Time Series Analysis
WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice, Iain M. Johnstone, Geert Molenberghs, David W. Scott, Adrian F. M. Smith, Ruey S. Tsay, Sanford Weisberg
Editors Emeriti: Vic Barnett, J. Stuart Hunter, Jozef L. Teugels

A complete list of the titles in this series appears at the end of this volume.
To the memory of

Gwilym M. Jenkins

Gregory C. Reinsel
Contents

Preface to the Fourth Edition .. xxvi
Preface to the Third Edition .. xxviii

1 Introduction ... 1

 1.1 Five Important Practical Problems, 2
 1.1.1 Forecasting Time Series, 2
 1.1.2 Estimation of Transfer Functions, 3
 1.1.3 Analysis of Effects of Unusual Intervention Events to a System, 4
 1.1.4 Analysis of Multivariate Time Series, 5
 1.1.5 Discrete Control Systems, 5

 1.2 Stochastic and Deterministic Dynamic Mathematical Models, 7
 1.2.1 Stationary and Nonstationary Stochastic Models for Forecasting and Control, 7
 1.2.2 Transfer Function Models, 12
 1.2.3 Models for Discrete Control Systems, 14

 1.3 Basic Ideas in Model Building, 16
 1.3.1 Parsimony, 16
 1.3.2 Iterative Stages in the Selection of a Model, 17

Part One Stochastic Models and Their Forecasting 19

2 Autocorrelation Function and Spectrum of Stationary Processes 21

 2.1 Autocorrelation Properties of Stationary Models, 21
 2.1.1 Time Series and Stochastic Processes, 21
 2.1.2 Stationary Stochastic Processes, 24
CONTENTS

2.1.3 Positive Definiteness and the Autocovariance Matrix, 25
2.1.4 Autocovariance and Autocorrelation Functions, 29
2.1.5 Estimation of Autocovariance and Autocorrelation Functions, 31
2.1.6 Standard Errors of Autocorrelation Estimates, 33

2.2 Spectral Properties of Stationary Models, 35
2.2.1 Periodogram of a Time Series, 35
2.2.2 Analysis of Variance, 37
2.2.3 Spectrum and Spectral Density Function, 38
2.2.4 Simple Examples of Autocorrelation and Spectral Density Functions, 43
2.2.5 Advantages and Disadvantages of the Autocorrelation and Spectral Density Functions, 45

A2.1 Link between the Sample Spectrum and Autocovariance Function Estimate, 45

3 Linear Stationary Models

3.1 General Linear Process, 47
3.1.1 Two Equivalent Forms for the Linear Process, 47
3.1.2 Autocovariance Generating Function of a Linear Process, 50
3.1.3 Stationarity and Invertibility Conditions for a Linear Process, 51
3.1.4 Autoregressive and Moving Average Processes, 53

3.2 Autoregressive Processes, 55
3.2.1 Stationarity Conditions for Autoregressive Processes, 55
3.2.2 Autocorrelation Function and Spectrum of Autoregressive Processes, 57
3.2.3 First-Order Autoregressive (Markov) Process, 59
3.2.4 Second-Order Autoregressive Process, 61
3.2.5 Partial Autocorrelation Function, 66
3.2.6 Estimation of the Partial Autocorrelation Function, 69
3.2.7 Standard Errors of Partial Autocorrelation Estimates, 70

3.3 Moving Average Processes, 71
3.3.1 Invertibility Conditions for Moving Average Processes, 71
3.3.2 Autocorrelation Function and Spectrum of Moving Average Processes, 72
3.3.3 First-Order Moving Average Process, 73
3.3.4 Second-Order Moving Average Process, 75
3.3.5 Duality Between Autoregressive and Moving Average Processes, 78
3.4 Mixed Autoregressive–Moving Average Processes, 79
 3.4.1 Stationarity and Invertibility Properties, 79
 3.4.2 Autocorrelation Function and Spectrum of Mixed Processes, 80
 3.4.3 First-Order Autoregressive–First-Order Moving Average Process, 82
 3.4.4 Summary, 86
A3.1 Autocovariances, Autocovariance Generating Function, and Stationarity Conditions for a General Linear Process, 86
A3.2 Recursive Method for Calculating Estimates of Autoregressive Parameters, 89
4 Linear Nonstationary Models
 4.1 Autoregressive Integrated Moving Average Processes, 93
 4.1.1 Nonstationary First-Order Autoregressive Process, 93
 4.1.2 General Model for a Nonstationary Process Exhibiting Homogeneity, 95
 4.1.3 General Form of the Autoregressive Integrated Moving Average Model, 100
 4.2 Three Explicit Forms for The Autoregressive Integrated Moving Average Model, 103
 4.2.1 Difference Equation Form of the Model, 103
 4.2.2 Random Shock Form of the Model, 104
 4.2.3 Inverted Form of the Model, 111
 4.3 Integrated Moving Average Processes, 114
 4.3.1 Integrated Moving Average Process of Order (0, 1, 1), 115
 4.3.2 Integrated Moving Average Process of Order (0, 2, 2), 119
 4.3.3 General Integrated Moving Average Process of Order (0, d, q), 123
A4.1 Linear Difference Equations, 125
A4.2 IMA(0, 1, 1) Process with Deterministic Drift, 131
A4.3 Arima Processes with Added Noise, 131
 A4.3.1 Sum of Two Independent Moving Average Processes, 132
 A4.3.2 Effect of Added Noise on the General Model, 133
 A4.3.3 Example for an IMA(0, 1, 1) Process with Added White Noise, 134
 A4.3.4 Relation between the IMA(0, 1, 1) Process and a Random Walk, 135
 A4.3.5 Autocovariance Function of the General Model with Added Correlated Noise, 135

5 Forecasting 137
 5.1 Minimum Mean Square Error Forecasts and Their Properties, 137
 5.1.1 Derivation of the Minimum Mean Square Error Forecasts, 139
 5.1.2 Three Basic Forms for the Forecast, 141
 5.2 Calculating and Updating Forecasts, 145
 5.2.1 Convenient Format for the Forecasts, 145
 5.2.2 Calculation of the ψ Weights, 147
 5.2.3 Use of the ψ Weights in Updating the Forecasts, 148
 5.2.4 Calculation of the Probability Limits of the Forecasts at Any Lead Time, 150
 5.3 Forecast Function and Forecast Weights, 152
 5.3.1 Eventual Forecast Function Determined by the Autoregressive Operator, 152
 5.3.2 Role of the Moving Average Operator in Fixing the Initial Values, 153
 5.3.3 Lead / Forecast Weights, 154
 5.4 Examples of Forecast Functions and Their Updating, 157
 5.4.1 Forecasting an IMA(0, 1, 1) Process, 157
 5.4.2 Forecasting an IMA(0, 2, 2) Process, 160
 5.4.3 Forecasting a General IMA(0, d, q) Process, 163
 5.4.4 Forecasting Autoregressive Processes, 164
 5.4.5 Forecasting a (1, 0, 1) Process, 167
 5.4.6 Forecasting a (1, 1, 1) Process, 169
5.5 Use of State-Space Model Formulation for Exact Forecasting, 170
 5.5.1 State-Space Model Representation for the ARIMA Process, 170
 5.5.2 Kalman Filtering Relations for Use in Prediction, 171
 5.5.3 Smoothing Relations in the State Variable Model, 175

5.6 Summary, 177

A5.1 Correlations Between Forecast Errors, 180
 A5.1.1 Autocorrelation Function of Forecast Errors at Different Origins, 180
 A5.1.2 Correlation Between Forecast Errors at the Same Origin with Different Lead Times, 182

A5.2 Forecast Weights for Any Lead Time, 182

A5.3 Forecasting in Terms of the General Integrated Form, 185
 A5.3.1 General Method of Obtaining the Integrated Form, 185
 A5.3.2 Updating the General Integrated Form, 187
 A5.3.3 Comparison with the Discounted Least Squares Method, 187

Part Two Stochastic Model Building 193

6 Model Identification 195
 6.1 Objectives of Identification, 195
 6.1.1 Stages in the Identification Procedure, 195
 6.2 Identification Techniques, 196
 6.2.1 Use of the Autocorrelation and Partial Autocorrelation Functions in Identification, 196
 6.2.2 Standard Errors for Estimated Autocorrelations and Partial Autocorrelations, 198
 6.2.3 Identification of Some Actual Time Series, 200
 6.2.4 Some Additional Model Identification Tools, 208
 6.3 Initial Estimates for the Parameters, 213
 6.3.1 Uniqueness of Estimates Obtained from the Autocovariance Function, 213
 6.3.2 Initial Estimates for Moving Average Processes, 213
 6.3.3 Initial Estimates for Autoregressive Processes, 215
6.3.4 Initial Estimates for Mixed
Autoregressive–Moving Average Processes, 216
6.3.5 Initial Estimate of Error Variance, 218
6.3.6 Approximate Standard Error for \bar{w}, 218
6.3.7 Choice Between Stationary and Nonstationary
Models in Doubtful Cases, 220

6.4 Model Multiplicity, 221
6.4.1 Multiplicity of Autoregressive–Moving Average
Models, 221
6.4.2 Multiple Moment Solutions for Moving Average
Parameters, 224
6.4.3 Use of the Backward Process to Determine
Starting Values, 225

A6.1 Expected Behavior of the Estimated Autocorrelation
Function for a Nonstationary Process, 225
A6.2 General Method for Obtaining Initial Estimates of the
Parameters of a Mixed Autoregressive–Moving Average
Process, 226

7 Model Estimation

7.1 Study of the Likelihood and Sum-of-Squares Functions, 231
7.1.1 Likelihood Function, 231
7.1.2 Conditional Likelihood for an ARIMA
Process, 232
7.1.3 Choice of Starting Values for Conditional
Calculation, 234
7.1.4 Unconditional Likelihood; Sum-of-Squares
Function; Least Squares Estimates, 235
7.1.5 General Procedure for Calculating the
Unconditional Sum of Squares, 240
7.1.6 Graphical Study of the Sum-of-Squares
Function, 245
7.1.7 Description of “Well-Behaved” Estimation
Situations; Confidence Regions, 248

7.2 Nonlinear Estimation, 255
7.2.1 General Method of Approach, 255
7.2.2 Numerical Estimates of the Derivatives, 257
7.2.3 Direct Evaluation of the Derivatives, 258
7.2.4 General Least Squares Algorithm for the
Conditional Model, 260
7.2.5 Summary of Models Fitted to Series A to F, 263
7.2.6 Large-Sample Information Matrices and Covariance Estimates, 264

7.3 Some Estimation Results for Specific Models, 268

7.3.1 Autoregressive Processes, 268

7.3.2 Moving Average Processes, 270

7.3.3 Mixed Processes, 271

7.3.4 Separation of Linear and Nonlinear Components in Estimation, 271

7.3.5 Parameter Redundancy, 273

7.4 Likelihood Function Based on the State-Space Model, 275

7.5 Unit Roots in Arima Models, 280

7.5.1 Formal Tests for Unit Roots in AR Models, 281

7.5.2 Extensions of Unit-Root Testing to Mixed ARIMA Models, 286

7.6 Estimation Using Bayes’s Theorem, 287

7.6.1 Bayes’s Theorem, 287

7.6.2 Bayesian Estimation of Parameters, 289

7.6.3 Autoregressive Processes, 290

7.6.4 Moving Average Processes, 293

7.6.5 Mixed Processes, 294

A7.1 Review of Normal Distribution Theory, 296

A7.1.1 Partitioning of a Positive-Definite Quadratic Form, 296

A7.1.2 Two Useful Integrals, 296

A7.1.3 Normal Distribution, 297

A7.1.4 Student’s t Distribution, 300

A7.2 Review of Linear Least Squares Theory, 303

A7.2.1 Normal Equations and Least Squares, 303

A7.2.2 Estimation of Error Variance, 304

A7.2.3 Covariance Matrix of Least Squares Estimates, 305

A7.2.4 Confidence Regions, 305

A7.2.5 Correlated Errors, 305

A7.3 Exact Likelihood Function for Moving Average and Mixed Processes, 306

A7.4 Exact Likelihood Function for an Autoregressive Process, 314

A7.5 Asymptotic Distribution of Estimators for Autoregressive Models, 323
A7.6 Examples of the Effect of Parameter Estimation Errors on Variances of Forecast Errors and Probability Limits for Forecasts, 327
A7.7 Special Note on Estimation of Moving Average Parameters, 330

8 Model Diagnostic Checking

8.1 Checking the Stochastic Model, 333
 8.1.1 General Philosophy, 333
 8.1.2 Overfitting, 334
8.2 Diagnostic Checks Applied to Residuals, 335
 8.2.1 Autocorrelation Check, 337
 8.2.2 Portmanteau Lack-of-Fit Test, 338
 8.2.3 Model Inadequacy Arising from Changes in Parameter Values, 343
 8.2.4 Score Tests for Model Checking, 344
 8.2.5 Cumulative Periodogram Check, 347
8.3 Use of Residuals to Modify the Model, 350
 8.3.1 Nature of the Correlations in the Residuals When an Incorrect Model Is Used, 350
 8.3.2 Use of Residuals to Modify the Model, 352

9 Seasonal Models

9.1 Parsimonious Models for Seasonal Time Series, 353
 9.1.1 Fitting versus Forecasting, 353
 9.1.2 Seasonal Models Involving Adaptive Sines and Cosines, 354
 9.1.3 General Multiplicative Seasonal Model, 356
9.2 Representation of the Airline Data by a Multiplicative $(0, 1, 1) \times (0, 1, 1)_{12}$ Model, 359
 9.2.1 Multiplicative $(0, 1, 1) \times (0, 1, 1)_{12}$ Model, 359
 9.2.2 Forecasting, 360
 9.2.3 Identification, 367
 9.2.4 Estimation, 370
 9.2.5 Diagnostic Checking, 375
9.3 Some Aspects of More General Seasonal ARIMA Models, 375
 9.3.1 Multiplicative and Nonmultiplicative Models, 375
 9.3.2 Identification, 379
CONTENTS

9.3.3 Estimation, 380
9.3.4 Eventual Forecast Functions for Various Seasonal Models, 381
9.3.5 Choice of Transformation, 383
9.4 Structural Component Models and Deterministic Seasonal Components, 384
9.4.1 Structural Component Time Series Models, 384
9.4.2 Deterministic Seasonal and Trend Components and Common Factors, 388
9.4.3 Estimation of Unobserved Components in Structural Models, 390
9.5 Regression Models with Time Series Error Terms, 397
9.5.1 Model Building, Estimation, and Forecasting Procedures for Regression Models, 399
9.5.2 Restricted Maximum Likelihood Estimation for Regression Models, 404
A9.1 Autocovariances for Some Seasonal Models, 407

10 Nonlinear and Long Memory Models 413
10.1 Autoregressive Conditional Heteroscedastic (ARCH) Models, 413
10.1.1 First-Order ARCH Model, 415
10.1.2 Consideration for More General Models, 416
10.1.3 Model Building and Parameter Estimation, 417
10.2 Nonlinear Time Series Models, 420
10.2.1 Classes of Nonlinear Models, 421
10.2.2 Implications and Examples of Nonlinear Models, 424
10.3 Long Memory Time Series Processes, 428
10.3.1 Fractionally Integrated Processes, 429
10.3.2 Estimation of Parameters, 433

Part Three Transfer Function and Multivariate Model Building 437

11 Transfer Function Models 439
11.1 Linear Transfer Function Models, 439
11.1.1 Discrete Transfer Function, 439
11.1.2 Continuous Dynamic Models Represented by Differential Equations, 442
11.2 Discrete Dynamic Models Represented by Difference Equations, 447
 11.2.1 General Form of the Difference Equation, 447
 11.2.2 Nature of the Transfer Function, 449
 11.2.3 First- and Second-Order Discrete Transfer Function Models, 450
 11.2.4 Recursive Computation of Output for Any Input, 456
 11.2.5 Transfer Function Models with Added Noise, 458
11.3 Relation Between Discrete and Continuous Models, 458
 11.3.1 Response to a Pulsed Input, 459
 11.3.2 Relationships for First- and Second-Order Coincident Systems, 461
 11.3.3 Approximating General Continuous Models by Discrete Models, 464
A11.1 Continuous Models with Pulsed Inputs, 465
A11.2 Nonlinear Transfer Functions and Linearization, 470

12 Identification, Fitting, and Checking of Transfer Function Models 473

12.1 Cross-Correlation Function, 474
 12.1.1 Properties of the Cross-Covariance and Cross-Correlation Functions, 474
 12.1.2 Estimation of the Cross-Covariance and Cross-Correlation Functions, 477
 12.1.3 Approximate Standard Errors of Cross-Correlation Estimates, 478
12.2 Identification of Transfer Function Models, 481
 12.2.1 Identification of Transfer Function Models by Prewhitening the Input, 483
 12.2.2 Example of the Identification of a Transfer Function Model, 484
 12.2.3 Identification of the Noise Model, 488
 12.2.4 Some General Considerations in Identifying Transfer Function Models, 490
12.3 Fitting and Checking Transfer Function Models, 492
 12.3.1 Conditional Sum-of-Squares Function, 492
 12.3.2 Nonlinear Estimation, 495
 12.3.3 Use of Residuals for Diagnostic Checking, 497
 12.3.4 Specific Checks Applied to the Residuals, 498
12.4 Some Examples of Fitting and Checking Transfer Function Models, 501
12.4.1 Fitting and Checking of the Gas Furnace Model, 501
12.4.2 Simulated Example with Two Inputs, 507
12.5 Forecasting With Transfer Function Models Using Leading Indicators, 509
 12.5.1 Minimum Mean Square Error Forecast, 510
 12.5.2 Forecast of CO$_2$ Output from Gas Furnace, 514
 12.5.3 Forecast of Nonstationary Sales Data Using a Leading Indicator, 517
12.6 Some Aspects of the Design of Experiments to Estimate Transfer Functions, 519
A12.1 Use of Cross Spectral Analysis for Transfer Function Model Identification, 521
 A12.1.1 Identification of Single Input Transfer Function Models, 521
 A12.1.2 Identification of Multiple Input Transfer Function Models, 523
A12.2 Choice of Input to Provide Optimal Parameter Estimates, 524
 A12.2.1 Design of Optimal Inputs for a Simple System, 524
 A12.2.2 Numerical Example, 527

13 Intervention Analysis Models and Outlier Detection

13.1 Intervention Analysis Methods, 529
 13.1.1 Models for Intervention Analysis, 529
 13.1.2 Example of Intervention Analysis, 532
 13.1.3 Nature of the MLE for a Simple Level Change Parameter Model, 533
13.2 Outlier Analysis for Time Series, 536
 13.2.1 Models for Additive and Innovational Outliers, 537
 13.2.2 Estimation of Outlier Effect for Known Timing of the Outlier, 538
 13.2.3 Iterative Procedure for Outlier Detection, 540
 13.2.4 Examples of Analysis of Outliers, 541
13.3 Estimation for ARMA Models with Missing Values, 543
 13.3.1 State-Space Model and Kalman Filter with Missing Values, 544
 13.3.2 Estimation of Missing Values of an ARMA Process, 546
14 Multivariate Time Series Analysis

14.1 Stationary Multivariate Time Series, 552
 14.1.1 Covariance Properties of Stationary Multivariate
 Time Series, 552
 14.1.2 Spectral Characteristics for Stationary
 Multivariate Processes, 554
 14.1.3 Linear Filtering Relations for Stationary
 Multivariate Processes, 555

14.2 Linear Model Representations for Stationary Multivariate
 Processes, 556
 14.2.1 Vector Autoregressive–Moving Average (ARMA)
 Models and Representations, 557
 14.2.2 Aspects of Nonuniqueness and Parameter
 Identifiability for Vector ARMA Models, 563
 14.2.3 Echelon Canonical Form of the Vector ARMA
 Model, 565
 14.2.4 Relation of Vector ARMA to Transfer Function
 and ARMAX Model Forms, 569

14.3 Nonstationary Vector Autoregressive–Moving Average
 Models, 570

14.4 Forecasting for Vector Autoregressive–Moving Average
 Processes, 573
 14.4.1 Calculation of Forecasts from ARMA Difference
 Equation, 573
 14.4.2 Forecasts from Infinite MA Form and Properties
 of Forecast Errors, 575

14.5 State-Space Form of the Vector ARMA Model, 575

14.6 Statistical Analysis of Vector ARMA Models, 578
 14.6.1 Initial Model Building and Least Squares for
 Vector AR Models, 578
 14.6.2 Estimation and Model Checking for Vector
 ARMA Models, 583
 14.6.3 Estimation and Inferences for Co-integrated
 Vector AR Models, 585

14.7 Example of Vector ARMA Modeling, 588

Part Four Design of Discrete Control Schemes

15 Aspects of Process Control

15.1 Process Monitoring and Process Adjustment, 600
 15.1.1 Process Monitoring, 600
xx CONTENTS

Part Five Charts and Tables 659
Collection of Tables and Charts 661
Collection of Time Series Used for Examples in the Text and in Exercises 669
References 685

Part Six Exercises and Problems 701
Index 729
Preface to the Fourth Edition

It may be of interest to briefly recount how this book came to be written. Gwilym Jenkins and I first became friends in the late 1950s. We were intrigued by an idea that a chemical reactor could be designed that optimized itself automatically and could follow a moving maximum. We both believed that many advances in statistical theory came about as a result of interaction with researchers who were working on real scientific problems. Helping to design and build such a reactor would present an opportunity to further demonstrate this concept.

When Gwilym Jenkins came to visit Madison for a year, we discussed the idea with the famous chemical engineer Olaf Hougen, then in his eighties. He was enthusiastic and suggested that we form a small team in a joint project to build such a system. The National Science Foundation later supported this project. It took three years, but suffice it to say, that after many experiments, several setbacks, and some successes the reactor was built and it worked.

As expected this investigation taught us a lot. In particular we acquired proficiency in the manipulation of difference equations that were needed to characterize the dynamics of the system. It also gave us a better understanding of nonstationary time series required for realistic modeling of system noise. This was a happy time. We were doing what we most enjoyed doing: interacting with experimenters in the evolution of ideas and the solution of real problems, with real apparatus and real data.

Later there was fallout in other contexts, for example, advances in time series analysis, in forecasting for business and economics, and also developments in statistical process control (SPC) using some notions learned from the engineers.

Originally Gwilym came for a year. After that I spent each summer with him in England at his home in Lancaster. For the rest of the year, we corresponded using small reel-to-reel tape recorders. We wrote a number of technical reports and published some papers but eventually realized we needed a book. The first two editions of this book were written during a period in which Gwilym was, with extraordinary courage, fighting a debilitating illness to which he succumbed sometime after the book had been completed.

Later Gregory Reinsel, who had profound knowledge of the subject, helped to complete the third edition. Also in this fourth edition, produced after his untimely
death, the new material is almost entirely his. In addition to a complete revision and
updating, this fourth edition resulted in two new chapters: Chapter 10 on nonlinear
and long memory models and Chapter 12 on multivariate time series.

This book should be regarded as a tribute to Gwilym and Gregory.
I was especially blessed to work with two such gifted colleagues.

GEORGE E. P. BOX

Madison, Wisconsin
March 2008

ACKNOWLEDGEMENTS

We are grateful to our editors Steve Quigley and Lisa Van Horn for their encour-
agement and help in producing this fourth edition and to Surendar Narasimhan for
help with the final preparation of this manuscript.

G. E. P. B.
Preface to the Third Edition

This book is concerned with the building of stochastic (statistical) models for time series and their use in important areas of application. This includes the topics of forecasting, model specification, estimation, and checking, transfer function modeling of dynamic relationships, modeling the effects of intervention events, and process control. Coincident with the first publication of Time Series Analysis: Forecasting and Control, there was a great upsurge in research in these topics. Thus, while the fundamental principles of the kind of time series analysis presented in that edition have remained the same, there has been a great influx of new ideas, modifications, and improvements provided by many authors.

The earlier editions of this book were written during a period in which Gwilym Jenkins was, with extraordinary courage, fighting a slowly debilitating illness. In the present revision, dedicated to his memory, we have preserved the general structure of the original book while revising, modifying, and omitting text where appropriate. In particular, Chapter 7 on estimation of ARMA models has been considerably modified. In addition, we have introduced entirely new sections on some important topics that have evolved since the first edition. These include presentations on various more recently developed methods for model specification, such as canonical correlation analysis and the use of model selection criteria, results on testing for unit root nonstationarity in ARIMA processes, the state space representation of ARMA models and its use for likelihood estimation and forecasting, score tests for model checking, structural components, and deterministic components in time series models and their estimation based on regression-time series model methods. A new chapter (12) has been developed on the important topic of intervention and outlier analysis, reflecting the substantial interest and research in this topic since the earlier editions.

Over the last few years, the new emphasis on industrial quality improvement has strongly focused attention on the role of control both in process monitoring as well as in process adjustment. The control section of this book has, therefore, been completely rewritten to serve as an introduction to these important topics and to provide a better understanding of their relationship.

The objective of this book is to provide practical techniques that will be available to most of the wide audience who could benefit from their use. While we have tried
to remove the inadequacies of earlier editions, we have not attempted to produce here a rigorous mathematical treatment of the subject.

We wish to acknowledge our indebtedness to Meg (Margaret) Jenkins and to our wives, Claire and Sandy, for their continuing support and assistance throughout the long period of preparation of this revision.

Research on which the original book was based was supported by the Air Force Office of Scientific Research and by the British Science Research Council. Research incorporated in the third edition was partially supported by the Alfred P. Sloan Foundation and by the National Aeronautics and Space Administration. We are grateful to Professor E. S. Pearson and the Biometrika Trustees for permission to reprint condensed and adapted forms of Tables 1, 8, and 12 of Biometrika Tables for Statisticians, Vol. 1, edited by E. S. Pearson and H. O. Hartley, to Dr. Casimer Stralkowski for permission to reproduce and adapt three figures from his doctoral thesis, and to George Tiao, David Mayne, Emanuel Parzen, David Pierce, Granville Wilson, Donald Watts, John Hampton, Elaine Hodkinson, Patricia Blant, Dean Wichern, David Bacon, Paul Newbold, Hiro Kanemasu, Larry Haugh, John MacGregor, Bovas Abraham, Gina Chen, Johannes Ledolter, Greta Ljung, Carole Leigh, Mary Esser, and Meg Jenkins for their help, in many different ways, in preparing the earlier editions.

George Box and Gregory Reinsel
CHAPTER ONE

Introduction

A time series is a sequence of observations taken sequentially in time. Many sets of data appear as time series: a monthly sequence of the quantity of goods shipped from a factory, a weekly series of the number of road accidents, hourly observations made on the yield of a chemical process, and so on. Examples of time series abound in such fields as economics, business, engineering, the natural sciences (especially geophysics and meteorology), and the social sciences. Examples of data of the kind that we will be concerned with are displayed as time series plots in Figure 4.1. An intrinsic feature of a time series is that, typically, adjacent observations are dependent. The nature of this dependence among observations of a time series is of considerable practical interest. Time series analysis is concerned with techniques for the analysis of this dependence. This requires the development of stochastic and dynamic models for time series data and the use of such models in important areas of application.

In the subsequent chapters of this book we present methods for building, identifying, fitting, and checking models for time series and dynamic systems. The methods discussed are appropriate for discrete (sampled-data) systems, where observation of the system occurs at equally spaced intervals of time.

We illustrate the use of these time series and dynamic models in five important areas of application:

1. The forecasting of future values of a time series from current and past values
2. The determination of the transfer function of a system subject to inertia—the determination of a dynamic input–output model that can show the effect on the output of a system of any given series of inputs
3. The use of indicator input variables in transfer function models to represent and assess the effects of unusual intervention events on the behavior of a time series

Copyright © 2008 John Wiley & Sons, Inc.
4. The examination of interrelationships among several related time series variables of interest and determination of appropriate multivariate dynamic models to represent these joint relationships among variables over time

5. The design of simple control schemes by means of which potential deviations of the system output from a desired target may, so far as possible, be compensated by adjustment of the input series values

1.1 FIVE IMPORTANT PRACTICAL PROBLEMS

1.1.1 Forecasting Time Series

The use at time t of available observations from a time series to forecast its value at some future time $t + l$ can provide a basis for (1) economic and business planning, (2) production planning, (3) inventory and production control, and (4) control and optimization of industrial processes. As originally described by Holt et al. [157], Brown [79], and the Imperial Chemical Industries monograph on short-term forecasting [263], forecasts are usually needed over a period known as the lead time, which varies with each problem. For example, the lead time in the inventory control problem was defined by Harrison [143] as a period that begins when an order to replenish stock is placed with the factory and lasts until the order is delivered into stock.

We suppose that observations are available at discrete, equispaced intervals of time. For example, in a sales forecasting problem, the sales z_t in the current month t and the sales z_{t-1}, z_{t-2}, z_{t-3}, ... in previous months might be used to forecast sales for lead times $l = 1, 2, 3, \ldots, 12$ months ahead. Denote by $\hat{z}_t(l)$ the forecast made at origin t of the sales z_{t+l} at some future time $t + l$, that is, at lead time l. The function $\hat{z}_t(l)$, which provides the forecasts at origin t for all future lead times, based on the available information from the current and previous values z_t, z_{t-1}, z_{t-2}, z_{t-3}, ... through time t, will be called the forecast function at origin t. Our objective is to obtain a forecast function such that the mean square of the deviations $z_{t+l} - \hat{z}_t(l)$ between the actual and forecasted values is as small as possible for each lead time l.

In addition to calculating the best forecasts, it is also necessary to specify their accuracy, so that, for example, the risks associated with decisions based upon the forecasts may be calculated. The accuracy of the forecasts may be expressed by calculating probability limits on either side of each forecast. These limits may be calculated for any convenient set of probabilities, for example, 50 and 95%. They are such that the realized value of the time series, when it eventually occurs, will be included within these limits with the stated probability. To illustrate, Figure 1.1 shows the last 20 values of a time series culminating at time t. Also shown are forecasts made from origin t for lead times $l = 1, 2, \ldots, 13$, together with the 50% probability limits.

Methods for obtaining forecasts and estimating probability limits are discussed in detail in Chapter 5. These forecasting methods are developed based on the assumption that the time series z_t follows a stochastic model of known form.
Consequently, in Chapters 3 and 4 a useful class of such time series models that might be appropriate to represent the behavior of a series z_t, called autoregressive integrated moving average (ARIMA) models, are introduced and many of their properties are studied. Subsequently, in Chapters 6, 7, and 8 the practical matter of how these models may be fitted to actual time series data is explored, and the methods are described through the three-stage procedure of tentative model identification or specification, estimation of model parameters, and model checking and diagnostics.

1.1.2 Estimation of Transfer Functions

A topic of considerable industrial interest is the study of process dynamics [22, 162]. Such a study is made (1) to achieve better control of existing plants and (2) to improve the design of new plants. In particular, several methods have been proposed for estimating the transfer function of plant units from process records consisting of an input time series X_t and an output time series Y_t. Sections of such records are shown in Figure 1.2, where the input X_t is the rate of air supply and the output Y_t is the concentration of carbon dioxide produced in a furnace. The observations were made at 9-second intervals. A hypothetical impulse response function v_j, $j = 0, 1, 2, \ldots$, which determines the transfer function for the system through a dynamic linear relationship between input X_t and output Y_t of the form $Y_t = \sum_{j=0}^{\infty} v_j X_{t-j}$, is also shown in the figure as a bar chart. Transfer function models that relate an input process X_t to an output process Y_t are introduced in Chapter 11 and many of their properties are examined.

Methods for estimating transfer function models based on deterministic perturbations of the input, such as step, pulse, and sinusoidal changes, have not always
been successful. This is because, for perturbations of a magnitude that are relevant and tolerable, the response of the system may be masked by uncontrollable disturbances referred to collectively as *noise*. Statistical methods for estimating transfer function models that make allowance for noise in the system are described in Chapter 12. The estimation of dynamic response is of considerable interest in economics, engineering, biology, and many other fields.

Another important application of transfer function models is in forecasting. If, for example, the dynamic relationship between two time series Y_t and X_t can be determined, past values of both series may be used in forecasting Y_t. In some situations this approach can lead to a considerable reduction in the errors of the forecasts.

1.1.3 Analysis of Effects of Unusual Intervention Events to a System

In some situations it may be known that certain exceptional external events, *intervention events*, could have affected the time series z_t under study. Examples of such intervention events include the incorporation of new environmental regulations, economic policy changes, strikes, and special promotion campaigns. Under such circumstances we may use transfer function models, as discussed in Section 1.1.2, to account for the effects of the intervention event on the series z_t, but where the "input" series will be in the form of a simple indicator variable taking only the values 1 and 0 to indicate (qualitatively) the presence or absence of the event.

In these cases, the intervention analysis is undertaken to obtain a quantitative measure of the impact of the intervention event on the time series of interest. For example, Box and Tiao [73] used intervention models to study and quantify the impact of air pollution controls on smog-producing oxidant levels in the Los Angeles area and of economic controls on the consumer price index in the United States. Alternatively, the intervention analysis may be undertaken to adjust for any unusual values in the series z_t that might have resulted as a consequence of the intervention event. This will ensure that the results of the time series analysis of the series, such as the structure of the fitted model, estimates of model parameters, and forecasts of future values, are not seriously distorted by the influence of