Acid Gas Injection and Related Technologies
Scrivener Publishing
3 Winter Street, Suite 3
Salem, MA 01970

Scrivener Publishing Collections Editors

James E. R. Couper Ken Dragoon
Richard Erdlac Rafiq Islam
Pradip Khaladkar Vitthal Kulkarni
Norman Lieberman Peter Martin
W. Kent Muhlbauer Andrew Y. C. Nee
S. A. Sherif James G. Speight

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)
Acid Gas Injection and Related Technologies

Edited by
Ying (Alice) Wu
Sphere Technology Connection
and
John J. Carroll
Gas Liquids Engineering

Scrivener

WILEY
Contents

Preface xix

Introduction

Acid Gas Injection: Past, Present, and Future xxi

John J. Carroll

Section 1: Data and Correlation

1. Equilibrium Water Content Measurements For Acid Gas Mixtures 3
 1.1 Introduction 4
 1.2 Available Literature Data 6
 1.3 Equilibration Vessels / Techniques 9
 1.3.1 The Visual Dew Point Cell, VDP 10
 1.3.2 The Stirred Autoclave, SA, and Basic Equilibrium Cell, EQ 11
 1.3.3 The Isolated Floating Piston with Micro Sampler, IFP/µS 13
 1.4 Water Analysis 14
 1.5 Sampling Issues for Analytic Methods 15
 1.6 Some Recent Results and Future Directions 17
 References 19

2. The Performance of State of the Art Industrial Thermodynamic Models for the Correlation and Prediction of Acid Gas Solubility in Water 21
 Marco A. Satyro and James van der Lee
 2.1 Introduction 21
 2.2 Thermodynamic Modeling 22
 2.3 Water Content 28
 2.4 Conclusions and Recommendations 31
 Acknowledgements 33
 Nomenclature 33
 Subscripts 34
3. The Research on Experiments and Theories about Hydrates in High-Sulfur Gas Reservoirs

Liu Jianyi, Zhang Guangdong, Ye Changqing, Zhang Jing and Liu Yanli

3.1 Introduction

3.1.1 The Progress of Experimental Test in High-CO$_2$ or H$_2$S-containing System

3.1.2 The Progress of Prediction Model of High-CO$_2$ or H$_2$S-containing System

3.2 Experimental Tests

3.2.1 Experimental Process

3.2.2 Experimental Samples

3.2.3 Experimental Results

3.2.4 Alcohol and Glycol Systems

3.2.5 Electrolytes Systems

3.3 Thermodynamic Model

3.3.1 The Improvement of Chemical Potential of Hydration Phase

3.3.2 Calculation of Activity of Water Phase

3.3.3 The Phase Equilibrium Calculation of Water-gas- Electrolytes- Alcohols

3.3.4 The Definition of Freezing Point in Inhibitors-containing System

3.3.5 Improved Prediction Model of Hydrate

3.4 Experimental Evaluation

3.4.1 Experimental Evaluation of Thermodynamics Prediction Model of Hydrate

3.4.2 The Error Evaluation of the Improved Model for Experimental Data

3.4.3 Pure Water is Water-rich in System

3.4.4 The Alcohol Solution is Water-rich in System

3.4.5 The Electrolytes Solution is Water-rich in System

3.4.6 The Mixed of Electrolytes and Methanol Solution is Water-rich in System

3.5 Conclusions

Acknowledgements

References
4. An Association Model for the Correlation of the Solubility of Elemental Sulfur in Sour Gases 61

Bian Xiaoqing, Du Zhimin and Chen Jing

4.1 Introduction 61
4.2 Derivation of an Association Model 62
4.3 Calculation and Analysis of Solubility 67
4.4 Conclusions 72
Acknowledgements 73
References 73

5. Properties of CO$_2$ Relevant To Sequestration – Density 75

Sara Anwar and John J. Carroll

5.1 Introduction 75
5.2 Review and Correlation 78
5.2.1 Equations of State 78
5.3 Density 80
References 80

6. The Experimental Study of the Effect of the CO$_2$ Content on Natural Gas Properties at Gathering Conditions 81

Du Jianfen, Hu Yue, Guo Ping, Deng Lei, and Yang Suyun

6.1 Introduction 82
6.2 Experimental Test Process 82
6.3 Experimental Principles and Methods 83
6.4 Experimental Conditions 83
6.5 Analysis of Experimental Results 84
6.6 Conclusions 102

Section 2: Process Engineering

7. Dehydration of Acid Gas Prior to Injection 107

Eugene W. Grynia, John J. Carroll, and Peter J. Griffin

7.1 Introduction 107
7.2 Acid Gas Phase Diagrams 108
7.3 Water Content of Acid Gas 109
7.4 Water Content of Acid Gas for Different Isotherms 111
7.5 Effect of Impurities on Water Content of Acid Gas 115
7.6 Acid Gas Dehydration 116
Contents

7.6.1 Compression and Cooling Alone 117
7.6.2 Acid Gas Dehydration with TEG 118
7.7 Hydrates of Acid Gas 125
7.8 Conclusions 127
References 127

8. Limitations And Challenges Associated With The Disposal Of Mercaptan-Rich Acid Gas Streams By Injection – A Case Study 129
Felise Man and John J. Carroll

8.1 Properties of Mercaptans 130
8.1.1 Pure Component Properties 130
8.1.2 Phase Equilibrium 131
8.1.3 Water Content and Solubility 131
8.1.4 Hydrates 131
8.2 Limitations of Process Simulation Tools and Process Design 132
8.2.1 Vapour-Liquid Equilibria and Hydrate Formation 133
8.2.2 Water Content and Dehydration Processes 133
8.3 Case Study 134
8.3.1 Injection Pressures 136
8.3.2 Phase Envelopes and Compression 136
8.3.3 Dehydration 137
8.4 Conclusions 139
References 139

9. Acid Gas: When to Inject and When to Incinerate 141
Audrey Mascarenhas

9.1 Incineration Technology 142
9.2 Conclusion 145

10. Dynamics of Acid Gas Injection Well Operation 147
R. Mireault, R. Stocker, D. Dunn, and M. Pooladi-Darvish

10.1 Introduction 148
10.2 Effects of Gas Composition 152
10.3 Determining Wellhead Operating Pressure 154
10.4 Computing Wellbore Pressure Changes 156
Section 3: CO₂ Enhanced Oil Recovery

11. Learnings from CO₂ Miscible Floods Provides Design Guidelines for CO₂ Sequestration

Jim Louie

11.1 Introduction

11.2 Encana Weyburn and Apache Midale Projects

11.3 Why CO₂ for EOR?

11.4 Properties of CO₂

11.5 CO₂ Dehydration

11.6 Materials Selection

11.6.1 Supply Carbon Dioxide Pipeline

11.6.2 Production Pipelines

11.7 Mercaptans

11.8 Safety Hazards of CO₂

11.9 Capital Costs

11.10 Summary

References

12. Reservoir Simulation of CO₂ Injection after Water Flooding in Xinli Oil Field

Fu Yu, Du Zhimin and Guo Xiao

12.1 Introduction

12.2 The Xinli Field

12.3 CO₂ Flooding Parameters

12.3.1 Crude Oil Properties

12.3.1.1 Fluid Properties under Surface Condition

12.3.1.2 Underground Fluid Properties

12.3.1.3 Crude Oil Property after CO₂ Flooding

12.3.2 CO₂ Flooding Displacement Efficiency
12.3.3 The Comparison between Different CO₂ Flooding Mode 196
12.4 Numerical Simulations 197
12.4.1 Compositional Model of Xinli Unit 197
12.4.2 Static Reserve Matching 198
12.4.3 Residual Oil Distribution Prediction 198
12.5 The Numerical Simulation of Xinli District 198
12.5.1 The Parameter Optimization of WAG Injection 198
12.5.1.1 Water-Gas Ratio Optimization 202
12.5.1.2 Slug Size Optimization 202
12.5.1.3 Gas Injection Rate Optimization 203
12.5.2 Development Scheme 204
12.6 Conclusions 208
References 208

13. Study on Development Effect of CO₂ Huff and Puff Process in Horizontal Well in Normal Heavy Oil Reservoir 209
Guo Ping, Huang Qin, Li Min, Zhang Wei, Du Jianfen and Zhao Binbin
13.1 Overview 210
13.2 Stimulation Mechanism of CO₂ Huff and Puff Process 211
13.2.1 Crude Oil PVT Test 211
13.2.2 CO₂-Oil Swelling Test 211
13.2.3 Indoor Carbon dioxide Huff and Puff Process in the Long Core 214
13.3 Single Well Numerical Simulation of CO₂ Huff and Puff Process 218
13.3.1 Built Single Well Geological Model 218
13.3.2 Phase Behavior and History Matching 218
13.3.3 Design of Development Program of CO₂ Huff and Puff Process 220
13.3.4 Analyses of Numerical Simulation Results 223
13.4 Conclusions 228
References 229
14. The Study on Mathematic Models of Multi-Phase Porous Flow for CO₂ Drive in Ultra-Low Permeability and Its Application

Zhu Weiyao, Ju Yan, Chen Jiecheng and Liu Jinzi

14.1 Introduction 231
14.2 Mathematical Model of Oil Displacement with CO₂ Injection in the Ultra-low Permeability Reservoir 232
14.2.1 Building the Mathematical Model 232
14.2.2 Characteristic Equation 235
14.2.2.1 Saturation Equation 235
14.2.2.2 Concentration Equation for All-components 235
14.2.2.3 Relative Permeability 236
14.2.2.4 Effective Viscosity 236
14.3 Experimental Study of Ultra-low Permeability Reservoir CO₂ Flooding 236
14.4 Numerical Simulation 238
14.4.1 Numerical Simulation of an Ideal Model 238
14.4.1.1 Numerical Simulation Programming 238
14.4.1.2 Design of Mathematically Geological Models 239
14.4.1.3 Characteristics of the Physical Properties Change 239
14.4.2 Numerical Simulation of the Experiment Pilot Area 242
14.4.2.1 Experimental Zone 242
14.4.2.2 History Matching and Production Forecasting 242
14.4.2.3 Simulation Program Optimization 244
14.4.2.4 Comparison and Prediction of the Production 244

14.5 Conclusion 248
References 249

15. Experimental Appraisal and Single-well Simulation for CO₂ Injection Feasibility in Liaohe Light Oil Blocks

Xiong Yu, Zhang Liehui, Sun Lei and Wu Yi

15.1 Introduction 251
15.2 Phase Behavior of Formation Crude 252
15.3 CO₂ Injection Experiment and Fluid Properties 254
15.4 CO₂ Injection Feasibility Analysis and Parameter Optimization of XB-S₃ 257
 15.4.1 Geological Features 257
 15.4.2 Reservoir Characteristics 257
 15.4.3 Numerical Simulation and Parameter Optimization 258
15.5 Conclusion 262
References 262

16. Experiment Study about Phase Transition Characteristics of CO₂ in Low-permeable Porous Media 263
Guo Ping, Wang Juan, Fan Jianming and Luo Yuqiong
16.1 Introduction 264
16.2 Testing System 265
 16.2.1 Principles of Ultrasonic Testing 265
16.3 Testing Devices 266
16.4 Test Results and Discussions 268
 16.4.1 26°C 268
 16.4.2 48°C 270
16.5 Experiment Phenomenon 270
16.6 Conclusions 272
References 272

17. Mechanism Evaluation of Carbon Dioxide Miscible Flooding - Caoshe Oilfield, a Case Study 275
Tang Yong, Du Zhimin, Sun Lei, Yu Kai, Liu Wei and Chen Zuhua
17.1 Introduction 276
17.2 Phase Behavior Experiment Simulation of CO₂ Injection in CS Oilfield 277
 17.2.1 Reservoir Introduction 277
 17.2.2 Fluid Composition 277
 17.2.3 Match the Fluid PVT Phase Behavior Experiment and CO₂ Injection Swelling Test 278
17.3 Evaluation of CO₂ Injection Minimum Miscibility Pressure 279
 17.3.1 Determination of MMP by Slim Tube Test and Numerical Simulation 279
17.3.2 Determination of Injecting CO₂ Miscibility Pressure by Pseudo-ternary Phase Diagram 282
17.3.3 Miscibility Evaluation at Current Formation Pressure 284
17.4 Mechanism Evaluation of CO₂ Miscible Flooding by One-dimensional Simulation 284
17.4.1 Component Changing Law 284
17.5 Miscible Flooding Processes in Profile Model of Injector-producer Well Group 285
17.5.1 The CO₂ Sweeping Area Increasing 286
17.5.2 Crude Oil Viscosity Reduces Sharply in CO₂ Swept Region 286
17.5.3 Miscible Bank Formation Around the Producer after CO₂ Injection 289
17.6 Conclusions 291
References 292

18. Selecting and Performance Evaluating of Surfactant in Carbon Dioxide Foam Flooding in Caoshe Oil Field 293
Yi Xiangyi, Zhang Shaonan, Lu Yuan, Li Chun, Jiao Lili and Liu Wei
18.1 Introduction 294
18.2 Geological Characteristics in Taizhou Formation of Caoshe Oil Field 295
18.2.1 Oil Field Summary 295
18.2.2 Characteristics of Reservoir Geology and Fluid 295
18.2.3 Heterogeneity 296
18.3 Techniques to Improve the Effect of CO₂ Flooding 298
18.4 Selecting and Evaluating of Surfactant 299
18.4.1 Temperature-enduring and Salt-resistant Surfactant Selecting 299
18.4.1.1 Foaming Agent Selecting 299
18.4.1.2 Foaming Agent Concentration 301
18.4.1.3 Surface Tension 302
18.4.1.4 Rheological Property 302
18.4.2 Main Performance Evaluating of Surfactant 303
18.4.2.1 Experiment Materials and Methods 303
18.4.2.2 Frothing Capacity 304
Section 4: Materials and Corrosion

19. Casing and Tubing Design for Sour Oil & Gas Field

Sun Yongxing, Lin Yuanhua, Wang Zhongsheng, Shi Taihe, You Xiaobo, Zhang Guo, Liu Hongbin, and Zhu Dajiang

19.1 Introduction
19.2 SSC Testing
19.3 Casing and Tubing Design in Fracture Mechanics
 19.3.1 Material Yield Strength and Hardness
 19.3.2 Design Equation for Fracture of the Pipe Body
 19.3.3 Anti-fracture Capability Assessment of Casing C110 and T95 in Sour Environments
19.4 Conclusions

References

20. Material Evaluation and Selection of OCTG and Gathering Lines for High Sour Gas Fields in China

Zeng Dezhi, Huang Liming, Gu Tan, Lin Yuanhua, Liu Zhide, Yuan Xi, Zhu Hongjun, Huo Shaoquan, and Xiao Xuelan

20.1 Introduction
20.2 Material Evaluation and Selection of OCTG for High Sour Gas Fields
20.3 Indoor Corrosion Evaluation
 20.3.1 Anti-SSC Performance Evaluation of OCTG
 20.3.2 Electrochemical Corrosion Resistance Evaluation of OCTG
20.4 Field Corrosion Evaluation in Tian Dong 5-1
 20.4.1 Evaluation of Electrochemical Corrosion
 20.4.2 Evaluation of Stress Corrosion

References
20.5 Material Evaluation and Selection of Gathering Lines for High Sour Gas Fields 334
20.6 Indoor Corrosion Evaluation 335
20.6.1 Anti-SSC Performance Evaluation of Gathering and Transportation Pipelines and its Welded Joints 335
20.6.2 Electrochemical Corrosion Resistance Evaluation of Gathering and Transportation Pipelines and its Welded Joints 337
20.6.3 Corrosion Evaluation of X52/825 Clad Pipe and Welding Gaps 337
20.7 Field Corrosion Evaluation in Tian Dong 5-1 340
20.8 Conclusion 342
References 343

Section 5: Reservoir Engineering, Geology, and Geochemistry

21. Concentration Gradients Associated With Acid Gas Injection 347
 S. J. Talman and E.H. Perkins
 21.1 Introduction 348
 21.2 Results 350
 21.2.1 Mineralogical Results 350
 21.2.2 Water Chemistry 350
 21.2.3 Closed System Reaction Analysis 351
 21.2.4 Reactive Flow Modelling 352
 21.3 Conclusions 358
Acknowledgments 358
References 358

22. A New Comprehensive Mathematical Model of Formation Damage in Fractured Gas Reservoirs with High H₂S Content 361
 Fu Dekui, Guo Xiao, Du Zhimin, Fu Yu, Zhang Yong, Deng Shenghui, and Liu Linqing
 22.1 Introduction 362
 22.2 Mathematical Model 364
 22.2.1 Mass Conservation Formulation 365
 22.2.2 Deposition Mechanism 366
22.2.3 Prediction Model of Sulfur Solubility in Sour Gas 367
22.2.4 Sulfur Adsorption Model 368
22.2.5 Permeability Damage Model 368
22.2.6 Calculation of Migration Velocity of Sulfur Particle in Gas Mixture 369
22.2.7 Calculation of Deposition Velocity of Sulfur Particle in Gas Mixture 369
22.2.8 Auxiliary Equation 370
22.3 Case Application 371
 22.3.1 Case Description 371
 22.3.2 Set up and Division of Grid Model 371
 22.3.3 Result Analysis 372
22.4 Conclusions 375
Nomenclature 376
Acknowledgments 377
References 377

23. Evaluation of Formation Damage Due to Sulfur Deposition 379
Guo Xiao, Du Zhimin, Yang Xuefeng, Zhang Yong, and Fu Dekui
 23.1 Introduction 380
 23.2 Experimental Investigation of Sulfur Deposition 380
 23.3 Deposited Sulfur of Core Samples 381
 23.4 Experimental Results 381
 23.5 Conclusions 384
Acknowledgments 384
References 384

24. Numerical Simulation Studies on Sour Gas Flowing Mechanisms in Gas Reservoirs with High H₂S Content 387
Zhang Yong, Du Zhimin, Guo Xiao, and Yang Xuefeng
 24.1 Introduction 388
 24.2 Phase Behavior Characteristics of Highly Sour Gas Systems 389
 24.2.1 Sulfur Dissolution and Precipitation in the Sour Gas 389
 24.2.1.1 Sulfur Dissolution Mechanism in Sour Gas 389
24.2.1.2 Sulfur Solubility Prediction Model 390
24.2.1.3 Chrastil's Thermodynamic Model 390
24.2.1.4 Phase Equilibrium Calculation Model 391

24.3 Sour Gas Flow Numerical Model for Highly Sour Gas Reservoir 391
24.3.1 Mechanisms and Model Development for Sulfur Particle Movement 391
 24.3.1.1 Mechanisms for Sulfur Particle Movement 391
 24.3.1.2 Dynamic Model for Gas-Solid Movement 392

24.3.2 Formation Damage Caused by Sulfur Deposition 393
 24.3.2.1 Gas-Solid Coupled Mathematical Model for Highly Sour Gas Reservoir 394
 24.3.2.2 Sulfur Continuity Equation based on Gas-solid Slip Model 394
 24.3.2.3 Partial Differential Continuity Equations for Hydrocarbon Components in the Gas 395
 24.3.2.4 Sulfur Precipitation Model 395

24.3.3 Situation Study for Fluid Flow in Porous Medium 395
 24.3.3.1 Gas Rate Effect 395
 24.3.3.2 Initial H₂S Concentration Effect 396
 24.3.3.3 Formation Permeability Effect 397

24.4 Conclusions 398

References 399

25. Why Does Shut-In Well Head Pressure of Sour Gas Well Decrease During Formation Testing? 401
 Guo Xiao, Du Zhimin and Fu Dekui

25.1 Introduction 401
25.2 Mathematical Model of Heavy Gas Fraction 403
 25.2.1 Assumptions 403
 25.2.2 Establish Mathematical Model of Heavy Components Sedimentation 403

25.3 Analysis of Heavy Gas Fraction 405
25.4 Analysis of Factors Affecting the Pressure Numeration in Sour Gas Wells 408
26. Impaction of the Stacking Pattern of Sandstone and Mudstone on the Porosity and Permeability of Sandstone Reservoirs in Different Buried Depths
Zhong Dekang and Zhu Xiaomin

26.1 Introduction
26.2 Stacking Pattern of Sandstone and Mudstone
26.3 The Characteristics of Physical Property of Reservoirs in Sandstone-mudstone Interbed
26.4 The Discussion of Variation Mechanism of Physical Properties of Sandstone – Mudstone Interbed
26.5 Conclusion

Acknowledgements
References

Index
Preface

The First International Acid Gas Injection Symposium (AGIS 2009) was held in Calgary, Canada in September 2009. This volume is a compilation of select papers from the conference.

In the natural gas industry the common acid gases are hydrogen sulfide and carbon dioxide, so-called because when they are dissolved in water they form weak acids. However, there are many aspects to the injection of acid gases. In the sense used here, acid gas injection is a broad topic covering:

1. the injection of streams rich in hydrogen sulfide and carbon dioxide for disposal purposes
2. the injection of carbon dioxide (and possibly acid gas) for enhanced oil recovery (EOR)
3. carbon capture and storage from plants producing flue gas which would otherwise be emitted to the atmosphere

The most obvious form of acid gas injection is the injection of a stream composed mostly of H_2S and CO_2, which is compressed, transported via pipeline to an injection well where it travels downward to a subsurface formation usually for disposal. Many of the papers in this volume are directly related to this subject. This includes papers on the required physical properties, thermodynamics and phase equilibria required to design such processes.

However, the injection of carbon dioxide is not always for disposal purposes. The injection of CO_2 for enhanced oil recovery is an important aspect of the petroleum industry and as oil supplies become reduced this may become even more important. Thus, several of the papers included in this volume are related more closely to this subject.

YW & JJC
This page intentionally left blank
Acid gas injection has become an effective way to deal with the acid gas stream that is the by-product of the process for sweetening natural gas. The acid gas stream is composed mostly of hydrogen sulfide and/or carbon dioxide. If an aqueous solvent is used to sweeten the gas, which is usually the case, then the acid gas is saturated with water. If a non-aqueous solvent is used then there may be only a minimal amount of water in the stream.

Water is a component of concern in the mixture. Excess amounts of water can lead to either an aqueous liquid phase or hydrates. The aqueous liquid phase is corrosive and thus either should be avoided or it will require special metallurgy. The hydrates may cause plugging of lines or even the injection well.

The injection process is quite simple. The gas from the sweetening unit is at low pressure and must be compressed to sufficient pressure in order to achieve injection into a subsurface reservoir. The basic unit operations are therefore a compressor, a pipeline, and an injection well. Depending upon the composition and the specifications of the operating company, it may also be necessary to dehydrate the acid gas.

The first injection scheme started in 1989 – 20 years ago. This was followed by 17 more in the next seven years. All of these projects injected less than 5 MMSCFD (140 × 10^3 Sm^3/d) of acid gas and represent the first generation of injection schemes. Many lessons were learned from these projects and they were carried forward to future schemes.

Larger schemes were to follow such as the 50 MMSCFD (1.4 × 10^6 Sm^3/d) project at Sleipner West in the North Sea, 50 MMSCFD
Acid Gas Injection and Related Technologies

(1.4x10^6 Sm^3/d) at In Salah in Algeria, and the 65 MMSCFD (1.8 x 10^6 Sm^3/d) scheme at LaBarge in Wyoming. These are amongst the largest injection schemes currently in operation. In spite of their large injection volumes they share much in common with the first generation projects.

Uncertainty in the sulfur market combined with the problems associated with stockpiling large quantities of elemental sulfur have large producers considering acid gas injection as well. These projects will dwarf the first generation ones – injection volumes greater than 100 MMSCFD (2.8 x 10^6 Sm^3/d). And note this is the flow of the acid gas and not the feed rate to the plant.

Natural Gases

In the natural gas business there are many terms to describe the composition of the gas. Here we will focus on three:

1. Sweet
2. Sour
3. Acid gas.

Comparison

To demonstrate some of the differences between the three types of gas, first consider the information in Table 1 which provides a quick comparison of the properties of the three types of gases.

The three types of gases are described in some detail in the following sections.

Sweet Gas

Sweet gas is natural gas that contains only a small amount of sulfur compounds. More about these sulphur compounds in the next section.

Unfortunately there is no strict definition as to what constitutes a "small amount". For sales gas, the hydrogen sulfide concentration could range from 4 to 16 ppm (¼ to 1 grain/100 SCF) depending upon the sales contract. However, from a corrosion point of
Table 1. A qualitative comparison of sweet, sour, and acid gases.

<table>
<thead>
<tr>
<th></th>
<th>Sweet Gas</th>
<th>Sour Gas</th>
<th>Acid Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>Very High</td>
<td>Very High</td>
<td>H_2S - High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CO_2 - Non-flam.</td>
</tr>
<tr>
<td>Toxicity</td>
<td>Low</td>
<td>High</td>
<td>H_2S - Very High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CO_2 - Very Low</td>
</tr>
<tr>
<td>Corrosivity</td>
<td>CO_2-free - Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>(in the presence of water)</td>
<td>CO_2 present - High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>None</td>
<td>Rotten Eggs</td>
<td>H_2S - Rotten Eggs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CO_2 - None</td>
</tr>
<tr>
<td>Color</td>
<td>Colorless</td>
<td>Colorless</td>
<td>Colorless</td>
</tr>
</tbody>
</table>

view there is a different specification. These are outlined by such standards as NACE MR0175 or CSA Z662\(^1\).

By the definition above, a natural gas that contains carbon dioxide but no sulfur compounds is classified as being sweet. To my knowledge there is no specific name for gas that is rich in CO_2 but free of sulfur compounds. However, there is a specification for CO_2, typically around 2 or 3 mol%, and thus often it must be removed from the raw gas. The processes for removing the CO_2 are the same as those for removing H_2S. Thus, gas rich in CO_2 but free of sulfur is often also called sour, but this is not strictly the case.

Sour Gas

In contrast to sweet gas, sour gas is natural gas that contains sulfur compounds. The most important of these sulfur compounds is hydrogen sulfide. There are other sulfur compounds found in natural gas, but usually in small concentrations. These include the mercaptans (or thiols) which are organic chemicals similar to alcohols where the oxygen atom has been substituted with a sulfur atom. These compounds also have a foul odor.

\(^1\) NACE is the National Association of Corrosion Engineers (www.nace.org) and CSA is the Canadian Standard Association (www.csa.ca).
In addition to the H_2S specification in sales gas there is also a total sulfur specification, which accounts for all of the other sulfur species. Some have an additional term: "highly sour" gas. Again there is no strict definition, but gas than contains more than about 10 mol% H_2S is considered highly sour.

The process of removing H_2S and/or CO_2 is called sweetening, again which leads to some confusion about gas that contains CO_2 but no sulfur compounds.

Acid Gas

Acid gas is very different from sweet or sour gas and is composed almost entirely of hydrogen sulfide and carbon dioxide, with a small amount of hydrocarbon (typically less than 5 mole percent).

Both hydrogen sulfide and carbon dioxide form weak acids when dissolved in water and it is for this reason that they are called acid gases. Table 2 shows the solubility and the pH of the resulting solution of three gases in water. A pH of 7 is a neutral solution – neither basic nor acidic. A pH less than 7 is indicative of an acidic solution.

Acid Gas Injection

Acid gas injection involves compressing the acid gas from the sweetening plant, transportation via pipeline to an injection well. The gas travels down the well and into a subsurface formation. The block diagram for an injection scheme, including the sweetening plant, is shown in Figure 1.

The feed gas contains H_2S and CO_2 which is removed in the sweetening plant. The desired product for this process is the sweet

<table>
<thead>
<tr>
<th>Gas</th>
<th>mol%</th>
<th>mol/kg</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2S</td>
<td>2.04×10^{-3}</td>
<td>0.11</td>
<td>4</td>
</tr>
<tr>
<td>CO_2</td>
<td>6.95×10^{-4}</td>
<td>0.039</td>
<td>4</td>
</tr>
<tr>
<td>Methane</td>
<td>2.66×10^{-5}</td>
<td>0.0015</td>
<td>7</td>
</tr>
</tbody>
</table>
gas which has the desired levels of H\textsubscript{2}S and CO\textsubscript{2}. The undesired by-product is the acid gas mixture. Typically the acid gas is at low pressure (less than 2 bar, 30 psia), at about 50°C (about 120F), and is saturated with water.

The design of the injection scheme begins with the section of a reservoir. This may be a reservoir for disposal or for enhance recovery or for pressure maintenance. Most of the injection schemes are simply for disposal. Regardless of the purpose of the injection the reservoir should have the following characteristics:

1. The reservoir must contain the acid gas. And there are several aspects to this containment:
 a. Sufficient volume to hold the injected fluid.
 b. No leakage through the cap rock. The cap rock should have an extremely low permeability.
 c. No leakage through any other wells penetrating the injection zone. Thus you should verify the integrity of all wells (including abandoned wells) to ensure they will not leak the injected fluid to other zone or, even worse, to the surface.
2. Minimum interactions with the reservoir rocks or native fluids. Chemical reaction between the injected fluid and the reservoir may impede injection as time goes on and may ultimately prevent it.
3. Sufficient permeability that it does not pervert injection. For the low flow schemes this is usually not a problem, but may be a significant consideration for the larger projects.

4. It is probably unwise (and in some jurisdictions illegal) to inject H$_2$S into an otherwise sweet zone.

 e. It is not uncommon to use CO$_2$ for enhanced recovery (even in sweet zones). Another reason for injecting gas into a producing zone is for pressure maintenance. However, H$_2$S should probably only be used for EOR or for pressure maintenance in sour zones. Even then the producer should anticipate cycling of the H$_2$S (i.e. increase H$_2$S concentration in the produced fluids).

The next step is the design is to consider the surface facilities. In many injection schemes compression and cooling alone is sufficient to dehydrate the gas to a point where neither free water nor hydrates are a problem. This will be examined in more detail later in this paper. However, in some cases additional dehydration may be required. When dehydration is necessary, some compression is required because the gas cannot be dehydrated at pressures less than 2.5 bar. There are at least two reasons for this:

1. The water content of a low pressure stream is very high.
2. The actual flow rates are quite large and thus large diameter equipment would be required to process a relatively small stream.

Since dehydration is not always required, the lines connecting it to the block diagram are dashed.

For most injection schemes compression alone can achieve the pressure required to achieve injection. Typically compression can raise the pressure of the acid gas stream to 2000 psia (138 bar), but this should be examined on a case-by-case basis. However if the injection pressure is high, then a pump might be necessary beyond compression. After compressing the acid gas to about 1000 psia (69 bar) the fluid is in the liquid phase or in a dense fluid state and thus can be pumped to higher pressure. Again, for this reason the pump is connected to the block diagram using dashed lines.

Another dashed line on the block diagram is the flash gas. In many amine plants the rich amine from the absorber is sent to a flash tank
where the pressure is dropped from the absorber pressure to about 3.5 bar (50 psia). The gas that is released from this pressure reduction is largely hydrocarbon that was co-absorbed. This stream also contains some H$_2$S and CO$_2$. In many cases this can be added to the fuel gas system, even though it is sour. The overall H$_2$S in the fuel gas may be sufficiently low that it can be used as fuel in internal combustion engines or indirect heaters. The question is, can it be added to the acid gas stream and be disposed as a single stream?

Sour Gas Injection

In the earlier sections of this paper the differences between sour gas and acid gas were given. There are several large sour gas injection schemes in the world. However, these have little in common with the acid gas injection projects described in this paper.

These projects are typically for pressure maintenance and the gas is injected back into the original formation. The sour gas is compressible and thus requires high injection pressures and very large compressor.

Currently the largest compressors in the world are to handle sour gas reinjection in the Caspian region (Chellini, 2005).

The Early Years

The first injection scheme was the Chevron Acheson project near Edmonton, Canada. The data for this project is summarized in Table 3. The acid gas at this location was relatively high in carbon dioxide (approximately 90 mol%).

The next project was also from Chevron, but this was at West Pembina. It too is described in Table 3.

A third of the early injection projects that is also listed in Table 3 is the project at Wayne-Rosedale, near Drumheller, Alberta. Again, like the other early projects, this is a low volume injection scheme. The paper of Ho et al. (1996) also gives the costs associated with this project which are given in the Table 4. The original dollar values are converted to 2008 dollars using inflation factors alone (Bank of Canada, 2009).

The cost of the TEG dehydration units seems a little large, even when compared to sour gas dehydration units. However, this unit is completely made from 316 stainless steel and includes a condenser on the regenerator overhead and these may be the reasons for the additional cost.
Table 3. Three early acid gas injection projects.

<table>
<thead>
<tr>
<th>Location</th>
<th>Acheson</th>
<th>West Pembina</th>
<th>Wayne-Rosedale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alberta, Canada</td>
<td>Alberta, Canada</td>
<td>Alberta, Canada</td>
</tr>
<tr>
<td>Start up</td>
<td>1989</td>
<td>1994</td>
<td>1995</td>
</tr>
<tr>
<td>Injection well</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom hole pressure (kPa)</td>
<td>2 300</td>
<td>30 000</td>
<td>20 000+</td>
</tr>
<tr>
<td>Bottom hole temperature (°C)</td>
<td>49</td>
<td>98</td>
<td>65</td>
</tr>
<tr>
<td>Injection pressure, design (kPa)</td>
<td>6 000</td>
<td>9 500</td>
<td>10 000</td>
</tr>
<tr>
<td>Injection pressure, actual (kPa)</td>
<td>3 500</td>
<td>7 500</td>
<td>6 000</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>1 100</td>
<td>2 800</td>
<td>1 930</td>
</tr>
<tr>
<td>Acid Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composition, water-free (mol %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>10.2</td>
<td>77.17</td>
<td>17.4</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>89.8</td>
<td>21.93</td>
<td>82.5</td>
</tr>
<tr>
<td>Methane</td>
<td><0.1</td>
<td>0.55</td>
<td>0.1</td>
</tr>
<tr>
<td>C₂+</td>
<td><0.1</td>
<td><0.35</td>
<td><0.1</td>
</tr>
<tr>
<td>Flow rate (Sm³/d)</td>
<td>13 500</td>
<td>16 700</td>
<td>21 000</td>
</tr>
<tr>
<td>Flow rate (MMSCFD)</td>
<td>0.48</td>
<td>0.59</td>
<td>0.74</td>
</tr>
<tr>
<td>Pipeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (m)</td>
<td>2 200</td>
<td>480</td>
<td>100</td>
</tr>
<tr>
<td>Nominal diameter (in)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Material</td>
<td>carbon steel</td>
<td>stainless</td>
<td>carbon steel</td>
</tr>
<tr>
<td>Compressor Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Ariel JG/4</td>
<td>Ariel JG/4</td>
<td>Knox West. TAP-445</td>
</tr>
<tr>
<td>Number of stages</td>
<td>four</td>
<td>four</td>
<td>five‡</td>
</tr>
<tr>
<td>Suction pressure (kPa)</td>
<td>157</td>
<td>143</td>
<td>132</td>
</tr>
<tr>
<td>Discharge pressure (kPa)</td>
<td>6 640</td>
<td>12 450</td>
<td>22 810</td>
</tr>
<tr>
<td>Compressor Actual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction pressure (kPa)</td>
<td>124</td>
<td>136</td>
<td>140</td>
</tr>
<tr>
<td>Discharge pressure (kPa)</td>
<td>3 894</td>
<td>8 044</td>
<td>6 095</td>
</tr>
<tr>
<td>Reference</td>
<td>1, 2</td>
<td>1, 2</td>
<td>3</td>
</tr>
</tbody>
</table>

+ sandface pressure based on injectivity tests, reservoir pressure is about 15 500 kPa
‡ in actual operation the fifth stage is not fully used
NS - not specified