Microreactors in Organic Chemistry and Catalysis
Second, Completely Revised and Enlarged Edition

Edited by Thomas Wirth
Edited by
Thomas Wirth

Microreactors in
Organic Chemistry and Catalysis
Related Titles

Reschetilowski, W. (ed.)
Microreactors in Preparative Chemistry
Practical Aspects in Bioprocessing, Nanotechnology, Catalysis and more
2013
ISBN: 978-3-527-33282-3

Catalysis from A to Z
A Concise Encyclopedia
Fourth, Completely Revised and Enlarged Edition
2013
ISBN: 978-3-527-33307-3

Jess, A., Wasserscheid, P.
Chemical Technology
An Integral Textbook
2013
ISBN: 978-3-527-30446-2

Arpe, H.-J.
Industrial Organic Chemistry
2010
ISBN: 978-3-527-32002-8

Zecchina, A., Bordiga, S., Groppo, E. (eds.)
Selective Nanocatalysts and Nanoscience
Concepts for Heterogeneous and Homogeneous Catalysis
2011
ISBN: 978-3-527-32271-8

Wirth, T. (ed.)
Organoselenium Chemistry
Synthesis and Reactions
2011
ISBN: 978-3-527-32944-1
Edited by Thomas Wirth

Microreactors in Organic Chemistry and Catalysis

Second, Completely Revised and Enlarged Edition
Contents

Preface to the First Edition XIII
Preface to the Second Edition XV
List of Contributors XVII

1 Properties and Use of Microreactors 1
David Barrow, Shan Taylor, Alex Morgan, and Lily Giles
1.1 Introduction 1
1.1.1 A Brief History of Microreactors 1
1.1.2 Advantages of Microreactors 6
1.2 Physical Characteristics of Microreactors 7
1.2.1 Geometries 7
1.2.2 Constructional Materials and Their Properties 10
1.3 Fluid Flow and Delivery Regimes 16
1.3.1 Fluid Flow 16
1.3.2 Fluid Delivery 20
1.3.3 Mixing Mechanisms 21
1.4 Multifunctional Integration 23
1.5 Uses of Microreactors 23
1.5.1 Overview 23
1.5.1.1 Fast and Exothermic Reactions 24
1.5.2 Precision Particle Manufacture 25
1.5.3 Wider Industrial Context 27
1.5.3.1 Sustainability Agenda 27
1.5.3.2 Point-of-Demand Synthesis 27
References 28

2 Fabrication of Microreactors Made from Metals and Ceramic 35
Juergen J. Brandner
2.1 Manufacturing Techniques for Metals 35
2.2 Etching 36
2.3 Machining 38
2.4 Generative Method: Selective Laser Melting 41
2.5 Metal Forming Techniques 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Assembling and Bonding of Metal Microstructures</td>
<td>43</td>
</tr>
<tr>
<td>2.7</td>
<td>Ceramic Devices</td>
<td>46</td>
</tr>
<tr>
<td>2.8</td>
<td>Joining and Sealing</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>Microreactors Made of Glass and Silicon</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Thomas Frank</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>How Microreactors Are Constructed</td>
<td>53</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Glass As Material</td>
<td>54</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Silicon As Material</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>The Structuring of Glass and Silicon</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Structuring by Means of Masked Etching As in Microsystems Technology</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Etching Technologies</td>
<td>60</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Anisotropic (Crystalllographic) Wet Chemical Etching of Silicon (KOH)</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Isotropic Wet Chemical Etching of Silicon</td>
<td>63</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Isotropic Wet Chemical Etching of Silicon</td>
<td>64</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Isotropic Wet Chemical Etching of Silicon Glass</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Other Processes</td>
<td>66</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Photostructuring of Special Glass</td>
<td>66</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Drilling, Diamond Lapping, Ultrasonic Lapping</td>
<td>68</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Micro Powder Blasting</td>
<td>69</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Summary</td>
<td>71</td>
</tr>
<tr>
<td>3.4</td>
<td>Other Processes</td>
<td>72</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Sensor Integration</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>Thin Films</td>
<td>72</td>
</tr>
<tr>
<td>3.6</td>
<td>Bonding Methods</td>
<td>73</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Anodic Bonding of Glass and Silicon</td>
<td>73</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Glass Fusion Bonding</td>
<td>73</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Silicon Direct Bonding (Silicon Fusion Bonding)</td>
<td>74</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Establishing Fluid Contact</td>
<td>76</td>
</tr>
<tr>
<td>3.7</td>
<td>Other Materials</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>Automation in Microreactor Systems</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Jason S. Moore and Klavs F. Jensen</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Automation System</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>Automated Optimization with HPLC Sampling</td>
<td>86</td>
</tr>
<tr>
<td>4.4</td>
<td>Automated Multi-Trajectory Optimization</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>Kinetic Model Discrimination and Parameter Fitting</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions and Outlook</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>99</td>
</tr>
</tbody>
</table>
8 Liquid–Liquid Biphasic Reactions 197
Matthew J. Hutchings, Batool Ahmed-Omer, and Thomas Wirth
8.1 Introduction 197
8.2 Background 198
8.3 Kinetics of Biphasic Systems 199
8.4 Biphasic Flow in Microchannels 200
8.5 Surface and Liquid–Liquid Interaction 202
8.6 Liquid–Liquid Microsystems in Organic Synthesis 207
8.7 Micromixer 209
8.8 Conclusions and Outlook 218
References 218

9 Gas–Liquid Reactions 221
Ivana Dencic and Volker Hessel
9.1 Introduction 221
9.2 Contacting Principles and Microreactors 222
9.2.1 Contacting with Continuous Phases 222
9.2.1.1 Falling Film Microreactor 222
9.2.1.2 Continuous Contactor with Partly Overlapping Channels 226
9.2.1.3 Mesh Microcontactor 227
9.2.1.4 Annular-Flow Microreactors 229
9.2.2 Contacting with Disperse Phases 231
9.2.2.1 Taylor-Flow Microreactors 232
9.2.2.2 Micromixer-Capillary/Tube Reactors 237
9.2.2.3 Micro-packed Bed Reactors 240
9.2.2.4 Membrane Microreactors 242
9.2.2.5 Tube in Tube Microreactor 243
9.2.3 Scaling Up of Microreactor Devices 244
9.3 Gas–Liquid Reactions 245
9.3.1 Direct Fluorination of Aromatics 246
9.3.1.1 Direct Fluorination of Aromatics 246
9.3.1.2 Direct Fluorination of Aliphatics and Non-C-Moieties 249
9.3.1.3 Direct Fluorination of Heterocyclic Aromatics 251
9.3.2 Oxidations of Alcohols, Diols, and Ketones with Fluorine 253
9.3.3 Photochlorination of Aromatic Isocyanates 254
9.3.4 Photoradical Chlorination of Cycloalkenes 255
9.3.5 Mono-Chlorination of Acetic Acid 256
9.3.6 Sulfonation of Toluene 257
9.3.7 Photooxidation Reactions 259
9.3.8 Reactive Carbon Dioxide Absorption 263
9.4 Gas–Liquid–Solid Reactions 265
9.4.1 Hydrogenations 266
9.4.1.1 Cyclohexene Hydrogenation over Pt/Al₂O₃ 266
9.4.1.2 Hydrogenation of p-Nitrotoluene and Nitrobenzene over Pd/C and Pd/Al₂O₃ 267
9.4.1.3 Hydrogenation of Azide 270
9.4.1.4 Hydrogenation of Pharmaceutical Intermediates 270
9.4.1.5 Selective Hydrogenation of Acetylene Alcohols 271
9.4.1.6 Hydrogenation of α-Methylstyrene over Pd/C 272
9.4.2 Oxidations 273
9.4.2.1 Oxidation of Alcohols 275
9.4.2.2 Oxidation of Sugars 275
9.5 Homogeneously Catalyzed Gas–Liquid Reactions 276
9.5.1 Asymmetric Hydrogenation of Cinnamic Acid Derivatives 276
9.5.2 Asymmetric Hydrogenation of Methylacetamidocynamate 278
9.6 Other Applications 281
9.6.1 Segmented Gas–Liquid Flow for Particle Synthesis 281
9.6.2 Catalyst Screening 281
9.7 Conclusions and Outlook 282

References 283

10 Bioorganic and Biocatalytic Reactions 289
Masaya Miyazaki, Maria Portia Briones-Nagata, Takeshi Honda, and Hiroshi Yamaguchi
10.1 General Introduction 289
10.2 Bioorganic Syntheses Performed in Microreactors 292
10.2.1 Biomolecular Syntheses in Microreactors: Peptide, Sugar and Oligosaccharide, and Oligonucleotide 292
10.2.1.1 Peptide Synthesis 292
10.2.1.2 Sugar and Oligosaccharide Synthesis 296
10.2.1.3 Oligonucleotide Synthesis 302
10.3 Biocatalysis by Enzymatic Microreactors 304
10.3.1 Classification of Enzymatic Microreactors Based on Application 304
10.3.1.1 Applications of Microreactors for Enzymatic Diagnostics and Genetic Analysis 304
10.3.1.2 Application of Microreactors for Enzyme-Linked Immunoassays 308
10.3.1.3 Applications of Microfluidic Enzymatic Microreactors in Proteomics 312
10.3.2 Enzymatic Microreactors for Biocatalysis 347
10.3.3 Advantages of Microreactors in Biocatalysis 347
10.3.4 Biocatalytic Transformations in Microfluidic Systems 348
10.3.4.1 Solution-phase Enzymatic Reactions 348
10.3.4.2 Microfluidic Reactors with Immobilized Enzymes for Biocatalytic Transformations 357
11 Industrial Microreactor Process Development up to Production 373

Ivana Dencic and Volker Hessel

11.1 Mission Statement from Industry on Impact and Hurdles 373

11.2 Screening Studies in Laboratory 375

11.2.1 Peptide Synthesis 375

11.2.2 Hantzsch Synthesis 378

11.2.3 Knorr Synthesis 379

11.2.4 Enamine Synthesis 381

11.2.5 Aldol Reaction 381

11.2.6 Wittig Reaction 382

11.2.7 Polyethylene Formation 382

11.2.8 Diastereoselective Alkylation 383

11.2.9 Multistep Synthesis of a Radiolabeled Imaging Probe 384

11.3 Process Development at Laboratory Scale 386

11.3.1 Nitration of Substituted Benzene Derivatives 386

11.3.2 Microflow Azide Syntheses 387

11.3.3 Vitamin Precursor Synthesis 389

11.3.4 Ester Hydrolysis to Produce an Alcohol 391

11.3.5 Synthesis of Methylene cyclopentane 391

11.3.6 Condensation of 2-Trimethylsilylethanol 391

11.3.7 Staudinger Hydration 392

11.3.8 (S)-2-Acetyl Tetrahydrofuran Synthesis 392

11.3.9 Synthesis of Intermediate for Quinolone Antibiotic Drug 393

11.3.10 Domino Cycloadditions in Parallel Fashion 394

11.3.11 Phase-Transfer Catalysis-Mediated Knoevenagel Condensation 396

11.3.12 Ciprofloxacin® Multistep Synthesis 396

11.3.13 Methyl Carbamate Synthesis 397

11.3.14 Newman–Kuart Rearrangement 398

11.3.15 Ring-Expansion Reaction of N-Boc-4-Piperidone 399

11.3.16 Synthesis of Aldehydes 400

11.3.17 Grignard Reactions and Li–Organic Reactions 402

11.3.18 Continuous Synthesis of Disubstituted Triazoles 404

11.3.19 Production of 6-Hydroxybuspirone 405

11.3.20 Swern–Moffatt Oxidation 406

11.4 Pilot Plants and Production 408

11.4.1 Hydrogen Peroxide Synthesis 408

11.4.2 Phenylboronic Acid Synthesis 410

11.4.3 Diverse Case Studies at Lonza 411

11.4.4 Alkylation Reactions Based on Butyllithium 414

11.4.5 Microprocess Technology in Japan 416

11.4.6 Pilot Plant for Methyl Methacrylate Manufacture 417
11.4.7 Grignard Exchange Reaction 417
11.4.8 Halogen–Lithium Exchange Pilot Plant 419
11.4.9 Swern–Moffatt Oxidation Pilot Plant 420
11.4.10 Yellow Nano Pigment Plant 422
11.4.11 Polycondensation 423
11.4.12 H₂O₂-Based Oxidation to 2-Methyl-1,4-naphthoquinone 424
11.4.13 Friedel–Crafts Alkylation 425
11.4.14 Diverse Studies from Japanese Project Cluster 426
11.4.14.1 Synthesis of Photochromic Diarylenes 426
11.4.14.2 Cross-Coupling in a Flow Microreactor 427
11.4.15 Direct Fluorination of Ethyl 3-Oxobutanoate 428
11.4.16 Deoxofluorination of a Steroid 429
11.4.17 Microprocess Technology in the United States 430
11.4.18 Propene Oxide Formation 432
11.4.19 Diverse Industrial Pilot-Oriented Involvements 433
11.4.20 Production of Polymer Intermediates 435
11.4.21 Synthesis of Diazo Pigments 436
11.4.22 Selective Nitration for Pharmaceutical Production 438
11.4.23 Nitroglycerine Production 439
11.4.24 Fine Chemical Production Process 440
11.4.25 Grignard-Based Enolate Formation 441
11.5 Challenges and Concerns 442
References 444

Index 447
Preface to the First Edition

Microreactor technology is no longer in its infancy and its applications in many areas of science are emerging. This technology offers advantages to classical approaches by allowing miniaturization of structural features up to the micrometer regime. This book compiles the state of the art in organic synthesis and catalysis performed with microreactor technology. The term “microreactor” has been used in various contexts to describe different equipment, and some examples in this book might not justify this term at all. But most of the reactions and transformations highlighted in this book strongly benefit from the physical properties of microreactors, such as enhanced mass and heat transfer, because of a very large surface-to-volume ratio as well as regular flow profiles leading to improved yields with increased selectivities. Strict control over thermal or concentration gradients within the microreactor allows new methods to provide efficient chemical transformations with high space–time yields. The mixing of substrates and reagents can be performed under highly controlled conditions leading to improved protocols. The generation of hazardous intermediates in situ is safe as only small amounts are generated and directly react in a closed system. First reports that show the integration of appropriate analytical devices on the microreactor have appeared, which allow a rapid feedback for optimization.

Therefore, the current needs of organic chemistry can be addressed much more efficiently by providing new protocols for rapid reactions and, hence, fast access to novel compounds. Microreactor technology seems to provide an additional platform for efficient organic synthesis – but not all reactions benefit from this technology. Established chemistry in traditional flasks and vessels has other advantages, and most reactions involving solids are generally difficult to be handled in microreactors, though even the synthesis of solids has been described using microstructured devices.

In the first two chapters, the fabrication of microreactors useful for chemical synthesis is described and opportunities as well as problems arising from the manufacture process for chemical synthesis are highlighted. Chapter 1 deals with the fabrication of metal- and ceramic-based microdevices, and Brandner describes different techniques for their fabrication. In Chapter 2, Frank highlights the microreactors made from glass and silicon. These materials are more known to the organic chemists and have therefore been employed frequently in different
laboratories. In Chapter 3, Barrow summarizes the use and properties of microreactors and also takes a wider view of what microreactors are and what their current and future uses can be.

The remaining chapters in this book deal with different aspects of organic synthesis and catalysis using the microreactor technology. A large number of homogeneous reactions performed in microreactors have been sorted and structured by Ryu et al. in Chapter 4.1, starting with very traditional, acid- and base-promoted reactions. They are followed by metal-catalyzed processes and photochemical transformations, which seem to be particularly well suited for microreactor applications. Heterogeneous reactions and the advantage of consecutive processes using reagents and catalysts on solid support are compiled by Ley et al. in Chapter 4.2. Flow chemistry is especially advantageous for such reactions, but certain limitations to supported reagents and catalysts still exist. Recent advances in stereoselective transformations and in multistep syntheses are explained in detail. Other biphasic reactions are dealt with in the following two chapters. In Chapter 4.3, we focus on liquid–liquid biphasic reactions and focus on the advantages that microreactors can offer for intense mixing of immiscible liquids. Organic reactions performed under liquid–liquid biphasic reaction conditions can be accelerated in microreactors, which is demonstrated using selected examples. The larger area of gas–liquid biphasic reactions is dealt with by Hessel et al. in Chapter 4.4. After introducing different contacting principles under continuous flow conditions, various examples show clearly the prospects of employing microreactors for such reactions. Aggressive and dangerous gases such as elemental fluorine can be handled and reacted safely in microreactors. The emergence of the bioorganic reactions is described by vanHest et al. in Chapter 4.5. Several of the reactions explained in this chapter are targeted toward diagnostic applications. Although on-chip analysis of biologic material is an important area, the results of initial research showing biocatalysis can also now be used efficiently in microreactors are summarized in this chapter. In Chapter 5, Hessel et al. explain that microreactor technology is already being used in the industry for the continuous production of chemicals on various scales. Although only few achievements have been published by industry, the insights of the authors into this area allowed a very good overview on current developments. Owing to the relatively easy numbering up of microreactor devices, the process development can be performed at the laboratory scale without major changes for larger production. Impressive examples of current production processes are given, and a rapid development in this area is expected over the next years. I am very grateful to all authors for their contributions and I hope that this compilation of organic chemistry and catalysis in microreactors will lead to new ideas and research efforts in this field.

Cardiff
Thomas Wirth
August 2007
Preface to the Second Edition

The continued and increased research efforts in microreactor and flow chemistry have led to an impressive increase in publications in recent years and even to a translation of the first edition of this book into Chinese. This is reflected not only in an update and expansion of all chapters of the first edition but also in the addition of several new chapters to this second edition.

In the first three chapters, Barrow, Brandner, and Frank, respectively, describe properties and fabrication methods of microreactors. In Chapter 4, Moore and Jensen give detailed insights into current methods of online and offline analyses, the potential of rapid optimization of reactions using flow technology, and the combination of analysis and optimization. For better readability, the material on organic synthesis has been split into five different chapters. Ryu et al. have extended their chapter on homogeneous reactions in microreactors, while Watts and Wiles have elaborated the topics of photochemistry, electrochemistry, and radiopharmaceutical synthesis in a new chapter as reactions in these areas are very suitable for being carried out using flow chemistry devices and many publications have recently appeared.

Takasu has written a comprehensive chapter on heterogeneous reactions in microreactors and a many different reactions can be found in this part. We have updated our chapter on liquid–liquid biphasic reactions and Hessel et al. have provided an update on the gas–liquid biphasic reactions. The chapter on bioorganic and biocatalytic reactions by Miyazaki et al. is a comprehensive overview of the developments in this area and highlights the advantages that flow chemistry can offer for research in bioorganic chemistry.

The final chapter by Hessel et al. on industrial microreactor process development up to production has seen a dramatic increase as in many areas industry is now adopting flow chemistry with all its advantages for research and for small- to medium-scale production.

I am again very grateful to all authors for providing updates or completely new contributions and I hope that this compilation of chemistry and catalysis in microreactors will stimulate new ideas and research efforts.

Cardiff
January 2013

Thomas Wirth
List of Contributors

Batool Ahmed-Omer
Cardiff University
School of Chemistry
Main Building
Park Place
Cardiff CF10 3AT
UK

David Barrow
Cardiff University
Cardiff School of Engineering
Laboratory for Applied Microsystems
Cardiff CF24 3TF
UK

Juergen J. Brandner
Karlsruhe Institute of Technology
Institute for Micro Process Engineering
Campus North
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen
Germany

Maria Portia Briones-Nagata
Measurement Solution Research Center
National Institute of Advanced Industrial Science and Technology
807-1 Shuku, Tosu
Saga 841-0052
Japan

Ivana Dencic
Eindhoven University of Technology
Department of Chemical Engineering and Chemistry
Laboratory for Micro-Flow Chemistry and Process Technology
STW 1.37
5600 MB, Eindhoven
The Netherlands

Thomas Frank
Porzellanstr. 16
98693 Ilmenau
Germany

Takahide Fukuyama
Osaka Prefecture University
Graduate School of Science
Department of Chemistry
Sakai
Osaka 599-8531
Japan

Lily Giles
Cardiff University
Cardiff School of Engineering
Laboratory for Applied Microsystems
Cardiff CF24 3TF
UK
List of Contributors

Volker Hessel
Eindhoven University of Technology
Department of Chemical Engineering and Chemistry
Laboratory for Micro-Flow Chemistry and Process Technology
STW 1.37
5600 MB Eindhoven
The Netherlands

Takeshi Honda
Measurement Solution Research Center
National Institute of Advanced Industrial Science and Technology
807-1 Shuku, Tosu
Saga 841-0052
Japan

Matthew J. Hutchings
Cardiff University
School of Chemistry
Main Building
Park Place
Cardiff CF10 3AT
UK

Klavs F. Jensen
Massachusetts Institute of Technology
Department of Chemical Engineering
Room 66-566
77 Massachusetts Avenue
Cambridge
MA 02139
USA

Masaya Miyazaki
Measurement Solution Research Center
National Institute of Advanced Industrial Science and Technology
807-1 Shuku, Tosu
Saga 841-0052
Japan

Jason S. Moore
Massachusetts Institute of Technology
Department of Chemical Engineering
Room 66-566
77 Massachusetts Avenue
Cambridge
MA 02139
USA

Alex Morgan
Cardiff University
Cardiff School of Engineering
Laboratory for Applied Microsystems
Cardiff CF24 3TF
UK

Md. Taifur Rahman
Osaka Prefecture University
Graduate School of Science
Department of Chemistry
Sakai
Osaka 599-8531
Japan

Ilhyong Ryu
Osaka Prefecture University
Graduate School of Science
Department of Chemistry
Sakai
Osaka 599-8531
Japan

and

School of Chemistry and Chemical Engineering
David Keir Building
Queen’s University
Belfast BT9 5AG
Northern Ireland
UK

Ilhyong Ryu
Osaka Prefecture University
Graduate School of Science
Department of Chemistry
Sakai
Osaka 599-8531
Japan
Kiyosei Takasu
Kyoto University
Graduate School of Pharmaceutical Sciences
Yoshida
Sakyoku
Kyoto 606-8501
Japan

Shan Taylor
Cardiff University
Cardiff School of Engineering
Laboratory for Applied Microsystems
Cardiff CF24 3TF
UK

Paul Watts
Research Chair in Microfluidic Bio/Chemical Processing
InnoVenton: NMMU Institute for Chemical Technology
Nelson Mandela Metropolitan University
Port Elizabeth 6031
South Africa

Charlotte Wiles
Chemtrix BV
Burgemeester Lemmensstraat 358
6163 JT Geleen
The Netherlands

Thomas Wirth
Cardiff University
School of Chemistry
Main Building
Park Place
Cardiff CF10 3AT
UK

Hiroshi Yamaguchi
Measurement Solution Research Center
National Institute of Advanced Industrial Science and Technology
807-1 Shuku, Tosu
Saga 841-0052
Japan
Properties and Use of Microreactors

David Barrow, Shan Taylor, Alex Morgan, and Lily Giles

1.1 Introduction

Microreactors are devices that incorporate at least one three-dimensional duct, with one or more lateral dimensions of <1 mm (typically a few hundred micrometers in diameter), in which chemical reactions take place, usually under liquid-flowing conditions [1]. Such ducts are frequently referred to as microchannels, usually transporting liquids, vapors, and/or gases, sometimes with suspensions of particulate matter, such as catalysts (Figure 1.1) [2]. Often, microreactors are constructed as planar devices, often employing fabrication processes similar to those used in manufacturing of microelectronic and micromechanical chips, with ducts or channels machined into a planar surface (Figure 1.2c and d) [3]. The volume output per unit time from a single microreactor element (Figure 1.2b, c, d and e) is small, but industrial rates can be realized by having many microreactors working in parallel (Figure 1.2f).

However, microreactor research can be conducted on simple microbore tubing fabricated from stainless steel (Figure 1.2a), polytetrafluoroethylene (PTFE), or any material compatible with the chemical processing conditions employed [4]. For instance, inexpensive fluoroelastomeric tubing was employed to prepare a packed-bed microreactor for the catalysis of oxidized primary and secondary alcohols [5]. As such, microreactor technology is related to the much wider field of microfluidics, which involves an extended set of microdevices and device integration strategies for fluid and particle manipulation [6].

1.1.1 A Brief History of Microreactors

In 1883, Reynolds' study on fluid flow was published in the *Philosophical Transactions of the Royal Society* [7]. Reynolds used streams of colored water in glass piping to visually observe fluid flow over a range of parameters. The apparatus used is depicted in a drawing by Reynolds himself (Figure 1.3), which shows flared glass
tubing within a water-filled tank. Using this setup, he discovered that varying velocities, diameters of the piping, and temperatures led to transitions between “streamline” and “sinuous” flow (respectively known as laminar and turbulent flow today). This paper was a landmark, which demonstrated practical and philosophical aspects of fluid mechanics that are still endorsed and used in many fields of science and engineering today, including microreactor technology [8].

An early example for the use of a microreactor was demonstrated in 1977 by the inventor Bollet, working for Elf Union (now part of Total) [9]. The invention involved mixing of two liquids in a micromachined device. In 1989, a microreactor that aimed at reducing the cost of large heat release reactions was designed by Schmid and Caesar working for Messerschmitt–Bölkow–Blohm GmbH. Subsequently, an application for patent was made by the company in 1991 [10]. In 1993, Benson and Ponson published their important paper on how miniature chemical processing plants could redistribute and decentralize production to customer locations [11]. Later, in 1996, Alan Bard filed a US patent (priority 1994) where it is taught how an integrated chemical synthesizer could be constructed from a number of microliter-capacity microreactor modules, most preferably in a chip-like format, which can be used together, or interchangeably, on a motherboard (like electronic chips), and based upon thermal, electrochemical, photochemical, and pressurized principles [12].
Figure 1.3 The original apparatus used by Osborne Reynolds to study the motion of water [7]. The apparatus consisted of a tank filled with water and glass tubing within. Colored water was injected through the glass tubing, so the characteristics of fluid flow could be observed.
Following this, a pioneering experiment conducted by Salimi-Moosavi and colleagues (1997) introduced one of the first examples of electrically driven solvent flow in a microreactor used for organic synthesis. An electro-osmotic-controlled flow was used to regulate mixing of reagents, \(p \)-nitrobenzenediazonium tetrafluoroborate (AZO) and \(N,N \)-di-methylaniline, to produce a red dye [13]. One of the first microreactor-based manufacturing systems was designed and commissioned by CPC in 2001 for Clariant [14].

Microreactor systems have since evolved from basic, single-step chemical reactions to more complicated multistep processes. Belder et al. (2006) claim to have made the first example of a microreactor that integrated synthesis, separation, and analysis on a single device [15]. The microfluidic chip fabricated from fused silica (as seen in Figure 1.4) was used to apply microchip electrophoresis to test the enantioselective biocatalysts that were created. The authors reported a separation of enantiomers within 90 s, highlighting the high throughput of such devices.

Early patents in microreactor engineering have been extensively reviewed by Hessel et al. (2008) [16] and then later by Kumar et al. (2011) [17]. From 1999 to 2009, the number of research articles published on microreactor technology rose from 61 to 325 per annum (Figure 1.5a) [17]. The United States of America produced the majority of research articles, followed by the People’s Republic of China and Germany (Figure 1.5c) [17]. The number of patent publications produced was also highest in the United States of America; the data are given in Figure 1.5b [17]. The number of patent publications is highest in the field of inorganic chemistry, but of particular interest, organic chemistry comes second out 18 fields of chemical applications investigated [16].

\[\text{Figure 1.4} \quad \text{Fused silica microfluidic chip compared to the size of a €2 coin. The chip was the first example of synthesis, separation and analysis combined on a single device. Source: Photograph courtesy of Professor D. Belder with permission.}\]
Microreactor technology has been widely employed in academia and is also beginning to be used in industry where clear benefits arise and are worthy of new financial investment. Companies contributing considerably to the development of microreactors include Merck Patent GmbH, Battelle Memorial Institute, Velocys Inc., Forschungszentrum Karlsruhe, The Institute for Microtechnology Mainz, Chemical Process Systems, Little Things Factory GmbH, Syrris Ltd, Ehrfeld

Figure 1.5 (a) The number of research articles published on microreactors from the years 1999 to 2009. (b) Distribution of patent publications produced from 10 different countries. (EP: European; US: United States; DE: Germany; JP: Japan; GB: United Kingdom; FR: France; NL: Netherlands; CH: Switzerland; SE: Sweden). (c) Distribution of published research articles from various countries. Source: Images reprinted from Ref. [17], with permission from Elsevier.
Mikrotechnik BTC, Micronit BV, Mikroglas chemtech GmbH, Chemtrix BV, Vapourtec Ltd, Microreactor Technologies Inc., Xytel Corporation, and more [16,18]. To place microreactors clearly within an historical context, we can relate the emergence of such devices to their nearest neighbors, these being from the wider field of microfluidics, which includes the flow of gases. With respect to this, we can see that some of the earliest examples of microfluidic devices go back at least to 1970, when James Lovelock filed patent US3,701,632 describing a planar chip-based chromatograph fabricated from wet-etched magnesium oxide (Figure 1.6).

1.1.2
Advantages of Microreactors

Flow chemistry is long established for manufacturing large quantities of materials [19]. However, this can sometimes be time consuming and expensive due to the amount of materials used. Also, scaling up a small process to a much larger industrial sized application can be challenging and often results in batch processing. This type of processing can lead to variances between each batch, ultimately yielding inconclusive and unreproducible results [19]. In contrast, the use of microreactors enables chemical reactions to be run continuously [20], usually in a flowing stream, and from this the topic of microprocess chemistry was born [21]. Microreactors are therefore seen as the modern-day chemists’ round-bottom flask [19] and can
potentially revolutionize the practice of chemical synthesis [4]. For instance, using microscale reactors, reactions can be carried out under isothermal conditions with well-defined residence times, so that undesirable side reactions and product degradation are limited. The distinctive fluid-flow and thermal and chemical kinetic behavior observed in microreactors, as well as their size and energy characteristics, lend their use to diverse applications [22,23] including:

- high-purity chemical products [24],
- highly exothermic reactions [25,26],
- screening for potential catalysts [27,28],
- precision particle manufacture [29],
- high-throughput material synthesis [30],
- emulsification and microencapsulation [31],
- fuel cell construction [32],
- point-of-use, miniature, and portable microplants [33].

These new application horizons are enabled by the following advantages: (i) reduced size through microfabrication, (ii) reduced diffusion distances, (iii) enhanced rates of thermal and mass transfer and subsequent processing yields [34,35], (iv) reduced reaction volumes, (v) controlled sealed systems avoiding contamination, (vi) use of solvents at elevated pressures and temperatures, (vii) reduced chemical consumption, (viii) facility for continuous synthesis [36], and (ix) increased atom efficiency [37]. Microreactor research and development has been particularly promoted for high-throughput synthesis in the pharmaceutical industry, where large numbers of potential pharmaceutically beneficial compounds need to be generated, initially, in small quantities, as a component of the drug discovery process [38]. In this chapter, the key functional properties of microreactors are reviewed in the context of use in diverse fields.

1.2 Physical Characteristics of Microreactors

1.2.1 Geometries

1) Size: Microreactor systems incorporate structures for the directed transport or containment of gases or fluids that have a dimensional property in at least one direction usually measured in micrometers, sometimes up to 1 mm. These structures may comprise microscale ducts (e.g., channels and slots) and pores, larger features (e.g., parallel plates) that cause fluid to flow in thin films, and others that cause fluid to flow in microscale discontinuous multiphase flow (e.g., bubbles and emulsions). More specific details of these types of structure are explained in Chapters 9 and 10. In addition, small containment structures such as microwells have been fabricated in an analogous format to traditional microtiter plates, rendering potential compatibility with existing robotic handling
systems as used in many high-throughput screening laboratories. Extending the notion of a microreactor, an increasing number of studies are demonstrating how separated droplets may act as nanoscale-based reactors [39]. For instance, the use of solvent droplets resulting from controlled segmented flow has been proposed as individual nanoliter reactors for organic synthesis [40–42]. Similarly, reverse micellar structures have been shown to provide reactors for the controlled synthesis of nanometer-scale particulates [43,44]. Also, giant phospholipid liposomes (~10 μm diameter) have been utilized as miniature containers of reagents and can be manipulated by various external mechanisms, such as optical, electrical, and mechanical displacement and fusion [45]. Liposome-based microreactors, manipulated in this manner, hold the potential to enable highly controlled and multiplexed microreactions in a very small scale [46].

2) **Architecture:** Geometries employed in microreactor design and fabrication may range from simple tubular structures, where perhaps two reagents are introduced to form a product, to more sophisticated multicomponent circuits, where several functionalities may be performed, including reagent injection(s), mixing, incubation, quench addition, solvent exchange, crystallization, thermal management, extraction, encapsulation, or phase separation.

3) **Multiplicity:** Microreactors may comprise single-element structures from which small quantities of reaction products may be obtained, or, massively parallel structures where output on an industrial scale can be realized. Examples of numbering-up of microreactors are shown in Figure 1.7. In Figure 1.7a, 10 glass microreactors are placed on top of each other to form one single, multileveled device [47]. The microchannels were produced by photolithography and wet

Figure 1.7 Examples of multiple microreactors used in parallel for higher throughput and yield of products [47,48]. *Source: Figures reprinted with permission, copyright (2010), American Chemical Society.*