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Preface

Determining a good sample size to use in a scientific study is of utmost impor-
tance, especially in clinical studies with some participants receiving a placebo or
nothing at all and others taking a drug whose efficacy has not been established.
It is imperative that a large enough sample be used so that an effect that is large
enough to be of practical significance has a high probability of being detected
from the study. That is, the study should have sufficient power. It is also important
that sample sizes not be larger than necessary so that the cost of a study not be
any larger than necessary and to minimize risk to human subjects in drug studies.

Compared to other subjects in the field of statistics, there is a relative paucity
of books on sample size determination and power, especially general purpose
books. The classic book on the subject has for decades been Jacob Cohen’s
Statistical Power Analysis for the Behavioral Sciences, the second edition of
which was published in 1988. That book is oriented, as the title indicates, toward
the behavioral sciences, with the statistical methodology being quite useful in
the behavioral sciences. The second edition has 567 numbered pages, 208 of
which are tables, reflecting the “noncomputer” age in which the two editions of
the book were written. In contrast, the relatively recent book by Patrick Dattalo,
Determining Sample Size: Balancing Power, Precision, and Practicality (2008),
which is part of the series in Pocket Guides to Social Work Research Methods, is
167 pages with more than 20% consisting of tables and screen displays reflecting
the now heavy reliance on software for sample size determination. An even
smaller book is Sample Size Methodology (1990) by Desu and Raghavarao at 135
pages, while How Many Subjects: Statistical Power Analysis in Research (1987)
by Kraemer and Thiemann is just 120 pages and was stated in a review as being
an extension of a 1985 journal article by Kraemer. Sample-Size Determination
(1964) by Mace is larger at 226 pages and Sample Size Choice: Charts for
Experimenters, 2nd ed. (1991) by Odeh and Fox is 216 pages. Thus, some rather
small books have been published on the subject, with almost all of these books
having been published over 20 years ago.

xv
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At the other extreme in terms of size, focus, and mathematical sophistication,
there are books on sample determination for clinical studies, such as Sample
Size Calculations in Clinical Research, 2nd ed. (2008) by Chow, Shao, and
Wang, that are mathematically sophisticated, with the title of this book perhaps
suggesting that. A similar recent book is Sample Sizes for Clinical Trials (2010)
by Julious, whereas Sample Size Calculations: Practical Methods for Engineers
and Scientists (2010) by Mathews is oriented toward engineering and industrial
applications.

There are additional statistical methods that are useful in fields other than
behavioral sciences, social sciences, and clinical trials, however, and during the
past two decades new needs for sample size determination have arisen in fields
that are part of the advancement of science, such as microarray experiments.

Although many formulas are given in Cohen’s book, they are not derived
in either the chapters or chapter appendices, so the inquisitive reader is left
wondering how the formulas came about.

Software is also not covered in Cohen’s book, nor is software discussed in the
books by Mathews, Julious or Chow, Shao, and Wang. Software and Java applets
for sample size determination are now fairly prevalent and, of course, are more
useful than tables since theoretically there are an infinite number of values that
could be entered for one or more parameter values. There was a need for a book
that has a broader scope than Cohen’s book and that gives some of the underlying
math for interested readers, as well as having a strong software focus, along the
lines of Dattalo’s book, but is not too mathematical for a general readership. No
such book met these requirements at the time of writing, which is why this book
was written.

This book can be used as a reference book as well as a textbook in special topics
courses. Software discussion and illustration is integrated with the subject matter,
and there is also a summary section on software at the end of most chapters.
Mixing software discussion with subject matter may seem unorthodox, but I
believe this is the best way to cover the material since almost every experimenter
faced with software determination will probably feel the need to use software
and should know what is available in terms of various software and applets. So
the book is to a significant extent a software guide, with considerable discussion
about the capabilities of each software package. There is also a very large number
of references, considerably more than in any other book on the subject.

Thomas P. Ryan

Smyrna, Georgia
October 2012



CHAPTER 1

Brief Review of Hypothesis
Testing Concepts/Issues and
Confidence Intervals

Statistical techniques are used for purposes such as estimating population param-
eters using either point estimates or interval estimates, developing models, and
testing hypotheses. For each of these uses, a sample must be obtained from the
population of interest. The immediate question is then “How large should the
sample be?” That is the focus of this book. There are several types of sampling
methods that are used, such as simple random sampling, stratified random sam-
pling, and cluster sampling. Readers interested in learning about these methods
are referred to books on sampling. Such books range from books with an applied
emphasis such as Thompson (2012) to an advanced treatment with some theo-
retical emphasis as in Lohr (2010). Readers interested in an extensive coverage
of sample survey methodology may be interested in Groves, Fowler, Couper,
Lepkowski, Singer, and Tourangeau (2009).

1.1 BASIC CONCEPTS OF HYPOTHESIS TESTING

If sampling is very inexpensive in a particular application, we might be tempted
to obtain a very large sample, but settle for a small sample in applications where
sampling is expensive.

The cliché “the bigger the better” can cause problems that users of statistical
methods might not anticipate, however. To illustrate, assume that there are two
alternative methods that could be employed at some stage of a manufacturing

Sample Size Determination and Power, First Edition. Thomas P. Ryan.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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2 HYPOTHESIS TESTING CONCEPTS/ISSUES AND CONFIDENCE INTERVALS

process, and the plant manager would like to determine if one is better than the
other one in terms of process yield. So an experiment is performed with one of the
methods applied to thousands of units of production, and then the other method
applied to the same number of units.

What is likely to happen if a hypothesis test (also called a significance test)
is performed, testing the equality of the population means (i.e., the theoretical
average process yield using each method), against the alternative hypothesis that
those means are not equal? Almost certainly the test will lead to rejection of the
(null) hypothesis of equal population means, but we should know that the means,
recorded to, say, one decimal place are not likely to be equal before we even
collect the data! What is the chance that any two U.S cities, randomly selected
from two specified states, will have exactly the same population? What is the
probability that a company’s two plants will have exactly the same proportion of
nonconforming units? And so on. The bottom line is that null hypotheses (i.e.,
hypotheses that are tested) are almost always false. This has been emphasized in
the literature by various authors, including Nester (1996) and Loftus (2010).

Other authors have made similar statements, although being somewhat con-
servative and less blunt. For example, Hahn and Meeker (1991, p. 39) in pointing
out that hypothesis tests are less useful than confidence intervals stated: “Thus,
confidence intervals are usually more meaningful than statistical hypothesis tests.
In fact, one can argue that in some practical situations, there is really no reason
for the statistical hypothesis to hold exactly.”

If null hypotheses are false, then why do we test them? [This is essentially
the title of the paper by Murphy (1990).] Indeed, hypothesis testing has received
much criticism in the literature; see, for example, Nester (1996) and Tukey
(1991). In particular, Loftus (1993) stated “First, hypothesis testing is overrated,
overused, and practically useless as a means of illuminating what the data in some
experiment are trying to tell us.” Provocative discussions of hypothesis testing
can also be found in Loftus (1991) and Shrout (1997). Howard, Maxwell, and
Fleming (2000) discuss and endorse a movement away from heavy reliance on
hypothesis testing in the field of psychology. At the other extreme, Lazzeroni and
Ray (2012) refer to millions of tests being performed with genomics data.

Despite these criticisms, a decision must be reached in some manner about the
population parameter(s) of interest, and a hypothesis test does directly provide
a result (“significant” or “not significant”) upon which a decision can be based.
One of the criticisms of hypothesis testing is that it is a “yes–no” mechanism.
That is, the result is either significant or not, with the magnitude of an effect
(such as the effect of implementing a new manufacturing process) hidden, which
would not be the case if a confidence interval on the effect were constructed.

Such criticisms are not entirely valid, however, as the magnitude of an effect,
such as the difference of two averages, is in the numerator of a test statistic.
When we compute the value of a test statistic, we can view this as a linear
transformation of an effect. For example, if we are testing the null hypothesis,
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H0 : μ1 = μ2, which is equivalent to μ1 − μ2 = 0, the difference in the two
parameters is estimated by the difference in the sample averages, x̄1 − x̄2, which
is in the numerator of the test statistic,

t = (x̄1 − x̄2) − 0

Sx̄1−x̄2

(1.1)

with S x̄1−x̄2 denoting the standard error (i.e., estimator of the standard deviation) of
x̄1 − x̄2, and 0 is the value of μ1 − μ2 under the null ypothesis. Thus, the “effect,”
which is estimated by x̄1 − x̄2, is used in computing the value of the test statistic,
with every type of t-statistic having the general form: t = estimator/standard error
of estimator.

Many practitioners would prefer to have a confidence interval on the true
effect so that they can judge how likely the true (unknown) effect, μ1 − μ2, is
to be of practical significance. For example, Rhoads (1995) stated that many
epidemiologists consider confidence intervals to be more useful than hypothesis
tests. Confidence intervals are reviewed in Section 1.2.

In using the test statistic in Eq. (1.1) to test the null hypothesis of equal
population means, we must have either a reference value in mind such that if the
test statistic exceeds it in absolute value, we will conclude that the means differ,
or, as is commonly done, a decision will be based on the “p-value,” which is
part of the computer output and is the probability of obtaining a value of the test
statistic that is more extreme, relative to the alternative hypothesis, as the value
that was observed, conditioned on the null hypothesis being true. As discussed
earlier in this section, however, null hypotheses are almost always false, which
implies that p-values are hardly ever valid. Therefore, the p-values contained
in computer software output should not be followed slavishly, and some people
believe that they shouldn’t be used at all (see, e.g., Fidler and Loftus, 2009).

If we use the first approach, the reference value would be the value of the test
statistic determined by the selected significance level, denoted by α, which is the
probability of rejecting a (conceptually) true null hypothesis. This is also called
the probability of a Type I error. If the test is two-sided, there will be two values
that are equal in absolute value, such as ±1.96, with the null hypothesis rejected
if the test statistic exceeds 1.96 or is less than −1.96. If we adopt the second
approach and, for example, p = .038, we may (or may not) conclude that the null
hypothesis is false, whereas there would be no doubt if p = .0038, since that is a
very small number and in particular is less than .01. (Recall the discussion about
null hypotheses almost always being false, however.)

There are four possible outcomes of a hypothesis test, as the null hypothesis
could be (1) correctly rejected, (2) incorrectly rejected, (3) correctly not rejected,
or (4) incorrectly not rejected. The latter is called a Type II error and the proba-
bility of a Type II error occurring is denoted by β. Thus, 1 − β is the probability
of correctly rejecting a false null hypothesis and this is termed “the power of
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the test.” An experimenter must consider the costs associated with each type of
error and the cost of sampling in arriving at an appropriate sample size to be
used in hypothesis tests, as well as to determine an appropriate sample size for
other purposes.

Some practitioners believe that the experiments should be conducted with the
probability of a Type I error set equal to the probability of a Type II error. Although
the former can literally be “set” by simply selecting the value, the latter depends on
a number of factors, including the difference between the hypothesized parameter
value and the true parameter value α, the standard deviation of the estimator of
the parameter, and the sample size. We cannot literally set the probability of a
Type II error because, in particular, the standard deviation of the estimator of
the parameter will be unknown. So even though we may think we are setting the
power for detecting a certain value of the parameter with the software we use, we
are not literally doing so since the value for the standard deviation that the user
must enter in the software is almost certainly not the true value.

Since α ≤ .10, typically, and usually .05 or .01, this would mean having power
≥ .90 since power = 1 −β , as stated previously. Although this rule-of-thumb
may be useful in some applications, it would result in a very large required sample
size in many applications since increased power means increased sample size and
power of .95 or .99 will often require a much larger sample size than power =
.90, depending on the value of the standard error. Thus, in addition to being an
uncommon choice for power, .95 or .99 could require a sample size that would
be impractical. The increased sample size that results from using .95 or .99 is
illustrated in Section 3.1.

Regarding the choice of, α one of my old professors said that we use .05
because we have five fingers on each hand, thus making the point that the selection
of .05 is rather arbitrary. Mudge, Baker, Edge, and Houlahan (2012) suggested that
α be chosen to either (a) minimizing the sum of the probability of a Type I error
plus the probability of a Type II error at a critical effect size, or (b) “minimizing
the overall cost associated with Type I and Type II errors given their respective
probabilities.”

There are various misinterpretations of hypothesis test results and p-values,
such as concluding that the smaller the p-value, the larger the effect or, for
example, the difference in the population means is greater if the equality of two
means is being tested. A p-value has also been misinterpreted as the probability
that the null hypothesis is true. These types of misinterpretations have been
discussed in the literature, such as in Gunst (2002) and Hubbard and Bayarri
(2003). There have also been articles about p-value misconceptions in which the
author gives an incorrect or at least incomplete definition of a p-value. Goodman
(2008) is one such example, while giving 12 p-value misconceptions. Hubbard
and Bayarri (2003) stated: “The p-value is then mistakenly interpreted as a
frequency-based Type I error rate.” They went on to state that “confusion over the
meaning and interpretation of p’s and α‘s is almost total . . . this same confusion
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exists among some statisticians.” The confusion is indeed apparent in some
introductory statistics textbooks, some of which have defined a p-value as “the
smallest Type I error rate that an experimenter is willing to accept.” Berk (2003), in
discussing Hubbard and Bayarri (2003), quoted Boniface (1995, p. 21): “The level
of significance is the probability that a difference in means has been erroneously
declared to be significant. Another name for significance level is p-value.” See
also the discussion in Seaman and Allen (2011). Additionally, Casella and Berger
(1987, p. 133) stated that “there are a great many statistically naive users who are
interpreting p-values as probabilities of Type I error.”

The bottom line is that p-values are completely different conceptually from
the probability of a Type I error (i.e., significance level) and the two concepts
should never be intermingled. There has obviously been a great deal of confusion
about these concepts in the literature and undoubtedly also in practice.

There has also been confusion over what can be concluded regarding the null
hypothesis. If the sample data do not result in rejection of it, that does not mean
it is true (especially considering the earlier discussion of null hypotheses in this
chapter), so we should not say that it is accepted. Indeed, the null hypothesis can
never be proved to be true, and for that matter, it can never be proved that it isn’t
true (with absolute, 100% certainty), so we should say that it is “not rejected”
rather than saying that it is “accepted.” This is more than just a matter of semantics,
as there is an important, fundamental difference. (The alternative hypothesis also
cannot be “proved,” nor can anything be proved whenever a sample is taken from
a population.) The reader who wishes to do additional reading on this may wish
to consult Cohen (1988, pp. 16–17).

A decision must be reached as to whether a two-sided test or a one-sided test
will be performed. For the former, the alternative hypothesis is that the parameter
or the difference of two parameters is not equal to the value specified in the
null hypothesis. A one-sided test is a directional test, with the parameter or the
difference of two parameters specified as either greater than or less than the value
specified in the null hypothesis. Bland and Altman (1994) stated that a one-sided
test is sometimes appropriate but further stated the following:

In general a one sided test is appropriate when a large difference in one direction would lead
to the same action as no difference at all. Expectation of a difference in a particular direction
is not adequate justification. In medicine, things do not always work out as expected, and
researchers may be surprised by their results . . . . Two sided tests should be used unless
there is a very good reason for doing otherwise.

1.2 REVIEW OF CONFIDENCE INTERVALS AND THEIR
RELATIONSHIP TO HYPOTHESIS TESTS

Many practitioners prefer confidence intervals to hypothesis tests, especially
Smith and Bates (1992). Confidence intervals do provide an interval that will
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contain the parameter value (or difference of parameter values) of interest with the
stated probability, such as .95. Many types of confidence intervals are symmetric
about the estimate of the parameter for which the interval is being constructed.
Such intervals are of the form

θ̂ ± t(orZ )σ̂θ̂ (or σθ̂ )

where θ is the parameter for which the confidence interval is being constructed,
θ̂ is the estimator of that parameter, σ̂θ̂ is the estimator of the standard deviation of
the estimator (σθ̂ ), and either t or Z is used in constructing the interval, depending
on which should be used.

A confidence interval is constructed by taking a single sample, but, speaking
hypothetically to add insight, if we were to take a very large number of samples
and construct a 95% confidence interval using the data in each sample, approxi-
mately 95% of the intervals would contain the (unknown value) of the parameter
since the probability that any one interval will contain the parameter is .95. (Such
statements can of course be verified using simulation.) Such a probability state-
ment must be made before a sample is obtained because after the interval has
been computed the probability is either zero or one that the interval contains the
parameter, and we don’t know which it is because we don’t know the value of
the parameter.

A confidence interval does have the advantage of preserving the unit of mea-
surement, whereas the value of a test statistic is a unitless number. There is
a direct relationship between a hypothesis test and the corresponding confi-
dence interval, as emphasized throughout Ryan (2007). In particular, we could
use a confidence interval to test a hypothesis, as there is a direct relationship
between a two-sided hypothesis test with significance level α and a 100(1 −
α)% confidence interval using the same data. Similarly, there is a direct rela-
tionship between a one-sided hypothesis test and the corresponding one-sided
confidence bound.

Specifically, if H0: μ1 = μ2, equivalently H0: μ1 − μ2 = 0, is not
rejected using a two-sided test with significance level α, then the corresponding
100(1 − α)% confidence interval will contain zero. Similarly, if the hypothe-
sis test had led to rejection of H0, then the confidence interval would not have
included zero. The same type of statements can be made regarding what will
happen with the hypothesis test based on the confidence interval. This relation-
ship holds true for almost all hypothesis tests. An argument could be made that it
is better to test a hypothesis by constructing the confidence interval because the
unit of measurement is not lost with the latter, but is lost with the former.

Although an alternative hypothesis value for the parameter of interest is not
specified in confidence interval construction because power is not involved, since
the form of a confidence interval is just a rearrangement of the components of
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the corresponding hypothesis test, values of those components must be specified
before the sample size for a confidence interval can be determined, just as is
the case with hypothesis tests. So confidence intervals share this obstacle with
hypothesis tests.

Software for sample size determination is primarily oriented toward hypothesis
testing, however. For example, although Power and Precision provides a 95%
confidence interval in addition to the necessary sample size for the specified
power value, in addition to the capability for obtaining a tolerance interval for
a future 95% confidence interval for the mean, there is no way to solve for the
sample size such that a confidence interval will have a desired expected width,
a topic that is usually presented in introductory statistics texts. This capability is
also absent in some multipurpose statistical software that can be used for sample
size determination, such as Stata. Sample size for confidence intervals can be
determined using MINITAB, however.

Among software specifically for sample size determination and power, the
capability for solving for sample size for specified confidence interval widths is
available in PASS, as well as the capability to obtain a tolerance interval for a
future confidence interval. nQuery also provides the capability for determining
sample size for confidence intervals, with the user specifying the desired half-
width of the interval.

Software capability for sample size determination and power is discussed in
detail in subsequent chapters.

If a null hypothesis is false, the experimenter either correctly rejects it or makes
what has been termed a Type II error in failing to reject it. (A Type I error occurs,
conceptually at least, when an experimenter rejects a true null hypothesis.) If the
true parameter value, or difference of two parameter values, is very close to the
hypothesized value, there is a high probability of making a Type II error, but that
is not of any consequence since it should be understood that the true value is
almost certainly not equal to the hypothesized value. Thus, there is some true,
unknown parameter value that is presumably close to the hypothesized value.
What is important, however, is to detect a difference between the hypothesized
and assumed parameter value that is of practical importance, recognizing the
difference between statistical significance and practical significance.

Of course, experimenters are going to know what is of practical significance
in their studies, and they might frown on tests that show a statistically significant
result that they know to be not of practical significance. The first sentence of the
article Thomas and Juanes (1996) states: “Statistical significance and biological
significance are not the same thing.”

The probability of correctly detecting the difference between the true and
hypothesized parameter values is called the power of the test, which is 1 − β,
with β representing the probability of a Type II error. The latter is computed
by determining the probability that the value of the random variable that is the
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Figure 1.1 Illustration of Type II error probability.

estimator of the parameter being tested falls in the nonrejection region for the
curve of the hypothesized distribution of the random variable, which contains
the hypothesized parameter value. This is illustrated in Figure 1.1, for which a
one-sided test is assumed.

The probability of a Type II error is represented by the shaded area. The smaller
this area, the greater the power of the test. It should be apparent, however, that
the shaded area will not be small when there is only a small difference between
the true parameter value and the hypothesized value. The area can be decreased
by increasing the sample, which will cause the spread of each curve to be less,
but a very large sample size can make a test too sensitive to small differences
between the true and hypothesized parameter values.

There is a trade-off between Type I and Type II errors because increasing
one will decrease the other. An experimenter can decide which is the more
important of the two in a particular application. Students in a statistics course
might be exposed to this in a courtroom setting, where the null hypothesis of
course is that the person on trial is innocent (until proved guilty). For example,
see Feinberg (1971) and Friedman (1972). So a Type I error would be convicting
an innocent person and a Type II error would be not convicting a guilty person.
While either error could have dire consequences, in the United States, avoidance
of a Type I error would be considered most important. In drug testing, the Food
and Drug Administration naturally wants to see a small Type I error, whereas
a drug developer of course wants to see a small Type II error, which means
high power. Thomas and Juanes (1996) stated: “What constitutes ‘high power’
is best judged by the researcher . . ..” Another important statement is: “There are
no agreed conventions as to what constitutes a biologically significant effect;
this will depend upon the context of the experiment and the judgment of the
researcher.” That paper, which seems to have been intended to be a guide for
researchers, contains some excellent practical advice.
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1.3 SPORTS APPLICATIONS

Professional sports teams do a form of testing all of the time when they make
decisions regarding individual players (making the team, being benched, etc.)
Frequently, there are statements made in the media regarding the comparison
of two players competing for a position based on a small sample size, with the
latter discussed frequently in print. For example, the April 20, 2009 edition of
the The New York Times had an article with the headline “Over the Wall and
Under the Microscope in the Bronx,” referring to the number of home runs (20)
hit in the new Yankee Stadium during the first four games of the 2009 season,
compared to only 10 home runs being hit in the first six games at Citi Field, the
new home of the New York Mets. Regarding the latter, the chief operating officer
of the Mets stated: “It’s a small sample size . . ..”

Similarly, a player’s batting average might be over .400 after the first week of
a season, but he almost certainly won’t hit over .400 for the entire season. The
problem, of course, is the small sample size.

1.4 OBSERVED POWER, RETROSPECTIVE POWER,
CONDITIONAL POWER, AND PREDICTIVE POWER

We should restrict our attention to thinking of power as being a concept that is
applicable before the data have been collected. Unfortunately, the term “observed
power” (see, e.g., Hoenig and Heisey, 2001) is used to represent the power after
the data have been collected, acting as if parameter values are equal to the
observed sample statistics. That is poor practice because such equality will rarely
exist. Hoenig and Heisey (2001) stated that “observed power can never fulfill
the goals of its advocates” and explained that this is because observed power
is a 1:1 function of the p-value. Similarly, Thomas (1997) stated: “Therefore
calculating power using the observed effect size and variance is simply a way of
re-stating the statistical significance of the test.” Since “power” is a probability
and a p-value is a sample statistic, the latter cannot in any way be equated with
the former. The practice of using retrospective power has also been debunked
by Lenth (2001, 2012), who additionally used the term “retrospective power” in
referring to observed power.

Various other prominent scholars have said the same thing, including Senn
(2002), who stated that power is irrelevant in interpreting completed studies. The
esteemed Sir David Cox also stated that power is irrelevant in the analysis of
data (Cox, 1958). Zumbo and Hubley (1998) went further and stated (p. 387):
“Finally, it is important to note that retrospective power cannot, generally, be
computed in a research setting.” Zumbo and Hubley (1998) explained that “we
know that retrospective power can be written as a function of two unconditional
probabilities. However, the unconditional probabilities are not attainable in a
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research setting.” They further stated: “We suggest that it is nonsensical to make
power calculations after a study has been conducted and a decision has been
made.” Yuan and Maxwell (2005) found that observed power is almost always a
biased estimator of the true power. Unfortunately, bad advice regarding this can
be found in the literature. For example, in an editorial explaining what researchers
should know about sample size, power, and effect size, Hudson (2009) stated: “If
data is not available in the literature, then a pilot study is justified. If, for whatever
reason, sufficient subjects are not recruited, then power can be conducted on a
post hoc basis.” Somewhat similarly, Thomas (1997) also presented retrospective
power as an option and indicated that it can be useful for certain study goals.

Conditional power, as proposed by Lan and Wittes (1988), is prospective rather
than retrospective in that it is essentially a conditional probability of rejecting
the null hypothesis in favor of the alternative hypothesis at the end of a study
period, conditional on the data that have been accumulated up to the point in
time at which the conditional power is computed. It is applicable when data are
slowly accruing from a nonsequentially designed trial. See also the discussion
in Zhu, Ni, and Yao (2011) and Denne (2001), with the latter determining the
number of additional observations required at the end of the main study to gain
the prescribed power, conditional on the data that had been observed to that point.
This is in the same general spirit as Proschan and Hunsberger (1995).

Predictive power, which takes all uncertainties into account, parts of which are
ignored by standard sample size calculations and conditional power, might seem
preferable, but Dallow and Fina (2011) pointed out that the use of predictive
power can lead to much larger sample sizes than occur with the use of either
conditional power or standard sample size calculations.

1.5 TESTING FOR EQUALITY, EQUIVALENCE, NONINFERIORITY,
OR SUPERIORITY

In traditional hypothesis testing, as presented in introductory level textbooks
and taught in introductory courses, the null hypothesis in comparing, say, two
means or two proportions is that they are equal, which implies that the difference
between them is zero. If there is no prior belief that one mean is larger than
the other mean, the alternative hypothesis is that the means are unequal, with a
directional alternative hypothesis used if there is prior information to suggest that
one mean is larger than the other one.

The difference between the means in the null hypothesis need not be spec-
ified as zero, and in practice the difference almost certainly won’t be zero, as
was mentioned earlier in the chapter. Equivalence testing simply formalizes
this approach, although it is really just a part—although an unorthodox part—
of hypothesis testing. That is, with equivalence testing, the means from two
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populations are considered to be “equivalent” if they differ only slightly, and of
course this would have to be quantified, with the acceptable difference determined
by the specific application.

Reeve and Giesbrecht (1998) stated: “Many questions that are answered with
hypothesis testing could be better answered using an equivalence approach.” The
latter is used with dissolution tests and in other applications. Whereas equivalence
tests are often presented as being different from hypothesis tests, they are really
a form of a hypothesis test, as discussed later in this section. Bioequivalence
testing, which is discussed in Chapter 10 in Chow, Shao, and Wang (2008), is an
important part of hypothesis testing. That source also contains theoretical details
and sample size computations for equivalence, noninferiority, and superiority in
other chapters. There is also material on these topics in subsequent chapters of
this book, including software capability and output.

Mathematically, if the absolute value of the difference of the two means is
less than δ, then the means are considered to be equivalent. This is the alter-
native hypothesis, with the null hypothesis being that the absolute value of
the difference between the two means is at least equal to δ. A few examples
of equivalence testing, with the appropriate sample size formula, are given in
later chapters.

As stated by Schumi and Wittes (2011), “non-inferiority trials test whether a
new product is not unacceptably worse than a product already in use.” Of course,
the obvious question is: “Why would anyone be interested in a new treatment
that is worse by any amount than the standard treatment?” The answer is that a
new treatment that is only slightly worse than the standard treatment relative to
the intended benefit of each may be less costly to produce and less costly to the
consumer than the standard treatment, and might also have fewer side effects.
See Pocock (2003) and Schumi and Wittes (2011) for additional information on
noninferiority testing.

Since “noninferiority” thus essentially means “not much worse than” and the
latter implies a one-sided test, noninferiority can be tested with either a one-sided
hypothesis test or a one-sided confidence interval.

In superiority testing, the objective is to show that the new drug is superior, so
the null hypothesis is μT − μS ≤ δ and the alternative hypothesis is μT − μS > δ.
Of course, the objective is to reject the null hypothesis and accept the alternative
hypothesis.

1.5.1 Software

Software for equivalence, noninferiority, or superiority testing is not widely
available; nQuery Advisor has some capability, most of which is for t-tests.
PASS, on the other hand, has over 20 routines for determining sample size for
equivalence testing and about the same number for noninferiority tests.
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