.3 Contribution of the Near Attack Conformers (NACs) 16
1.3.4 Strain Effects and Conformational Compression 19
1.4 Conclusion 20
References 21

2 Chiral-Metal-Complex-Catalyzed Aliphatic Claisen Rearrangement 25
Koichi Mikami and Katsuhiro Akiyama

2.1 Introduction 25
2.2 Binding Modes of Main-group and Late Transition Metals 26
2.3 Aluminum(III)-promoted Claisen Rearrangement 26
2.4 Copper(II)-catalyzed Claisen Rearrangement 32
2.5 Palladium(II)-catalyzed Claisen Rearrangement 38
References 42
3 Aliphatic and Aromatic Claisen Rearrangement 45

3.1 Aliphatic Claisen Rearrangement 45

Hayato Ichikawa and Keiji Maruoka

3.1.1 Introduction 45
3.1.2 Synthesis of Allyl Vinyl Ethers 46
3.1.2.1 Hg-Catalyzed Synthesis 46
3.1.2.2 From Ammonium Betaine 46
3.1.2.3 Acid-Catalyzed Synthesis 46
3.1.2.4 Wittig Olefination 47
3.1.2.5 Sulfoxide Elimination 47
3.1.2.6 Selenoxide Elimination 49
3.1.2.7 From Ketal 49
3.1.2.8 From Allene 50
3.1.2.9 Ir-Catalyzed Synthesis 51
3.1.2.10 Cu-Catalyzed Synthesis 51
3.1.2.11 Tebbe Reagent 52
3.1.3 Acyclic Aliphatic Claisen Rearrangement 53
3.1.3.1 Transition State of Aliphatic Claisen Rearrangement 53
3.1.3.2 Secondary Allylic Ethers 54
3.1.3.3 Substituted Vinyl Ethers 56
3.1.3.4 Allyl Allenyl Ethers 57
3.1.3.5 Disubstituted Vinyl Ether 58
3.1.3.6 Water-Promoted Claisen Rearrangement 59
3.1.3.7 Diastereoselective Rearrangement Using Chiral Sulfoxide Groups 60
3.1.4 Claisen Rearrangement of Cyclic Allyl Vinyl Ethers 62
3.1.4.1 Ring Expansion Claisen Rearrangement 62
3.1.4.2 Cyclohexene Synthesis 68
3.1.5 Cyclic Vinyl Ethers 68
3.1.6 Cyclic Allyl Ethers 70
3.1.7 Tandem Reactions Including Aliphatic Claisen Rearrangement 71
3.1.7.1 Vinylation/Claisen Rearrangement 71
3.1.7.2 Allylation/Claisen Rearrangement 73
3.1.7.3 Anionic Cyclization/Claisen Rearrangement 74
3.1.7.4 Claisen Rearrangement/Ene Reaction 75
3.1.7.5 Claisen Rearrangement/Conia-Type Oxa-Ene Reaction 77
3.1.7.6 Oxy-Cope/Ene/Claisen Rearrangement 78
3.1.8 The Carbanion-Accelerated Claisen Rearrangement 78
3.1.8.1 Sulfonyl-Stabilized Anions 78
3.1.8.2 Phosphine Oxide and Phosphonate-Stabilized Anions 80
3.1.8.3 Phosphonamide-Stabilized Anions 82
3.1.9 Conclusion 83

References 83
3.2 Aromatic Claisen Rearrangement

Hisanaka Ito and Takeo Taguchi

3.2.1 Introduction
3.2.2 Mechanism
3.2.2.1 Ortho and Para Rearrangement
3.2.2.2 Transition State
3.2.2.3 Abnormal Claisen Rearrangement
3.2.3 Substrate and Substituent Effect
3.2.3.1 Preparation of Substrate
3.2.3.2 Aryl Unit
3.2.3.3 Allyl and Propargyl Unit
3.2.4 Reaction Conditions
3.2.4.1 Thermal Conditions
3.2.4.2 Solvent Effect
3.2.4.3 Brønsted Acid Catalyst
3.2.4.4 Lewis Acid Catalyst
3.2.4.5 Base Catalyst
3.2.4.6 Transition Metal Catalyst
3.2.4.7 Other Conditions
3.2.5 Thio-, Amino-, and Related Claisen Rearrangement
3.2.6 Asymmetric Synthesis
3.2.6.1 Intramolecular Chirality Transfer
3.2.6.2 Enantioselective Rearrangement
3.2.7 Synthetic Applications
3.2.7.1 Consecutive Cyclization
3.2.7.2 Tandem Reaction
3.2.7.3 Functional Molecule
3.2.7.4 Natural Products and Biologically Active Compounds

4 The Ireland–Claisen Rearrangement (1972–2004)

Christopher M. McFarland and Matthias C. McIntosh

4.1 Introduction
4.2 History
4.3 Numbering and Nomenclature
4.4 Rearrangement Temperature, Substituent Effects and Catalysis
4.4.1 Rearrangement Temperature
4.4.2 Substituent Effects
4.4.3 Catalysis
4.4.3.1 Pd(II) Catalysis
4.4.3.2 Lewis Acid Catalysis
4.4.3.3 Phosphine Catalysis
4.5 Transition State Structure
4.5.1 Isotope Effect Studies
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.1</td>
<td>Allylic Esters with α-Heteroatoms</td>
<td>158</td>
</tr>
<tr>
<td>4.8.1.1</td>
<td>Glycolates</td>
<td>158</td>
</tr>
<tr>
<td>4.8.1.2</td>
<td>Lactates</td>
<td>162</td>
</tr>
<tr>
<td>4.8.1.3</td>
<td>Mandelates</td>
<td>163</td>
</tr>
<tr>
<td>4.8.1.4</td>
<td>Other Higher Esters</td>
<td>163</td>
</tr>
<tr>
<td>4.8.1.5</td>
<td>Glycinates and Other Higher Esters</td>
<td>164</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Allyl Silanes and Stannanes</td>
<td>165</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Glycals</td>
<td>167</td>
</tr>
<tr>
<td>4.8.4</td>
<td>Allyl Lactones</td>
<td>168</td>
</tr>
<tr>
<td>4.8.4.1</td>
<td>Lactones with Exocyclic Allylic Alkenes</td>
<td>169</td>
</tr>
<tr>
<td>4.8.4.2</td>
<td>Lactones with Endocyclic Allylic Alkenes</td>
<td>171</td>
</tr>
<tr>
<td>4.8.5</td>
<td>Tertiary Alcohol-Derived Allylic Esters</td>
<td>175</td>
</tr>
<tr>
<td>4.8.6</td>
<td>bis-Allylic Esters</td>
<td>178</td>
</tr>
<tr>
<td>4.8.7</td>
<td>Fe-Diene Complexes</td>
<td>179</td>
</tr>
<tr>
<td>4.8.8</td>
<td>Hindered Esters</td>
<td>179</td>
</tr>
<tr>
<td>4.9</td>
<td>Applications to Natural Product Synthesis</td>
<td>180</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Prostanoids</td>
<td>180</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Nonactic Acid</td>
<td>181</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Lasalocid A</td>
<td>181</td>
</tr>
<tr>
<td>4.9.4</td>
<td>Tirandamycin Acid</td>
<td>182</td>
</tr>
<tr>
<td>4.9.5</td>
<td>Monensin A</td>
<td>183</td>
</tr>
<tr>
<td>4.9.6</td>
<td>Sphydofuran</td>
<td>185</td>
</tr>
<tr>
<td>4.9.7</td>
<td>Calcimycin</td>
<td>185</td>
</tr>
<tr>
<td>4.9.8</td>
<td>Cero plasteric Acid</td>
<td>186</td>
</tr>
<tr>
<td>4.9.9</td>
<td>Erythronolide A</td>
<td>187</td>
</tr>
<tr>
<td>4.9.10</td>
<td>Ebelactone A and B</td>
<td>187</td>
</tr>
<tr>
<td>4.9.11</td>
<td>25-OH Vitamin D2 Grundmann Ketone</td>
<td>188</td>
</tr>
<tr>
<td>4.9.12</td>
<td>Zincophorin</td>
<td>188</td>
</tr>
<tr>
<td>4.9.13</td>
<td>Steroid Side Chain Homologation</td>
<td>189</td>
</tr>
<tr>
<td>4.9.14</td>
<td>Pseudomononic Acid C</td>
<td>189</td>
</tr>
<tr>
<td>4.9.15</td>
<td>Pine Sawfly Pheromone</td>
<td>190</td>
</tr>
<tr>
<td>4.9.16</td>
<td>Asteltoxin</td>
<td>191</td>
</tr>
<tr>
<td>4.9.17</td>
<td>Breynolide</td>
<td>191</td>
</tr>
<tr>
<td>4.9.18</td>
<td>Methyl Ydignite</td>
<td>192</td>
</tr>
<tr>
<td>4.9.19</td>
<td>(−)-Petasinecine</td>
<td>192</td>
</tr>
<tr>
<td>4.9.20</td>
<td>β-Elemene</td>
<td>193</td>
</tr>
<tr>
<td>4.9.21</td>
<td>(+)-Dolabelatrienone</td>
<td>193</td>
</tr>
<tr>
<td>4.9.22</td>
<td>2-Keto-3-Deoxy-Octonic Acid (KDO)</td>
<td>194</td>
</tr>
<tr>
<td>4.9.23</td>
<td>Methylenolactocin</td>
<td>194</td>
</tr>
<tr>
<td>4.9.24</td>
<td>Eupomatilones</td>
<td>195</td>
</tr>
<tr>
<td>4.9.25</td>
<td>Trichotheccenes</td>
<td>195</td>
</tr>
<tr>
<td>4.9.26</td>
<td>(±)-Widdrol</td>
<td>196</td>
</tr>
<tr>
<td>4.9.27</td>
<td>Equisetin</td>
<td>197</td>
</tr>
<tr>
<td>4.9.28</td>
<td>Muscone</td>
<td>197</td>
</tr>
<tr>
<td>4.9.29</td>
<td>Quadrone</td>
<td>198</td>
</tr>
</tbody>
</table>
5 Simple and Chelate Enolate Claisen Rearrangement 211

5.1 Simple Enolate Claisen Rearrangement 211

Mukund G. Kulkarni

5.1.1 Introduction 211
5.1.2 History 212
5.1.3 Simple Enolates of Allylic Esters 214
5.1.4 Stereoselectivity in Enolate Formation 220
5.1.5 Simple Enolates of Allylic Esters of α-Hetero Acids 223
5.1.6 Simple Enolates of N-Allyl Amides 226
5.1.7 Miscellaneous Enolates 229
5.1.8 Conclusion 230

References 231

5.2 Chelate Enolate Claisen Rearrangement 233

Uli Kazmaier

5.2.1 Introduction 233
5.2.2 Claisen Rearrangements of Substrates with Chelating Substituents in the α-Position 234
5.2.2.1 Rearrangement of α-Hydroxy Substituted Allylic Esters 234
5.2.2.2 Rearrangement of α-Alkoxy-Substituted Allylic Esters 239
5.2.2.3 α-Amido Substituents 256
5.2.2.4 Rearrangement of α-Thio Substituted Allylic Esters 288
5.2.3 Claisen Rearrangements of Substrates Bearing Chelating Substituents in the β-Position 289
5.2.3.1 β-Hydroxy Substituents 289
5.2.3.2 β-Alkoxy Substituents 291
5.2.3.3 β-Amino Substituted Substrates 291
5.2.4 Chelation Controlled Aza-Claisen Rearrangements 293

References 295

6 Claisen–Johnson Orthoester Rearrangement 301

Yves Langlois

6.1 Introduction 301
6.2 Historical Overview 301
6.3 Mechanistic Aspects 303
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1</td>
<td>Reactivity</td>
<td>303</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Stereoselectivity</td>
<td>306</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Alternatives to the Orthoester Rearrangement</td>
<td>310</td>
</tr>
<tr>
<td>6.4</td>
<td>Synthetic Applications</td>
<td>312</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Terpenes, Fatty Acids, and Polyketide Derivatives</td>
<td>312</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Steroids</td>
<td>332</td>
</tr>
<tr>
<td>6.4.2.1</td>
<td>Syntheses of the Tetracyclic Core of Steroids</td>
<td>332</td>
</tr>
<tr>
<td>6.4.2.2</td>
<td>Syntheses of Steroid Side Chains</td>
<td>335</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Alkaloids</td>
<td>340</td>
</tr>
<tr>
<td>6.4.3.1</td>
<td>Indole Alkaloids</td>
<td>340</td>
</tr>
<tr>
<td>6.4.3.2</td>
<td>Other Alkaloids</td>
<td>345</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Carbohydrates</td>
<td>347</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Miscellaneous Compounds</td>
<td>349</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusion</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>362</td>
</tr>
<tr>
<td>7</td>
<td>The Meerwein–Eschenmoser–Claisen Rearrangement</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>Stefan N. Gradl and Dirk Trauner</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Definition, Discovery and Scope</td>
<td>367</td>
</tr>
<tr>
<td>7.2</td>
<td>Formation of Ketene N,O-Acetals</td>
<td>370</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Condensation with Amide Acetals or Ketene Acetals (Eschenmoser–Claisen Rearrangement)</td>
<td>370</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Addition of Alkoxides to Amidinium Ions (Meerwein–Claisen Rearrangement)</td>
<td>372</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Addition of Alcohols to Ynamines and Ynamides (Ficini–Claisen Rearrangement)</td>
<td>373</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Miscellaneous Methods</td>
<td>374</td>
</tr>
<tr>
<td>7.3</td>
<td>Selectivity</td>
<td>376</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Regioselectivity</td>
<td>376</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Stereoselectivity</td>
<td>377</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Cyclic Allylic Alcohols</td>
<td>377</td>
</tr>
<tr>
<td>7.3.2.2</td>
<td>Acyclic Allylic Alcohols</td>
<td>378</td>
</tr>
<tr>
<td>7.4</td>
<td>Applications in Synthesis</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>394</td>
</tr>
<tr>
<td>8</td>
<td>The Carroll Rearrangement</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Mark A. Hatcher and Gary H. Posner</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>397</td>
</tr>
<tr>
<td>8.2</td>
<td>Mechanism</td>
<td>398</td>
</tr>
<tr>
<td>8.3</td>
<td>Synthetic Applications</td>
<td>401</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Tertiary and Quaternary Carbon Bond Formation</td>
<td>401</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Natural Products</td>
<td>406</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Steroidal Side-Chain Formation</td>
<td>412</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Aromatic Carroll Rearrangements</td>
<td>415</td>
</tr>
</tbody>
</table>
Preface

Historically, the thermal rearrangement of aromatic and aliphatic allyl vinyl ether was first published in 1912 by Ludwig Claisen. The neat carbon variant of this 3,3 sigmatropic bond reorganization, the Cope rearrangement, was reported in 1940, 38 years later. Thus, the Cope reaction should have been termed as a 3-carba-Claisen rearrangement. However, the reverse is found within the literature: the Claisen rearrangement is termed as a 3-oxa-Cope rearrangement. Consequently, the hetero Claisen reactions are found as 3-hetero-Cope conversions displaying heteroatoms such as nitrogen and sulfur in position 3 of the rearrangement framework. Carrying out a keyword supported literature search, this inconsistent use of synonyms describing one and the same process should be strongly considered. Within our book, we will use the historically exact name Claisen rearrangement. Considering the widespread applications of the Claisen rearrangement, we should keep in mind that Mother Nature has been utilizing the aliphatic version already for a much longer period of time: the enzyme-catalyzed rearrangement of chorismate into prephenate also follows the same mechanism.

Although nowadays almost anybody seems to know something about the Claisen rearrangement, the exact nature of the transition state and the way substituents and solvents influence the rate and the selectivity of the reaction can be very difficult to elucidate. However, for the vast majority of applications, qualitative guidelines are sufficient to predict and/or explain the course of a Claisen rearrangement. One of the main conclusions from this book is that there isn’t the Claisen rearrangement but a truly amazing number of mechanistically related variations of it that have been and are being developed. In this context, the first Claisen book presents a platform concerning basics and the state of the art.

From the breathtaking number of applications in target-oriented synthesis it becomes evident that the Claisen rearrangement (and its variants) is one of the most powerful stereoselective carbon-carbon-bond forming reactions. The efficiency of the reaction clearly profits from its atom economy. However, to be honest, access to the actual substrate for the rearrangement may prove costly. A particular strength is the predictability of the stereochemical course of the rearrangement based on the knowledge of the geometry of the cyclic transition state.

Still, even after more than 90 years of development, optimization and application of Claisen rearrangements, there is still plenty of room for further research.
With this in mind, we intended to provide interested researchers with a useful guide to the scope and limitations of this versatile rearrangement. To realize this task, we had to rely on various specialists who were originally contacted in the beginning of 2003 and, indeed, many of them agreed to contribute to the Claisen book. We are deeply indebted to all the authors who spent their limited time resources to compile a truly outstanding collection of facts concerning the various Claisen rearrangements. This book will certainly serve as a reference for many years to come.

Dortmund and Mainz

Martin Hiersemann and Udo Nubbemeyer
List of Contributors

Katsuhiro Akiyama
Department of Applied Chemistry
Tokyo Institute of Technology
2-12-1S1-29 Ookayama, Meguro-ku
Tokyo 152-8552
Japan

Mark A. Hatcher
Department of Chemistry
The Johns Hopkins University
3400 North Charles Street
Baltimore, MD 21218
USA

Carole Alayrac
Organisch-Chemisches Institut der
Westfälischen Wilhelms-Universität
Münster
Corrensstrasse 40
48149 Münster
Germany

Martin Hiersemann
Institute of Organic Chemistry
University of Dortmund
Otto-Hahn-Strasse 6
44227 Dortmund
Germany

Stefan N. Gradl
Department of Chemistry
University of California at Berkeley
628 Latimer Hall
Berkeley, CA 94720
USA

Hayato Ichikawa
Osaka University of Pharmaceutical
Sciences
4-20-1 Nasahara
Takatsuki, Osaka, 569-1094
Japan

Hong Guo
Department of Biochemistry,
Cellular and Molecular Biology
University of Tennessee
M407 Walters Life Sciences Building
Knoxville, TN 37996-0840
USA

Hisanaka Ito
Department of Pharmacy and
Life Science
Tokyo University
1432-1 Horinouchi, Hachioji
Tokyo 192-0392
Japan
List of Contributors

Uli Kazmaier
Institute of Organic Chemistry
University of the Saarland
Building C 4.2
P.O. Box 15 11 50
66041 Saarbrücken
Germany

Mukund G. Kulkarni
Department of Chemistry
University of Pune
Pune 411 007
India

Yves Langlois
Laboratoire de Synthèse des
Substances Naturelles
Université de Paris-Sud
Bâtiment 410
91405 Orsay
France

Keiji Maruoka
Department of Chemistry
Kyoto University
Sakyo, Kyoto 606-8502
Japan

Christopher M. McFarland
Department of Chemistry and
Biochemistry
University of Arkansas
Fayetteville, AR 72701
USA

Matthias C. McIntosh
Department of Chemistry and
Biochemistry
University of Arkansas
Fayetteville, AR 72701
USA

Patrick Metzner
Laboratoire de Chimie Moléculaire et
Thioorganique (UMR CNRS 6507)
ENSICAEN-Université de Caen
6 Boulevard du Maréchal Juin
14050 Caen
France

Koichi Mikami
Department of Applied Chemistry
Tokyo Institute of Technology
2-12-1S1-29 Ookayama, Meguro-ku
Tokyo 152-8552
Japan

Udo Nubbemeyer
Institute of Organic Chemistry
University of Mainz
Duesbergweg 10–14
55128 Mainz
Germany

Stéphane Perrio
Laboratoire de Chimie Moléculaire et
Thioorganique (UMR CNRS 6507)
ENSICAEN-Université de Caen
6 Boulevard du Maréchal Juin
14050 Caen
France

Gary H. Posner
Department of Chemistry
The Johns Hopkins University
3400 North Charles Street
Baltimore, MD 21218
USA
Niny Rao
Department of Biochemistry, Cellular and Molecular Biology
University of Tennessee
M407 Walters Life Sciences Building
Knoxville, TN 37996-0840
USA

Vincent Reboul
Laboratoire de Chimie Moléculaire et Thioorganique (UMR CNRS 6507)
ENSICAEN-Université de Caen
6 Boulevard du Maréchal Juin
14050 Caen
France

Julia Rehbein
Institute of Organic Chemistry
University of Dortmund
Otto-Hahn-Strasse 6
44227 Dortmund
Germany

Takeo Taguchi
Department of Pharmacy and Life Science
Tokyo University
1432-1 Horinouchi, Hachioji
Tokyo 192-0392
Japan

Dirk Trauner
Department of Chemistry
University of California at Berkeley
602 Latimer Hall
Berkeley, CA 94720
USA
1
Chorismate-Mutase-Catalyzed Claisen Rearrangement

Hong Guo and Niny Rao

1.1 Introduction

Chorismic acid is the key branch point intermediate in the biosynthesis of aromatic amino acids in microorganisms and plants (Scheme 1.1a) [1]. In the branch that leads to the production of tyrosine and phenylalanine, chorismate mutase (CM, chorismate-pyruvate mutase, EC 5.4.99.5) is a key enzyme that catalyzes the isomerization of chorismate to prephenate (Scheme 1.1b) with a rate enhancement of about 10^6–10^7-fold. This reaction is one of few pericyclic processes in biology and provides a rare opportunity for understanding how Nature promotes such unusual transformations. The biological importance of the conversion from chorismate to prephenate and the synthetic value of the Claisen rearrangement have led to extensive experimental investigations [2–43].

In addition, the reaction catalyzed by chorismate mutase is a paradigm for the study of enzyme mechanism and has been a subject of extensive computational investigations [44, 47–83]. One of the main reasons for the current focus on the mechanism of this enzyme is the fact that the reaction is a straightforward unimolecular rearrangement of the substrate with no chemical transformations in the enzyme or the solvent during the reaction. This eliminates many of the problems that arise for other cases and may help to settle some of the long-standing issues concerning the origin of the catalysis [84].

Experimental results for the CM-catalyzed and uncatalyzed reaction, as well as structural information for chorismate mutase, have been extensively discussed in two previous reviews [2, 3]. There has been a rapid growth of literature in computational studies of chorismate mutase in the last few years. In this chapter, we shall begin by summarizing some key experimental data related to the Claisen rearrangement along with existing structural information for chorismate mutase. We will then review the results of computational studies of chorismate mutase and discuss different proposals that have been suggested for the mechanism of the CM-catalyzed reaction.
1.2 Experimental Studies

1.2.1 Substrate Binding

Knowles and coworkers [13, 14] demonstrated that the rearrangement of chorismate to prephenate proceeds through the same transition state (1, TS in Scheme 1.2) in solution and at the enzyme active site. The atoms of the [3,3]-pericyclic region in this TS are arranged in a “chair-like” configuration. The result of Knowles and coworkers has led to the suggestion that the bond breaking and making process starts from a chair-like pseudodiaxial conformer of chorismate (2, CHAIR in Scheme 1.2), where C1 and C9 are positioned to form the carbon-carbon bond, as required for the Claisen rearrangement. Thus, one straightforward way for chorismate mutase to catalyze the rearrangement is to bind the CHAIR conformer preferentially from solution and then catalyze its chemical transformation at the active site. A requirement for such a mechanism is a sufficiently large population of the CHAIR conformer in solution. To determine the population of CHAIR in solution, Copley and Knowles [15] measured the temperature variation of the 1H coupling constants for the protons in the ring of chorismate. It was shown that al-
though the dominant conformer(s) is a pseudodiequatorial conformation (see Scheme 1.2 for a schematic diagram), a pseudodixial conformer(s) exists at a reasonable level (~12%) in solution. Copley and Knowles [15] assumed that the pseudodixial conformer they observed in the NMR experiment was the CHAIR conformer and concluded that the enzyme could bind this reactive conformer directly from solution and catalyze its chemical transformation at the active site. But a later study of the transferred nuclear Overhauser effects for chorismate by Hilvert and his coworkers [17] failed to find evidence for the existence of CHAIR in solution. Recent molecular dynamics (MD) simulations [82, 83] suggested that the NMR data could correspond to other pseudodixial conformer(s) rather than CHAIR (see below).

![Scheme 1.2](image)

1.2.2 Substrate Structural Requirements for Catalysis

The structural features of the substrate required for binding and catalysis by *Escherichia coli* chorimate mutase (P-protein EcCM) and *Bacillus subtilis* chorismate mutase (BsCM) have been studied [22, 23]. Besides the allyl vinyl ether, the two carboxylic acid groups in chorismic acid were found to be very important for the catalysis. For instance, experimental studies [22] showed that ester 5 (see Scheme 1.3) was not a substrate or inhibitor for EcCM, suggesting that the presence of the sidechain carboxyl group is crucial for the binding and catalysis. EcCM and BsCM were also unable to catalyze the rearrangement of 6 (which lacks the ring carboxylic acid group) [22, 23], even though 6 proved to be a weak to modest competitive inhibitor (K_i of 6 is 0.4 mM and 0.5 mM for EcCM and BsCM, respectively; for chorismate K_m is 0.32 mM and 0.28 mM, respectively). Thus, the existence of the ring carboxyl group is also essential for the catalysis, but may not

![Scheme 1.3](image)

5: $R_1 = \text{CO}_2\text{H}; R_2 = \text{CO}_2\text{Me}; R_3 = \text{OH}$
6: $R_1 = \text{H}; R_2 = \text{CO}_2\text{H}; R_3 = \text{OH}$
7: $R_1 = \text{CO}_2\text{H}; R_2 = \text{CO}_2\text{H}; R_3 = \text{OMe}$
be required for the binding. Analog 7 was a reasonable substrate for EcCM ($K_m = 1.9 \text{ mM}$ and $k_{\text{cat}} = 0.56 \text{ s}^{-1}$) with a rate acceleration ($k_{\text{cat}}/k_{\text{uncat}}$) of 2×10^4 by the enzyme; for chorismic acid $k_{\text{cat}}/k_{\text{uncat}} = 2 \times 10^6$. Thus, the free hydroxyl group at C$_4$ may not be required for the catalysis by EcCM, but it is not clear whether this is also the case for BsCM (see below).

1.2.3 X-ray Structures of Chorismate Mutase

A number of X-ray structures for chorismate mutase are available. The structures of BsCM and Saccharomyces cerevisiae (yeast) CM complexed with an endo-oxabicyclic transition state analog inhibitor (4, TSA in Scheme 1.2) [19] have been determined by Lipscomb and coworkers [6, 7, 12, 34]; the structures without TSA bound were also obtained for BsCM and yeast CM as well as for some of their mutants [8, 10, 12, 31]. The X-ray structures for the monofunctional amino-terminal chorismate mutase domain engineered from the P-protein (EcCM) and a less active catalytic antibody 1F7 complexed with TSA have been determined by Lee et al. [4] and Haynes et al. [33], respectively. Both EcCM and yeast CM are homodimers, whereas BsCM is a homotrimer. It has been demonstrated that the dimer of EcCM can be superimposed onto a monomer of yeast CM [4, 11, 34], indicating a common evolutionary origin of the two CMs with an ancestral protein that was structurally closer to EcCM than to yeast CM [34]. Moreover, there was a possible gene duplication event in the evolution of yeast CM [34], allowing the formation of the regulatory domain for this enzyme. The structure of BsCM, which consists mainly of β-sheets, is different from the almost all-helical structures of EcCM and yeast CM.

Scheme 1.4 shows the schematic diagrams for the active site structures of EcCM [4], yeast CM [12, 34], BsCM [6, 7] and catalytic antibody 1F7 [33]. The active site of BsCM is somewhat open and more solvent accessible than the more buried catalytic packets in EcCM and yeast CM. As is evident from Scheme 1.4a and b, most of the active site residues in EcCM and yeast CM are conserved. For instance, in the both cases the guanidinium groups of two Arg residues (Arg28 and Arg11$'$ in EcCM and Arg16 and Arg157 in yeast CM, respectively) form salt bridges with the carboxylate groups of the inhibitor. Lys39 (Lys168) in EcCM (yeast CM) is in hydrogen bond distances to the sidechain carboxylate group and the ether oxygen of TSA. A major difference between the two active sites is that the other residue interacting with the ether oxygen is Gln in EcCM (Gln88), but is Glu in yeast CM (Glu246). It has been shown that Glu246 has to be protonated for functionality of yeast CM. The replacement of Glu246 by Gln changes the pH optimum for the activity from a narrow to a broad pH range, even though the kinetic parameters are not significantly affected by the mutation (e.g., the effect on k_{cat}/K_m is less than 10-fold) [28]. Consistent with these observations on yeast CM, the replacement of Gln88 in EcCM by Glu leads to loss of activity of 700-fold at pH 7.5, but the activity of the Gln88Glu mutant can be reduced almost 103-fold by simply lowering the pH to 4.9 [27] (see Table 1.1 and the next section for more details on the effects of mutations).
Scheme 1.4 The active sites of the CM complexes, (a) EcCM; (b) yeast CM; (c) BsCM; (d) catalytic antibody 1F7.

Scheme 1.4c shows that the active site of BsCM also consists of highly charged residues. Arg7 forms a similar salt bridge with the sidechain carboxylate group of TSA as Arg11’ in the EcCM complex. Arg90 interacts with the both ether oxygen and sidechain carboxylate group. Arg63 was not visible in the electron-density map in an earlier X-ray structure determination [7]. But a more recent X-ray structure [8] of higher resolution (1.3 Å) without TSA bound showed that Arg63 is turned inward toward the active site and may therefore interact with the ring carboxylate group of TSA. Another interaction that exists in all the three CMs is the hydrogen bond between the C4-hydroxyl group of TSA and a Glu residue (Glu52 in EcCM, Glu198 in yeast CM and Glu78 in BsCM). This Glu residue appears to play a more important role for the reaction catalyzed by BsCM than by EcCM (see below). Comparison of the active site structures of EcCM, BsCM and yeast CM with that of the catalytic antibody (1F7) (Scheme 1.4d) shows that the enzymes provide many more hydrogen bonding and electrostatic interactions to the functional groups of TSA than does the antibody. The lack of the multiple interactions is believed to be responsible for the observed 10^4-times lower activity of the antibody relative to that of the natural chorismate mutase [33].
1.2.4 Effects of Mutations

For the uncatalyzed Claisen rearrangement k_{uncat} is about 10^{-5}s^{-1} [20, 31], and the k_{cat} value for the CM-catalyzed reaction is approximately 46–72s^{-1} (Table 1.1). Thus, the enzyme is able to accelerate the rate of the reaction by 10^6 to 10^7-fold. To identify the key residues that play an important role in the catalysis, a number of active site mutants were generated and characterized for EcCM [27, 35], yeast CM [28] and BsCM [25, 29, 31, 36] and the effects of mutations on the activity have been determined.

For EcCM, Arg28, Arg11′ and Lys39 are involved in the direct interactions with the two carboxylate groups as well as the ether oxygen of TSA in the X-ray structure (Scheme 1.4a). Table 1.1 shows that these positively charged residues play a very important role in the catalysis [27]. For instance, the k_{cat}/K_m values for the Arg28Lys and Arg11Lys are approximately 10^4 lower than wild-type, whereas the values for Lys39Ala and Lys39Arg are about 10^4 lower. Similar observations were made for the related yeast CM, where the Arg157Ala, Arg16Ala and Lys168Ala mutants showed no detectable chorismate mutase activity [28]. The hydrogen bond between Gln88 (Glu246 in yeast CM) and the ether oxygen was also found to be very important. For instance, the replacement of Gln88 by Ala leads to a reduction of the activity by 10^4-fold. For the Glu52 mutants, the order of activity is Glu52 > Gln52 > Asp52 > Ala52. Glu52 interacts with the C$_t$-hydroxyl group in the X-ray structure. The higher activity of Glu52Gln than Glu52Asp seems to indicate that the existence of a carboxylate group in the vicinity of the C$_t$-hydroxyl may not be necessary. This seems to be consistent with the earlier discussions of substrate structural requirements for the catalysis where it was shown that the free hydroxyl group at C$_t$ may not be required in the case of the EcCM-catalyzed reaction (see above).

The kinetic parameters for BsCM mutants are also available [25, 29, 31, 36] and listed in Table 1.1. Arg7, which forms a similar interaction with TSA as Arg11′ in EcCM, was found to be very important. For instance, the replacement of Arg7 by Ala leads to an approximately 5×10^5-fold reduction in k_{cat}/K_m. Arg90, which interacts with the both ether oxygen and sidechain carboxylate group (Scheme 1.4c), is also crucial for the catalysis. For instance, the k_{cat} and k_{cat}/K_m values for Arg90Gly are more than five orders of magnitude lower than those of the wild-type enzyme. Moreover, the importance of the positive charge on Arg90 was demonstrated by Hilvert and coworkers [36] who showed that there is a significant reduction of the activity ($> 10^4$-fold in k_{cat}) when Arg90 was replaced by citrulline, an isosteric but neutral arginine analog. Interestingly, the double mutants Cys88Lys/Arg90Ser and Cys88Ser/Arg90Lys restore a factor of more than 10^4 in k_{cat} compared to Arg90Gly [31]. Another important residue for the catalysis is Glu78. Glu78 is in a similar location as Glu52 in EcCM. Table 1.1 shows that the k_{cat}/K_m values for Glu78Ala and Glu78Gln are about 10^6 lower than wild-type. By contrast, the activity of Glu78Asp is only 30-fold lower. This seems to suggest that the existence of a carboxylate group in the vicinity of the C$_t$-hydroxyl is more important for the
1.2 Experimental Studies

Table 1.1 Kinetic constants for EcCM and BsCM mutants.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Mutant</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>K_m (μM)</th>
<th>k_{cat}/K_m (M$^{-1}$s$^{-1}$)</th>
<th>K_i for 4 (μM)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcCM</td>
<td>Wild type</td>
<td>72</td>
<td>296</td>
<td>2.4×10^5</td>
<td>3.66</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>R11A</td>
<td>>2000</td>
<td>26</td>
<td></td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>R11K</td>
<td>>2000</td>
<td>230</td>
<td></td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>R28A</td>
<td>>2000</td>
<td>170</td>
<td></td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>R28K</td>
<td>>2000</td>
<td>230</td>
<td></td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>K39A</td>
<td>>2000</td>
<td>4.3</td>
<td></td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>K39R</td>
<td>>2000</td>
<td>1.9</td>
<td></td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>E52A</td>
<td>0.49</td>
<td>4580</td>
<td>110</td>
<td>218</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>E52D</td>
<td>3.1</td>
<td>1440</td>
<td>2.2×10^3</td>
<td>78.4</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>E52Q</td>
<td>24</td>
<td>1080</td>
<td>2.3×10^4</td>
<td>26.8</td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>Q88A</td>
<td>>2000</td>
<td>12</td>
<td></td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>Q88E</td>
<td>>2000</td>
<td>361</td>
<td></td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td></td>
<td>Q88E (pH 4.9)</td>
<td>72</td>
<td>296</td>
<td>2.4×10^5</td>
<td>3.66</td>
<td>[27]</td>
</tr>
<tr>
<td>BsCM</td>
<td>Wild type</td>
<td>46</td>
<td>67</td>
<td>6.9×10^5</td>
<td>3</td>
<td>[36]</td>
</tr>
<tr>
<td></td>
<td>R90G</td>
<td>2.7×10^{-4}</td>
<td>150</td>
<td>31</td>
<td></td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td>R90K</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>R90A</td>
<td>< 1</td>
<td></td>
<td></td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>R7K</td>
<td>717</td>
<td></td>
<td></td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>R7A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>C75D/E78A</td>
<td>1.66 × 10^3</td>
<td></td>
<td></td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>E78D</td>
<td>35.7</td>
<td>1297</td>
<td>2.75×10^4</td>
<td>43.6</td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>E78Q</td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>E78A</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>C88K/R90K</td>
<td>0.29</td>
<td>4300</td>
<td>67</td>
<td>>>1000</td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td>C88K/R90S</td>
<td>0.32</td>
<td>1900</td>
<td>170</td>
<td>1100</td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td>R90Cit</td>
<td>0.0026</td>
<td>270</td>
<td>230</td>
<td>6.8</td>
<td>[36]</td>
</tr>
</tbody>
</table>
BsCM-catalyzed reaction than for the EcCM-catalyzed reaction. Consistent with this suggestion, the activity of the Glu78Ala mutant is rescued 50-fold by replacing C75 (which is also near the C4-hydroxyl group) with Asp in double mutant Glu78Ala/C75Asp [25]. The studies of substrate structural requirements for the catalysis (see above) showed that 6, which lacks the ring carboxylate group, is not a substrate for EcCM [22] and BsCM [23]. For EcCM, the residue that interacts with the ring carboxylate group is Arg 28, and the replacement of Arg28 by another residue leads to a significant reduction of the activity. However, for BsCM the corresponding residue has not been clearly identified. A recent X-ray structure [8] for BsCM suggested that Arg63 may interact with the ring carboxylate group, but the mutagenesis study for the Arg63 mutants has not been available.

1.2.5 Activation Parameters

The activation parameters for the CM-catalyzed and uncatalyzed Claisen rearrangement are listed in Table 1.2 [20, 21, 26, 42]. For the uncatalyzed reaction, the activation barrier (ΔG‡) is 24.5 kcal/mol. Chorismate mutase is able to reduce the activation barrier by 7–10 kcal/mol. Table 1.2 shows that the rate acceleration is due to a reduction in the entropy of activation to near zero and a decrease in the enthalpy of activation by about 5 kcal/mol; the only exception is the BsCM-catalyzed reaction for which there is a significant unfavorable ΔS‡. However, the reliability of these data has been called into question [44], and it was suggested [44] that both the substrate binding and product leaving are expected to show large solvent compensation effects involving ΔH‡ and ΔS‡ [45, 46].

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>ΔH‡ (kcal·mol⁻¹)</th>
<th>ΔS‡ (e.u.)</th>
<th>ΔG‡ (kcal·mol⁻¹)</th>
<th>ΔΔG‡ (kcal·mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BsCM</td>
<td>12.7</td>
<td>−9.1</td>
<td>15.4</td>
<td>−8.9</td>
</tr>
<tr>
<td>EcCM</td>
<td>16.3</td>
<td>−3.0</td>
<td>17.2</td>
<td>−7.3</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>15.9</td>
<td>−1.1</td>
<td>16.2</td>
<td>−8.3</td>
</tr>
<tr>
<td>S. aureofaciens</td>
<td>14.5</td>
<td>−1.6</td>
<td>15.0</td>
<td>−9.5</td>
</tr>
<tr>
<td>Uncatalyzed</td>
<td>20.5</td>
<td>−12.9</td>
<td>24.5</td>
<td>−</td>
</tr>
</tbody>
</table>

a) All entries are as cited in Refs. [21] and [26]. ΔG‡ calculated at 25 °C.