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PREFACE

This book originated as a series of lecture notes for a first year graduate class taught

during two semesters at Stevens Institute of Technology. It covers probability, which

is taught during the first semester, and stochastic processes, taught in the second

semester. Thus the book is structured to cover both subject in a wide enough manner

to allow applications to many domains.

Probability is an old subject. Stochastic processes is a new subject that is quickly

becoming old. So why write a book on an old subject? In my opinion, this book is

necessary at the current day and age. The fundamental textbooks are becoming too

complex for the new students and, in an effort to make the material more accessible

to students, new applied probability books discard the rigor of the old books and the

painstaking details that is put forward in these old textbooks. At times, reading these

new books feels like the authors are inventing new notions to be able to skip the

old reasoning. I believe that this is not needed. I believe that it is possible to have a

mathematically rigorous textbook which is at the same time accessible to students.

The result is this work. This book does not try to reinvent the concepts only to put

them into an accessible format. Throughout, I have tried to explain complex notions

with as many details as possible. For this reason to a versed reader in the subject,

many of the derivations will seem to contain unnecessary details. Let me assure you

that for a student seeing the concepts for the first time these derivations are vital.

This textbook is not a replacement for the fundamental textbooks. Many results

are not proven and, for a deeper understanding of each of the subjects, the reader is

xxi



xxii PREFACE

advised to delve deeper into these fundamental textbooks. However, in my opinion

this textbook contains all thematerial needed to start research in probability, complete

a qualifying exam in probability and stochastic processes, or make sound probability

reasoning for applied problems.

I. Florescu

Hoboken, New Jersey

April, 2014
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INTRODUCTION

What is Probability? In essence:

Mathematical modeling of random events and phenomena. It is fundamentally

different from modeling deterministic events and functions, which constitutes the

traditional study of Mathematics.

However, the study of probability uses concepts and notions straight from Math-

ematics; in fact Measure Theory and Potential Theory are expressions of abstract

mathematics generalizing the Theory of Probability.

Like so many other branches of mathematics, the development of probability the-

ory has been stimulated by the variety of its applications. In turn, each advance in the

theory has enlarged the scope of its influence. Mathematical statistics is one impor-

tant branch of applied probability; other applications occur in such widely different

fields as genetics, biology, psychology, economics, finance, engineering, mechan-

ics, optics, thermodynamics, quantum mechanics, computer vision, geophysics,etc.

In fact I compel the reader to find one area in today’s science where no applications

of probability theory can be found.

Early history

In the XVII-th century the first notions of Probability Theory appeared. More pre-

cisely, in 1654 Antoine Gombaud Chevalier de Méré, a French nobleman with an

interest in gaming and gambling questions, was puzzled by an apparent contradiction

Probability and Stochastic Processes, First Edition. Ionuţ Florescu
C 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 INTRODUCTION

concerning a popular dice game. The game consisted of throwing a pair of dice 24
times; the problem was to decide whether or not to bet even money on the occurrence

of at least one "double six" during the 24 throws. A seemingly well-established gam-

bling rule led de Méré to believe that betting on a double six in 24 throws would be

profitable (based on the payoff of the game). However, his own calculations based on

many repetitions of the 24 throws indicated just the opposite. Using modern probabil-

ity language de Méré was trying to establish if such an event has probability greater

than 0.5 (we are looking at this question in example 1.7). Puzzled by this and other

similar gambling problems he called on the famous mathematician Blaise Pascal.

This, in turn led to an exchange of letters between Pascal and another famous French

mathematician Pierre de Fermat. This is the first known documentation of the funda-

mental principles of the theory of probability. Before this famous exchange of letters,

a few other simple problems on games of chance had been solved in the XV-th and

XVI-th centuries by Italian mathematicians; however, no general principles had been

formulated before this famous correspondence.

In 1655 during his first visit to Paris, the Dutch scientist Christian Huygens learned

of the work on probability carried out in this correspondence. On his return to Holland

in 1657, Huygens wrote a small work De Ratiociniis in Ludo Aleae, the first printed
work on the calculus of probabilities. It was a treatise on problems associated with

gambling. Because of the inherent appeal of games of chance, probability theory soon

became popular, and the subject developed rapidly during the XVIII-th century.

The XVIII-th century

The major contributors during this period were Jacob Bernoulli (1654–1705) and
Abraham de Moivre (1667-1754). Jacob (Jacques) Bernoulli was a Swiss mathe-
matician who was the first to use the term integral. He was the first mathematician
in the Bernoulli family, a family of famous scientists of the XVIII-th century. Jacob
Bernoulli’s most original work was Ars Conjectandi published in Basel in 1713, eight
years after his death. The work was incomplete at the time of his death but it still was
a work of the greatest significance in the development of the Theory of Probability.
De Moivre was a French mathematician who lived most of his life in England1. De
Moivre pioneered the modern approach to the Theory of Probability, in his work The
Doctrine of Chance: A Method of Calculating the Probabilities of Events in Play in
the year 1718. A Latin version of the book had been presented to the Royal Society
and published in the Philosophical Transactions in 1711. The definition of statistical
independence appears in this book for the first time. The Doctrine of Chance appeared
in new expanded editions in 1718, 1738 and 1756. The birthday problem (example
1.12) appeared in the 1738 edition, the gambler’s ruin problem (example 1.11) in the
1756 edition. The 1756 edition of The Doctrine of Chance contained what is probably
deMoivre’s most significant contribution to probability, namely the approximation of
the binomial distribution with the normal distribution in the case of a large number of
trials - which is now known by most probability textbooks as “The First Central Limit
Theorem” (we will discuss this theorem in Chapter 4). He understood the notion of

1A protestant, he was pushed to leave France after Louis XIV revoked the Edict of Nantes in 1685, leading
to the expulsion of the Huguenots
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standard deviation and is the first to write the normal integral (and the distribution
density). In Miscellanea Analytica (1730) he derives Stirling’s formula (wrongly at-
tributed to Stirling) which he uses in his proof of the central limit theorem. In the
second edition of the book in 1738 de Moivre gives credit to Stirling for an improve-
ment to the formula. De Moivre wrote:

“I desisted in proceeding farther till my worthy and learned friend Mr James Stir-

ling, who had applied after me to that inquiry, [discovered that c =
√

2].”

De Moivre also investigated mortality statistics and the foundation of the theory
of annuities. In 1724 he published one of the first statistical applications to finance
Annuities on Lives, based on population data for the city of Breslau. In fact, in A
History of the Mathematical Theory of Probability (London, 1865), Isaac Todhunter
says that probability:

... owes more to [de Moivre] than any other mathematician, with the single excep-

tion of Laplace.

De Moivre died in poverty. He did not hold a university position despite his influ-

ential friends Leibnitz, Newton, and Halley, and his main income came from tutoring.

De Moivre, like Cardan (Girolamo Cardano), predicted the day of his own death.

He discovered that he was sleeping 15 minutes longer each night and summing the

arithmetic progression, calculated that he would die on the day when he slept for 24

hours. He was right!

The XIX-th century

This century saw the development and generalization of the early Probability Theory.

Pierre-Simon de Laplace (1749–1827) published Théorie Analytique des Probabilités
in 1812. This is the first fundamental book in probability ever published (the sec-

ond being Kolmogorov’s 1933 monograph). Before Laplace, probability theory was

solely concerned with developing a mathematical analysis of games of chance. The

first edition was dedicated to Napoleon-le-Grand, but the dedication was removed in

later editions!2

The work consisted of two books and a second edition two years later saw an in-

crease in the material by about 30 per cent. The work studies generating functions,

Laplace’s definition of probability, Bayes rule (so named by Poincaré many years

later), the notion of mathematical expectation, probability approximations, a discus-

sion of the method of least squares, Buffon’s needle problem, and inverse Laplace

transform. Later editions of the Théorie Analytique des Probabilités also contains

supplements which consider applications of probability to determine errors in obser-

vations arising in astronomy, the other passion of Laplace.

On the morning of Monday 5 March 1827, Laplace died. Few events would cause

the Academy to cancel a meeting but they did so on that day as a mark of respect for

one of the greatest scientists of all time.

2The close relationship between Laplace and Napoleon is well documented and he became Count of the
Empire in 1806. However, when it was clear that royalists were coming back he offered his services to the
Bourbons and in 1817 he was rewarded with the title of marquis.
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Century XX and modern times

Many scientists have contributed to the theory since Laplace’s time; among the most

important are Chebyshev, Markov, von Mises, and Kolmogorov.

One of the difficulties in developing a mathematical theory of probability has been

to arrive at a definition of probability that is precise enough for use in mathemat-

ics, yet comprehensive enough to be applicable to a wide range of phenomena. The

search for a widely acceptable definition took nearly three centuries and was marked

by much controversy. The matter was finally resolved in the 20th century by treat-

ing probability theory on an axiomatic basis. In 1933, a monograph by the Russian

giant mathematician Andrey Nikolaevich Kolmogorov (1903–1987) outlined an ax-

iomatic approach that forms the basis for the modern theory. In 1925, the year he

started his doctoral studies, Kolmogorov published his first paper with Khinchin on

the probability theory. The paper contains, among other inequalities about partial se-

ries of random variables, the three series theorem which provides important tools for

stochastic calculus. In 1929, when he finished his doctorate, he already had published

18 papers. Among them were versions of the strong law of large numbers and the law

of iterated logarithm.

In 1933, two years after his appointment as a professor at MoscowUniversity, Kol-

mogorov published Grundbegriffe der Wahrscheinlichkeitsrechnung his most funda-

mental book. In it he builds up probability theory in a rigorous way from fundamental

axioms in a way comparable with Euclid’s treatment of geometry. He gives a rigor-

ous definition of the conditional expectation which later became fundamental for the

definition of Brownian motion, stochastic integration, and Mathematics of Finance.

(Kolmogorov’s monograph is available in English translation as Foundations of Prob-
ability Theory, Chelsea, New York, 1950). In 1938 he publishes the paper Analytic
methods in probability theory which lay the foundation for the Markov processes,

leading toward a more rigorous approach to the Markov chains.

Kolmogorov later extended his work to study the motion of the planets and the

turbulent flow of air from a jet engine. In 1941 he published two papers on turbulence

which are of fundamental importance in the field of fluid mechanics. In 1953–54 two

papers byKolmogorov, each of four pages in length, appeared. These are on the theory

of dynamical systems with applications to Hamiltonian dynamics. These papers mark

the beginning of KAM-theory, which is named after Kolmogorov, Arnold and Moser.

Kolmogorov addressed the International Congress of Mathematicians in Amsterdam

in 1954 on this topic with his important talk General Theory of Dynamical Systems
and Classical Mechanics. He thus demonstrated the vital role of probability theory

in physics. His contribution in the topology theory is also of outmost importance3.

Closer to the modern era, I have to mention Joseph Leo Doob (1910-2004), who

was one of the pioneers in the modern treatment of stochastic processes. His book

Stochastic Processes (Doob, 1953) is one of the most influential in the treatment

of modern stochastic processes (specifically martingales). Paul-André Meyer

3Kolmogorov had many interests outside mathematics, for example he was interested in the form and
structure of the poetry of the greatest Russian poet Alexander Sergeyevich Pushkin (1799-1837).


