Powder-actuated fasteners and fastening screws in steel construction

Hermann Beck
Michael Siemers
Martin Reuter
Section 3.1.2.8
Screws should only be used in non-corrosive applications, regardless of their coating, unless they are specifically listed as being suitable for outdoor or exposed conditions. More detailed corrosion resistance guidelines for Hilti screw fasteners are provided in the Hilti North American Product Technical Guide Volume 1: Direct Fastening 2011, Section 3.6.1.6 on page 145.

Section 3.1.3
More detailed guidance on Hilti screw fastener installation instructions is provided in the Hilti North American Product Technical Guide Volume 1: Direct Fastening 2011, Section 3.6.1.7 on page 146. Screw fasteners should be installed with screwdrivers equipped with a torque clutch or depth gauge at the appropriate rpm’s. Caution should be taken with the use of rotary impact wrenches for installation of self-drilling screws in thin metal, as this can lead to over-driving and thread stripping.

Section 4.1.2.2
As of the printing of this article, certain seismic fastening applications are now recognized by the International Code Council – Evaluation Services (ICC-ES) for the use of powder-actuated fasteners. Recent revisions to the ASCE 7 reference standard and by incorporation, the IBC 2012, allow for the use of powder-actuated fasteners to resist seismic forces under certain conditions. Subsequent revisions to the ICC-ES Acceptance Criteria for Fasteners Power-Driven into Concrete, Steel and Masonry Elements, AC70, and powder-actuated fastener ESRs are underway consistent with ASCE 7-10 Section 13.4.5 and the IBC 2012. Interested readers should refer to the AC70 ESRs or contact Hilti for guidance.

Screw fasteners for cold-formed steel connections subjected to seismic forces are addressed through the American Iron and Steel Institute (AISI) S100 North American Specification for the Design of Cold-Formed Steel Structural Members. AISI S100 is referenced in the IBC 2012, and does not prohibit the use of screw fasteners for resisting seismic forces. Interested readers should refer to AISI S100, AC118 ESRs or contact Hilti for guidance.

Please direct powder-actuated and screw fastening technical inquiries to your local Hilti Field Engineer or Technical Support at 1-877-749-6337.
Powder-actuated fasteners
and fastening screws in steel
construction

Dipl.-Ing. Hermann Beck
Hilti AG, Schaan, Liechtenstein

Dr. Ing. Michael Siemers
Hilti AG, Schaan, Liechtenstein

Dipl.-Ing. Martin Reuter
Hilti Deutschland AG, Germany

Notes by the publisher Ernst & Sohn:
Updated annually, the “Stahlbau-Kalender” has been accompanying key
developments in steel construction and related areas in Germany since 1999.
The Calendar is both a compendium for planning and construction using steel as well
as a guide to its correct calculation and design. Timeliness, quality and the practical
content of the contributions emphasize the significance of the “Stahlbau-Kalender”
as a reliable source of information and aid, such that it has become an essential
handbook for engineers and architects who manage steel construction projects of
all sizes.
The editor, Professor Ulrike Kuhlmann, is head of the Institute for Design and
Construction at the University of Stuttgart, and her choice of authors is determined
by a continuous search for real-life examples. The contributors thus work within
the industry, in engineering offices or at the interface of research and practice in
academia and are renowned experts in their respective fields.
Contents

1 Introduction 5

2 Powder-actuated fastening technology 6
 2.1 Basic principles 6
 2.1.1 Methods and terminology 6
 2.1.2 From high-velocity tools to low velocity piston tools 8
 2.1.3 CE marking and C.I.P. approval of powder-actuated fastening tools 8
 2.1.4 Powder-actuated fasteners: Features and characteristics 9
 2.1.4.1 Geometry and form 9
 2.1.4.2 Knurling 10
 2.1.4.3 Washers 10
 2.1.4.4 Fastener materials and mechanical properties 11
 2.1.4.5 Corrosion protection 11
 2.1.4.6 Blunt tip powder-actuated fasteners 12
 2.1.4.7 Manufacturing process 12
 2.1.5 Interdependency: powder-actuated fastener – fastening tool – cartridge 12
 2.2 Powder-actuated fastening terms and definitions 13
 2.2.1 Depth of penetration and fastener stand-off 13
 2.2.2 Application range and application limits 13
 2.3 Anchorage in unalloyed structural steel 14
 2.3.1 Anchorage mechanisms 14
 2.3.2 Load-displacement characteristics 15
 2.3.3 Parameters influencing anchorage 16
 2.3.3.1 Depth of penetration 16
 2.3.3.2 Base material thickness 18
 2.3.3.3 Base material strength 18
 2.3.3.4 Knurling 19
 2.3.4 Robustness of the anchorage 19
 2.3.4.1 Vibrational loading of powder-actuated fasteners 20
 2.3.4.2 The influence of static stress in the base material 22
 2.3.4.3 The influence of vibration of the base material 23
 2.3.4.4 Influence of ground fastener points 24
 2.3.4.5 The influence of temperature 24
 2.4 Fastener anchorage in alloyed steels, cast iron and non-ferrous metals 24
 2.5 Influence on the base material structural steel 26
 2.5.1 Influence on net section efficiency 26
 2.5.2 Influence on fatigue strength 28
 2.6 Corrosion 29

3 Fastening screw technology 30
 3.1 Basic principles 30
 3.1.1 Methods and terminology 30
 3.1.2 Fastening screws: features and characteristics 31
 3.1.2.1 Self-tapping screws 31
 3.1.2.2 Self-drilling screws 31
 3.1.2.3 Sandwich panel screws 33
 3.1.2.4 Screws for fastening roofing membranes 33
 3.1.2.5 Screw head shapes and drive types 33
 3.1.2.6 Sealing washers 33
 3.1.2.7 Materials and their mechanical characteristics 34
 3.1.2.8 Corrosion protection 34
 3.1.2.9 The manufacturing process 34
 3.1.3 Interdependency: Screws – screwdrivers 34
 3.1.3.1 Area of application and application limits 35
 3.1.3.2 Anchorage mechanisms 35
 3.1.3.3 The parameters influencing the anchorage 36
 3.1.3.4 Thickness of the base material 36
 3.1.3.5 The strength of the base material 36

4 Verification concepts 36
 4.1 Loading capacity 36
 4.1.1 Predominantly static loading 36
 4.1.2 Dynamic loading 37
 4.1.3 Vibration loading 37
 4.1.4 Seismic loading 37
 4.1.5 Serviceability 38
 4.1.6 Durability 38
 4.1.7 Verification of fastenings with components made from various materials 39

5 Applications in steel construction 39
 5.1 General information 39
 5.2 Fastening thin gauge cold-rolled profiles 41
 5.2.1 Base material thickness $t \geq 6$ mm 41
 5.2.2 Base material thickness $t < 6$ mm 42
 5.2.3 Timber and concrete supports 42
 5.2.3.1 Fastening to timber 42
 5.2.3.2 Fastening to concrete 43
 5.3 Fastening base profiles of glass facades 43
 5.4 Fastening sandwich panels 45
 5.5 Powder-actuated fastening of thick, predrilled metal sheets 45
 5.6 Fastening of wood and wood materials 46
 5.7 Detachable fastenings with threaded studs 48
 5.7.1 General points 48
 5.7.2 Blunt tip threaded studs 48
 5.8 Fastening waterproofing membranes 49
 5.9 Powder-actuated fasteners as a means of connecting steel plates 50

6 Applications in steel/concrete composite construction 51
 6.1 General points 51
 6.2 The Hilti X-HVB shear connector 52
 6.3 Shear connection in composite tubular columns 53

7 European Technical Approval and other national approvals 54
 7.1 Basis for approval 54
 7.2 Overview of relevant approvals, status 10/2010 56
 7.3 Future developments 58

8 European Technical Approval (ETA) for fasteners used to join thin, cold-formed profile sheets 59
 8.1 Test concept and mathematical approach 59
 8.2 Overview of approval tests 60
8.3 Approval tests – examples of load bearing behavior 62
8.3.1 Static resistance of sheet metal under tensile load 62
8.3.2 Dynamic resistance of sheet metal under tensile load 62
8.3.3 Static pullout resistance 63
8.3.4 Static shear resistance with single layer and four layers of sheet metal 63
8.3.5 Combined shear and tensile loading tests with double layers of sheet metal with powder-actuated fasteners 66
8.3.6 Application limit 66
8.4 Structure and content of an ETA 66
8.4.1 General points – attestation of conformity procedures 66
8.4.2 Powder-actuated fasteners 66
8.4.3 Self-drilling screws 69
8.4.4 Self-tapping screws 69
8.4.5 Special applications and interaction 69
8.5 Deviation from the conditions applicable to the approval 71
8.5.1 Substructures made from thermomechanically-rolled materials 71
8.5.2 Divergent types of fastening 71
8.5.3 Base materials with a fire-protection coating 71

9 European Technical Approval of sandwich panel fastenings 73
9.1 Approval tests and approval regulations in accordance with CUAP [132] 73

10 European Technical Approval for fastening waterproofing membranes 73

11 Powder-actuated fastener and metal construction screw suitability checklist 73
11.1 Powder-actuated fasteners 73
11.2 Fastening screws 76

12 Summary 76

13 Literature 78
Einleitung

Bild 1 zeigt typische Anwendungsbeispiele von Setzbolzen und Metallbauschrauben im Stahlleichtbau:
– Befestigung dünnwandiger Trapez- oder Kassettenbleche auf warmgewalzten Trägern bzw. dünnwandigen C- oder Z-Profilen,
– Verbindung dünnwandiger Kaltprofile untereinander.

1 Introduction

This publication is an updated and extended version of the article “Powder-actuated fasteners in steel construction” [1] from the “Stahlbau-Kalender 2005”. Powder-actuated fasteners are nails or threaded studs made from high-strength steel, used to fasten components to steel, concrete and masonry [2–4]. The materials most commonly fastened are steel, wood, insulation and, in some cases, also plastic. Powder-actuated fasteners are driven into the supporting material directly in a single operation. The powder-actuated fastening tool specified for each particular type of fastener must be used for the driving operation. Powder-actuated fastening to steel is a familiar technique that has been in use for decades. The classical applications in steel construction are the fastening of thin gauge metal sheets in single or multi-story buildings [5]: load-bearing sheeting of roof structures, liner trays for walls or sheeting of composite decks.

As an alternative to powder-actuated fasteners, fastening screws (self-drilling or self-tapping screws) can also be used to fasten profile metal sheets. Self-drilling screws can also be used at joints between thin-gauge metal profile framing. Accordingly, in addition to bringing powder-actuated fastening topics up to date, we have decided to integrate the subjects of fastening screw technology, applications and approval in this “Stahlbau-Kalender” and to compare the method with powder-actuated fastening.

Fastening screws, like powder-actuated fasteners, are made from hardened carbon steel or stainless steel. The various screw types are differentiated mainly in the ways in which they are used. A self-tapping screw, for example, is driven in a pre-drilled hole. The screw forms its own thread in the base material as it is driven. A self-drilling screw, on the other hand, is equipped with a drill point, so no predrilling is necessary. The screw drills the hole and forms a thread simultaneously in a single operation.

Figure 1 shows typical examples of powder-actuated fastening and screw fastening applications in light-gauge steel construction:
- Fastening thin-gauge trapezoidal metal sheets or liner trays to hot-rolled beams or thin C- or Z-profiles,
- Joints between cold-formed thin-gauge profiles.

The decision to use powder-actuated fasteners or metal construction screws depends, from a technological point of view, on the thickness of the supporting base material. In order to ensure a reproducible driving process, the material into which powder-actuated fasteners are driven must meet minimum thickness requirements. Depending on the fastening system used, this minimum thickness is between 3 and 8mm. Accordingly, the powder-actuated fasteners currently available on the market are unsuitable for the purpose of fastening profile metal sheets at overlap joints (sheet to sheet) or for fastening Z-brackets to profile metal sheets. Self-drilling screws are used predominantly in the field of construction where sheets of this thickness are involved.

Figure 1. Use of powder-actuated fasteners and screws in light-gauge steel construction