Essentials of Oral and Maxillofacial Surgery
Essentials of Oral and Maxillofacial Surgery

Edited by

M. Anthony (Tony) Pogrel
DDS, MD, FRCS, FACS
Professor and Chair
Associate Dean for Hospital Affairs
Department of Oral and Maxillofacial Surgery
University of California, San Francisco
USA

Karl-Erik Kahnberg
DDS, PhD, DrOdont
Professor Emeritus, Oral and Maxillofacial Surgery
Institute of Odontology
The Sahlgrenska Academy
University of Gothenburg
Sweden

Lars Andersson
DDS, PhD, DrOdont
Professor, Oral and Maxillofacial Surgery
Chairman, Department of Surgical Sciences
Faculty of Dentistry
Health Sciences Center
Kuwait University
Kuwait
Contents

List of Contributors vii
Preface xiii
About the companion website xiv

Part 1 Basic Principles 1

Section Editor: Tony Pogrel

1 Patient Evaluation 3
2 Radiographic Imaging in Oral and Maxillofacial Surgery 7
3 Local Anesthesia 15
4 Dentofacial Infection 24
5 Armamentarium for Basic Procedures 37
6 Basic Surgical Principles 44
7 Complications Associated with Dentoalveolar Surgery 53

Part 2 Dentoalveolar Surgery 61

Section Editor: Lars Andersson

8 Extraction of Teeth 63
9 Management of Impacted Teeth 77
10 Nerve Involvement in Oral and Maxillofacial Surgery 100
11 Autotransplantation of Teeth 107
12 Endodontic Surgery 113
13 Preprosthetic and Oral Soft Tissue Surgery 117

Part 3 Implant Surgery 125

Section Editor: Karl-Erik Kahnberg

14 Implantology 127
15 Optimal Implant Placement in the Esthetic Zone by the Use of Guided Bone Regeneration 141
16 Implant Placement in the Posterior Mandible 150
17 Use of Autogenous Bone Material for Implant Rehabilitation in the Bone Deficient Maxilla 161
18 Biomaterials for Bone Replacement in Implant Surgery 174
<table>
<thead>
<tr>
<th>Part 4</th>
<th>Oral Pathologic Lesions</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section Editor: Tony Pogrel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Initial Evaluation and Management of the Oral and Maxillofacial Pathology Patient</td>
<td>187</td>
</tr>
<tr>
<td>20</td>
<td>Cystic Lesions of the Jaws</td>
<td>195</td>
</tr>
<tr>
<td>21</td>
<td>Odontogenic and Non-odontogenic Tumors of the Jaws</td>
<td>201</td>
</tr>
<tr>
<td>22</td>
<td>Potentially Malignant Disorders of the Oral Mucosa</td>
<td>229</td>
</tr>
<tr>
<td>23</td>
<td>Principles of Oral Cancer Management</td>
<td>235</td>
</tr>
<tr>
<td>24</td>
<td>Management of Patients Undergoing Radiation and Chemotherapy</td>
<td>240</td>
</tr>
<tr>
<td>25</td>
<td>Salivary Gland Disorders</td>
<td>245</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 5</th>
<th>Trauma</th>
<th>253</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section Editor: Lars Andersson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction: Oral and Maxillofacial Traumatology</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Traumatic Dental Injuries</td>
<td>257</td>
</tr>
<tr>
<td>27</td>
<td>Maxillofacial Bone Fractures</td>
<td>274</td>
</tr>
<tr>
<td>28</td>
<td>Soft Tissue Injuries</td>
<td>288</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 6</th>
<th>Dentofacial Deformities</th>
<th>295</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section Editor: Karl-Erik Kahnberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Cleft Lip and Palate: An Overview</td>
<td>297</td>
</tr>
<tr>
<td>30</td>
<td>Correction of Dentofacial Deformities</td>
<td>315</td>
</tr>
<tr>
<td>31</td>
<td>Mandibular Reconstruction</td>
<td>331</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 7</th>
<th>Temporomandibular Joint Disorders</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section Editor: Tony Pogrel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Diagnosis and Non-surgical Management of Orofacial Pain</td>
<td>347</td>
</tr>
<tr>
<td>33</td>
<td>Temporomandibular Joint Surgery (Including Arthroscopy)</td>
<td>353</td>
</tr>
</tbody>
</table>

Index 371
List of Contributors

Adel Al-Asfour BDS, BA (Chapter 8)
Associate Professor
Department of Surgical Sciences
Faculty of Dentistry, Health Sciences Center
Kuwait University
Kuwait

Ala Al-Musawi DDS, BA (Chapter 5)
Assistant Professor
Department of Surgical Sciences
Faculty of Dentistry, Health Sciences Center
Kuwait University
Kuwait

Jens O. Andreasen DDS, Odont. Dr.h.c. (Chapters 11 and 28)
Consultant
Department of Oral and Maxillofacial Surgery
Section for Rare Oral Diseases
Rigshospitalet
Copenhagen, Denmark

Ashraf Ayoub PhD, FDS RCS, FDS RCPS, BDS, MDS (Chapter 4)
Professor of Oral & Maxillofacial Surgery
Glasgow University Dental Hospital & School
Glasgow, UK

Selçuk Basa DDS, PhD (Chapter 13)
Department of Oral and Maxillofacial Surgery
Marmara University
Istanbul, Turkey

Brian Bast DMD, MD (Chapter 27)
Associate Clinical Professor
Residency Program Director
Department of Oral and Maxillofacial Surgery
University of California, San Francisco
San Francisco, California, USA

R. Bryan Bell DDS, MD, FACS (Chapter 21)
Attending Surgeon and Director of Resident Education,
OMFS Service
ACS Cancer Liaison Physician
Legacy Emanuel Hospital and Health Center
Clinical Associate Professor of Oral and Maxillofacial Surgery
Oregon Health and Science University
Head and Neck Surgical Associates
Portland, Oregon, USA

John Beumer III DDS, MS
Professor and Chair
Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry
University of California, Los Angeles – School of Dentistry
Los Angeles, California, USA

Krishnamurthy Bonanthaya MBBS, BDS, FDSRCS, FFDRCS (Edin) (Chapter 29)
Professor, Oral and Maxillofacial Surgery
Bangalore Institute of Dental Sciences and
Consultant Surgeon
Bhagwan Mahavir Jain Hospital
Bangalore, India

Peter Carrotte BDS, MDS, LDS, RCS(Eng), MEd, MHEA (Chapter 12)
Senior Clinical Teacher and Honorary Associate Specialist
Department of Restorative Dentistry
University of Glasgow
Glasgow, UK

Allen Cheng DDS, MD (Chapter 19)
Department of Oral and Maxillofacial Surgery
University of California, San Francisco
San Francisco, California, USA

Lim K. Cheung BDS, PhD, FFDRCS, FDSRCPs, FACDS, FDSRCS (Edin), FRACDS(OMS), FHKAM(OMS), FFGDP(uk) (Chapter 30)
Chair Professor
Discipline of Oral and Maxillofacial Surgery
Faculty of Dentistry
University of Hong Kong
Hong Kong, SAR, China

Radhika Chigurupati DMD, MS (Chapter 29)
Associate Clinical Professor of Oral and Maxillofacial Surgery
Department of Oral and Maxillofacial Surgery
Boston University
Boston, Massachusetts, USA

Hannah Daile P. Chua DMD, MA, MDS (OMS), MDS, RCS, FDRCS, PhD
Assistant Professor
Discipline of Oral and Maxillofacial Surgery
University of Hong Kong
Hong Kong, SAR, China

William Chung DDS, MD (Chapter 27)
University of Pittsburgh Medical Center
Pittsburgh, Pennsylvania, USA

Cameron M.L. Clokie DDS, PhD, FCDC
Professor and Director of Graduate Program in Oral and Maxillofacial Surgery and Anaesthesia
University of Toronto
Toronto, Ontario, Canada

Bernard J. Costello DMD, MD, FACS (Chapter 27)
Chief, Division of Craniofacial and Cleft Surgery
Associate Professor and Program Director
Department of Oral and Maxillofacial Surgery
University of Pittsburgh School of Dental Medicine
Pittsburgh, Pennsylvania, USA

Christer Dahlin DDS, PhD, Dr Odont (Chapter 15)
Associate Professor
Department of Biomaterials
Institute for Clinical Sciences
Sahlgrenska Academy, University of Gothenburg
Gothenburg, Sweden
and
Department of Oral and Maxillofacial Surgery
NÄL Medical Centre Hospital
Trollhättan, Sweden
List of Contributors

Nagi Demian DDS, MD
Assistant Professor
Department of Oral and Maxillofacial Surgery
University of Texas Health Science Center – Houston
Houston, Texas, USA

Thomas B. Dodson DMD, MPH (Chapter 7)
Professor and Chair
Department of Oral and Maxillofacial Surgery
University of Washington
Seattle, Washington, USA

Carlo Ferretti BDS, MDent (MFOS), FCD (SA), MFOS (Chapter 30)
Senior Specialist
Department of Maxillofacial and Oral Surgery
and
Chris Hani Baragwanath Hospital
Faculty of Health Sciences,
University of the Witwatersrand
Johannesburg, South Africa

Earl G. Freymiller DMD, MD
Clinical Professor
Section of Oral and Maxillofacial Surgery
UCLA School of Dentistry
Los Angeles, California, USA

Takashi Fujibayashi DDS, PhD (Chapter 22)
Visiting Professor
Department of Oral and Maxillofacial Surgery
Kanagawa Dental College
Yokosuka, Japan

Nicholas M. Goodger BSc, BDS, MBBS, PhD, FDSRCS(Eng), FFDRCSI, FRCSed, DLORCS(Eng) (Chapter 20)
Consultant Oral and Maxillofacial Surgeon
East Kent Hospitals University NHS Foundation Trust
Kent and Canterbury Hospital
Canterbury, UK

Gosta Granstrom MD, DDS, PhD
Professor of Otolaryngology, Head and Neck Surgery
Department of Otolaryngology, Head and Neck Surgery
Sahlgrenska Academy, University of Gothenburg
Gothenburg, Sweden

Firdaus Hariri BDS, MDS (OMS)
Consultant and Lecturer
Department of Oral and Maxillofacial Surgery
Faculty of Dentistry
University of Malaya
Kuala Lumpur, Malaysia

Richard H. Haug DDS (Chapter 28)
Carolinas Center for Oral Health
Charlotte, North Carolina, USA

Andrew Heggie MBBS, MDSc, BDSc, FRACDS(OMS) (Chapter 29)
Associate Professor, Oral and Maxillofacial Surgery
Department of Plastic and Maxillofacial Surgery
Royal Children’s Hospital of Melbourne
Parkville, Australia

Christopher W. Hendy BDS, FDSRCS(Eng), LRCP, MRCS, FRCSed (Chapter 20)
East Kent Hospitals University NHS Foundation Trust
Kent and Canterbury Hospital
Canterbury, UK

Alan S. Herford DDS, MD (Chapter 1)
Chairman
Department of Oral and Maxillofacial Surgery
Loma Linda University
Loma Linda, California, USA

C. Michael Hill BDS, FDSRCS, MSc, BDS
Consultant and Honorary Senior Lecturer in Oral and Maxillofacial Surgery
Cardiff Dental Hospital
Cardiff, UK

Anders Holmlund DDS, PhD Professor (Chapter 33)
Department of Oral and Maxillofacial Surgery
Institution of Odontology
Karolinska Institutet/Karolinska University Hospital
Huddinge, Sweden

Mehran Hossaini DDS, PhD (Chapter 9)
Health Sciences Associate Clinical Professor
Department of Oral and Maxillofacial Surgery
University of California, San Francisco
San Francisco, California, USA

Vesa T. Kainulainen DDS, PhD
Assistant Professor
Institute of Dentistry
University of Oulu
Oulu, Finland

Sanjiv Kanagaraja DDS, PhD (Chapter 8)
Consultant/Assistant Professor
Department of Oral and Maxillofacial Surgery
University of Göteborg
Göteborg, Sweden

Reha Kışımızcı DDS, PhD (Chapter 13)
Department of Oral and Maxillofacial Surgery
Ankara University
Ankara, Turkey

Goran Kjeller PhD (Chapter 24)
Associate Professor
Department Oral and Maxillofacial Surgery
Institute of Odontology
Sahlgren’s Academy
Gothenburg University
Göteborg, Sweden

Paul Koshgerian DMD (Chapter 28)
University of Louisville School of Dentistry
Department of Surgical and Hospital Dentistry
Louisville, Kentucky, USA

Fabio Kricheldorf DDS, MSc (Chapter 6)
Professor of Oral and Maxillofacial Surgery
and Chairman
Department of Surgical Sciences, Faculty of Dentistry
University of Joinville
Joinville, Santa Catarina, Brazil

Tomoari Kuriyama DDS, PhD (Chapter 4)
Honorary Clinical Instructor and Research Fellow
Department of Oral and Maxillofacial Surgery
Graduate School of Medical Science
Kanazawa University
Kanazawa, Japan
and
Private practice
Toyama, Japan
David K. Lam DDS, MD, PhD, FRCDC
Assistant Professor
Department of Oral and Maxillofacial Surgery
University of Toronto
Toronto, Ontario, Canada

Anh Le DDS, PhD
Professor and Chair
Department of Oral and Maxillofacial Surgery
University of Pennsylvania
Philadelphia, Pennsylvania, USA

Michael A.O. Lewis PhD, BDS, FDSRCS (Eng), FDSRCS (Ed), FFDP (UK)
Professor of Oral Medicine
Cardiff University
Cardiff, UK

John Lo BDS, MDS (OMS), MOSRCS, FHKAM (DS), FCDHK (OMS)
Assistant Professor
Discipline of Oral and Maxillofacial Surgery
Faculty of Dentistry
University of Hong Kong
Hong Kong, SAR, China

Leif Lysell DDS, Odont Dr
Associate Professor
Faculty of Odontology
Malmö University
Malmö, Sweden
and
Private practice
Kristianstad, Sweden

Carlo Maiorana MD, DDS
Professor and Chairman
Oral Surgery and Implantology
Dental Clinic Fondazione Cà Granda
University of Milan
Milan, Italy

Chantal Malevez MD, DDS
Specialist in Oral and Maxillofacial Surgery
Professor Emeritus
Free University of Brussels (ULB)
and
Consultant Department of Maxillofacial Surgery
Children’s Hospital
Brussels, Belgium
and
Consultant at the EOIC
Brussels, Belgium

Joann Marruffo DDS, MS
Maxillofacial Prosthodontist
Private practice
Houston, Texas, USA

James McCaul PhD, FRCS(OMFS), FRCS(Glasg), FDSRCS
Consultant Oral and Maxillofacial/Head and Neck Surgeon
Bradford Teaching Hospitals NHS Foundation Trust
Bradford, UK

Mark McGurk BDS, MD, FDS RCS Eng, FRCS Ed, DLO RCS
Professor
Department of Oral and Maxillofacial Surgery
King’s College
London, UK

Charles McNeill DDS (Chapter 32)
Professor Emeritus and Director
UCSF Center for Orofacial Pain
Department of Oral and Maxillofacial Surgery
University of California, San Francisco
San Francisco, California, USA

John Gerard Meechan BSc, BDS, PhD, FDSRCS, FDSRCPs
(Chapter 3)
Senior Lecturer in Oral Surgery
School of Dental Sciences
Newcastle University
Newcastle upon Tyne, UK

Marc Christian Metzger MD, DMD, PhD (Chapter 27)
Department of Craniofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Colin Murray PhD, FDS RCS(Edin), BDS, FDS(Rest Dent) RCS(Edin), FDS RCPS(Glas)
(Chapter 12)
Professor in Restorative Dentistry/Honorary Consultant
Head of Clinical Dentistry Section and Head of Restorative Group
University of Glasgow
Glasgow, UK

Joe Niamtu
Private practice
Cosmetic Facial Surgery
Richmond, Virginia, USA

Kyösti S. Oikarinen DDS, PhD
Professor and Head of Oral and Maxillofacial Surgery
Institute of Dentistry
University of Oulu
Oulu, Finland

Andrew Ow BDS, MDS(OMS), FRACDS, MOSRCS, AdvDip(OMS)
Assistant Professor
Department of Oral and Maxillofacial Surgery
National University of Singapore
Singapore

Zachary S. Peacock DMD, MD
Assistant Professor
Department of Oral and Maxillofacial Surgery
Massachusetts General Hospital and Harvard School of Dental Medicine
Boston, Massachusetts, USA

Arne Petersson DDS, Odont Dr (Chapter 2)
Department of Oral and Maxillofacial Radiology
Faculty of Odontology
Malmö University
Malmö, Sweden

Lars Rasmusson DDS, PhD (Chapter 14)
Professor of Maxillofacial Surgery
Head of Department of Oral and Maxillofacial Surgery
The Sahlgrenska Academy
University of Gothenburg
Gothenburg, Sweden

Tara Renton BDS, MDsc, PhD, FDS, RCS, FRACDS (OMS), ILTM
(Chapter 9)
Professor in Oral Surgery
King’s College London Dental Institute
London, UK
List of Contributors

Johan P. Reyneke B Ch D, M Ch D, FCMFOS (SA), PhD
(Chapter 30)
Honorary Professor
Department of Maxillofacial and Oral Surgery
Faculty of Health Sciences
University of the Witwatersrand
Johannesburg
South Africa
and
Clinical Professor
Department of Oral and Maxillofacial Surgery
University of Oklahoma
Oklahoma City, Oklahoma, USA
and
Clinical Professor
Department of Oral and Maxillofacial Surgery
University of Florida
Gainesville, Florida, USA
and
Private practice, Sunninghill Hospital
Sunninghill, Johannesburg, South Africa

Rainer Schmelzeisen MD, DMD (Chapter 27)
Professor and Chairman
Department of Craniofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Brian L. Schmidt DDS, MD, PhD, FACS (Chapters 19, 23 and 31)
Professor
Department of Oral and Maxillofacial Surgery and
Director of the Bluestone Center for Clinical Research
New York University School of Dentistry
New York, NY, USA

Ralf Schon MD, DMD (Chapter 27)
Associate Professor
Department of Craniofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Richard C. Robert DDS, MS
Clinical Professor
Oral and Maxillofacial Surgery
University of California Medical Center
San Francisco, California, USA
and
Private practice, Oral and Maxillofacial Surgery
South San Francisco, California, USA

Simon N. Rogers BDS, MBCMB, FDSRCS, FRCS
Professor, Regional Maxillofacial Unit
University Hospital Aintree
Liverpool, UK
and
Evidence-based Practice Research Centre (EPRC)
Faculty of Health
Edge Hill University
Ormskirk, UK

Ralf Schon MD, DMD (Chapter 27)
Associate Professor
Department of Craniomaxillofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Patricia A. Rudd PT, DPT, CCTT (Chapter 32)
Assistant Clinical Professor
UCSF Center for Orofacial Pain
Department of Oral and Maxillofacial Surgery
University Hospital of Lund
Lund, Sweden

Jeremy Sherman BDS, MBChB, FRCS, FDRCS, FRCS Ed
(Chapter 25)
Consultant Maxillofacial Surgeon
Department of Oral and Maxillofacial Surgery
Queen Elizabeth II Hospital
Welwyn Garden City, UK

Bethany Serafin DMD (Chapter 28)
Valley Village Oral Surgery Associates
Baltimore, Maryland, USA

Arun B. Sharma BDS, MSc
Health Sciences Clinical Professor
Division of Prosthodontics
University of California, San Francisco – School of Dentistry
San Francisco, California, USA

Ryan J. Smart DMD, MD (Chapter 7)
Resident
Department of Oral and Maxillofacial Surgery
Massachusetts General Hospital
Boston, Massachusetts, USA

Rainer Schmelzeisen MD, DMD (Chapter 27)
Professor and Chairman
Department of Craniofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Brian L. Schmidt DDS, MD, PhD, FACS (Chapters 19, 23 and 31)
Professor
Department of Oral and Maxillofacial Surgery and
Director of the Bluestone Center for Clinical Research
New York University School of Dentistry
New York, NY, USA

Ralf Schon MD, DMD (Chapter 27)
Associate Professor
Department of Craniofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Petr Schutz MD (Chapter 27)
Consultant
Head of Oral and Maxillofacial Surgery Unit
Dental Center, Farwaniya Hospital
Ministry of Health
Kuwait

Lars Sennerby DDS, PhD (Chapter 14)
Professor of Clinical and Experimental Oral Implantology
Department of Biomatериалы
Institute for Clinical Sciences
Sahlgrenska Academy
University of Gothenburg
Gothenburg, Sweden
and
Clinica Felltre
Feltre, Italy

Vivek Shetty DDS, Dr Med Dent
Professor
Section of Oral and Maxillofacial Surgery
University of California, Los Angeles
Los Angeles, California, USA

Ryan J. Smart DMD, MD (Chapter 7)
Resident
Department of Oral and Maxillofacial Surgery
Massachusetts General Hospital
Boston, Massachusetts, USA

Johan P. Reyneke B Ch D, M Ch D, FCMFOS (SA), PhD
(Chapter 30)
Honorary Professor
Department of Maxillofacial and Oral Surgery
Faculty of Health Sciences
University of the Witwatersrand
Johannesburg
South Africa
and
Clinical Professor
Department of Oral and Maxillofacial Surgery
University of Oklahoma
Oklahoma City, Oklahoma, USA
and
Clinical Professor
Department of Oral and Maxillofacial Surgery
University of Florida
Gainesville, Florida, USA
and
Private practice, Sunninghill Hospital
Sunninghill, Johannesburg, South Africa

Richard C. Robert DDS, MS
Clinical Professor
Oral and Maxillofacial Surgery
University of California Medical Center
San Francisco, California, USA
and
Private practice, Oral and Maxillofacial Surgery
South San Francisco, California, USA

Simon N. Rogers BDS, MBCMB, FDSRCS, FRCS
Professor, Regional Maxillofacial Unit
University Hospital Aintree
Liverpool, UK
and
Evidence-based Practice Research Centre (EPRC)
Faculty of Health
Edge Hill University
Ormskirk, UK

†Bo Rosenquist BSc, DDS, PhD (Chapter 16)
Associate Professor of Oral and Maxillofacial Surgery
Head of the Head and Neck Division
Department of Oral and Maxillofacial Surgery
University Hospital of Lund
Lund, Sweden

Patricia A. Rudd PT, DPT, CCTT (Chapter 32)
Assistant Clinical Professor
UCSF Center for Orofacial Pain
Department of Oral and Maxillofacial Surgery
University Hospital of California, San Francisco
San Francisco, California, USA

George K.B. Sándor MD, DDS, PhD, Dr. Habil, FRCDC, FRSCC, FACS
Professor of Tissue Engineering
Regea Institute for Regenerative Medicine
University of Tampere
Tampere, Finland
and
Dosent in Oral and Maxillofacial Surgery
University of Oulu
Oulu, Finland

Henning Schliephake MD, DDS, PhD
Professor and Chair
Department of Oral Maxillofacial Surgery
George Augustus University
Göttingen, Germany

Rainer Schmelzeisen MD, DMD (Chapter 27)
Professor and Chairman
Department of Craniofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Brian L. Schmidt DDS, MD, PhD, FACS (Chapters 19, 23 and 31)
Professor
Department of Oral and Maxillofacial Surgery and
Director of the Bluestone Center for Clinical Research
New York University School of Dentistry
New York, NY, USA

Ralf Schon MD, DMD (Chapter 27)
Associate Professor
Department of Craniofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Petr Schutz MD (Chapter 27)
Consultant
Head of Oral and Maxillofacial Surgery Unit
Dental Center, Farwaniya Hospital
Ministry of Health
Kuwait

Lars Sennerby DDS, PhD (Chapter 14)
Professor of Clinical and Experimental Oral Implantology
Department of Biomatериалы
Institute for Clinical Sciences
Sahlgrenska Academy
University of Gothenburg
Gothenburg, Sweden
and
Clinica Felltre
Feltre, Italy

Vivek Shetty DDS, Dr Med Dent
Professor
Section of Oral and Maxillofacial Surgery
University of California, Los Angeles
Los Angeles, California, USA

Ryan J. Smart DMD, MD (Chapter 7)
Resident
Department of Oral and Maxillofacial Surgery
Massachusetts General Hospital
Boston, Massachusetts, USA

Johan P. Reyneke B Ch D, M Ch D, FCMFOS (SA), PhD
(Chapter 30)
Honorary Professor
Department of Maxillofacial and Oral Surgery
Faculty of Health Sciences
University of the Witwatersrand
Johannesburg
South Africa
and
Clinical Professor
Department of Oral and Maxillofacial Surgery
University of Oklahoma
Oklahoma City, Oklahoma, USA
and
Clinical Professor
Department of Oral and Maxillofacial Surgery
University of Florida
Gainesville, Florida, USA
and
Private practice, Sunninghill Hospital
Sunninghill, Johannesburg, South Africa

Richard C. Robert DDS, MS
Clinical Professor
Oral and Maxillofacial Surgery
University of California Medical Center
San Francisco, California, USA
and
Private practice, Oral and Maxillofacial Surgery
South San Francisco, California, USA

Simon N. Rogers BDS, MBCMB, FDSRCS, FRCS
Professor, Regional Maxillofacial Unit
University Hospital Aintree
Liverpool, UK
and
Evidence-based Practice Research Centre (EPRC)
Faculty of Health
Edge Hill University
Ormskirk, UK

†Bo Rosenquist BSc, DDS, PhD (Chapter 16)
Associate Professor of Oral and Maxillofacial Surgery
Head of the Head and Neck Division
Department of Oral and Maxillofacial Surgery
University Hospital of Lund
Lund, Sweden

Patricia A. Rudd PT, DPT, CCTT (Chapter 32)
Assistant Clinical Professor
UCSF Center for Orofacial Pain
Department of Oral and Maxillofacial Surgery
University Hospital of California, San Francisco
San Francisco, California, USA

George K.B. Sándor MD, DDS, PhD, Dr. Habil, FRCDC, FRSCC, FACS
Professor of Tissue Engineering
Regea Institute for Regenerative Medicine
University of Tampere
Tampere, Finland
and
Dosent in Oral and Maxillofacial Surgery
University of Oulu
Oulu, Finland

Henning Schliephake MD, DDS, PhD
Professor and Chair
Department of Oral Maxillofacial Surgery
George Augustus University
Göttingen, Germany

Rainer Schmelzeisen MD, DMD (Chapter 27)
Professor and Chairman
Department of Craniofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Brian L. Schmidt DDS, MD, PhD, FACS (Chapters 19, 23 and 31)
Professor
Department of Oral and Maxillofacial Surgery and
Director of the Bluestone Center for Clinical Research
New York University School of Dentistry
New York, NY, USA

Ralf Schon MD, DMD (Chapter 27)
Associate Professor
Department of Craniofacial Surgery
University Hospital Freiburg
Freiburg, Germany

Petr Schutz MD (Chapter 27)
Consultant
Head of Oral and Maxillofacial Surgery Unit
Dental Center, Farwaniya Hospital
Ministry of Health
Kuwait

Lars Sennerby DDS, PhD (Chapter 14)
Professor of Clinical and Experimental Oral Implantology
Department of Biomatериалы
Institute for Clinical Sciences
Sahlgrenska Academy
University of Gothenburg
Gothenburg, Sweden
and
Clinica Felltre
Feltre, Italy

Bethany Serafin DMD (Chapter 28)
Valley Village Oral Surgery Associates
Baltimore, Maryland, USA

Arun B. Sharma BDS, MSc
Health Sciences Clinical Professor
Division of Prosthodontics
University of California, San Francisco – School of Dentistry
San Francisco, California, USA

Jeremy Sherman BDS, MBCMB, FRCS, FDRCS, FRCS Ed
(Chapter 25)
Consultant Maxillofacial Surgeon
Department of Oral and Maxillofacial Surgery
Queen Elizabeth II Hospital
Welwyn Garden City, UK

Vivek Shetty DDS, Dr Med Dent
Professor
Section of Oral and Maxillofacial Surgery
University of California, Los Angeles
Los Angeles, California, USA

Ryan J. Smart DMD, MD (Chapter 7)
Resident
Department of Oral and Maxillofacial Surgery
Massachusetts General Hospital
Boston, Massachusetts, USA
Srinivas M. Susarla DMD, MD, MPH (Chapter 7)
Resident
Department of Oral and Maxillofacial Surgery
Massachusetts General Hospital
Boston, Massachusetts, USA

Wayne K. Tanaka DDS, FACP, FACD, FICD (Chapter 1)
Associate Professor, Predoctoral Program Director
Department of Oral and Maxillofacial Surgery
Loma Linda University
Loma Linda, California, USA

Peter Tarnow MD, PhD
Chairman, The Craniofacial Unit
Department of Plastic Surgery
Sahlgrenska University Hospital
Gothenburg, Sweden

Mitsuhiro Tsukiboshi DDS, PhD (Chapter 11)
Private practice, general dentistry
Aichi, Japan

Sina Uçkan DDS, PhD (Chapter 13)
Department of Oral and Maxillofacial Surgery
Başkent University
Ankara, Turkey

Kalyan Voruganti BDS
Senior House Officer
Regional Maxillofacial Unit
University Hospital Aintree
Liverpool, UK

Anders Westermark DDS PhD (Chapter 33)
Associate Professor
Department of Maxillofacial Surgery
Karolinska University Hospital
Stockholm, Sweden

Nils Weyer MD, DMD (Chapter 27)
Department of Cranio-maxillofacial Surgery
University Hospital Freiburg
Freiburg, Germany

David W. Williams BSc(Hons), PhD (Chapter 4)
Reader in Oral Microbiology
School of Dentistry
Cardiff University
Cardiff, UK

Mark Eu-Kien Wong DDS
Chairman and Program Director
Department of Oral and Maxillofacial Surgery
University of Texas Health Science Center – Houston
Houston, Texas, USA

Leena P. Ylikontiola DDS, MD, PhD
Assistant Professor
Institute of Dentistry
University of Oulu
and
Co-ordinator of Cleft Lip and Palate Program
Oulu University Hospital
Oulu, Finland

Li-wu Zheng DDS, MD, PhD
Assistant Professor
Discipline of Oral and Maxillofacial Surgery
Faculty of Dentistry
University of Hong Kong
Hong Kong, SAR, China
Shortly after the successful launch of our international reference textbook *Oral and Maxillofacial Surgery* in 2010, we had the idea of abstracting and distilling the essential elements of the textbook and adding new sections to produce a textbook suitable for dental students and trainees worldwide. This textbook is the result of those efforts. It is designed to fulfill the curricular needs in oral and maxillofacial surgery for all dental students and it will also fulfill most of the needs of trainees in oral and maxillofacial surgery and allied disciplines. We have maintained the same team of international authors as in the larger textbook. We hope this textbook portrays the excitement we feel in the development of our specialty over the past 20 years and gives a flavor of some of the anticipated achievements of the next few years.

This book is dedicated to our teachers and mentors (we stand on the shoulders of giants) as well as the dedication and sacrifices of our wives Ann, Ingrid, and Karin.

Editors at editorial board meeting, Gothenburg, Sweden, March 2013
About the companion website

This book is accompanied by a companion website:

www.wiley.com/go/pogrel/oms

The website includes:

• 89 interactive multiple-choice questions
• Powerpoints of all figures from the book for downloading
Part 1: Basic Principles

(Section Editor: Tony Pogrel)
Chapter 1

Patient Evaluation

The goal of preoperative evaluation is to reduce patient risk and the morbidity of surgery, and is based on the premise that it will modify patient care and improve outcome.

The Joint Commission for the Accreditation of Healthcare Organizations (JCAHO) requires that all patients receive a preoperative anesthetic evaluation and the American Society of Anesthesiologists (ASA) has approved Basic Standards for Preoperative Care which outline the minimum requirements for a preoperative evaluation. Preoperative patient assessment is important in order to develop a safe and appropriate surgical and anesthetic plan.

Obtaining a patient history

The importance of an accurate, detailed history cannot be overemphasized because it provides the framework on which the clinician builds an accurate diagnosis and treatment plan. An inaccurate or incomplete evaluation may lead to a delay in treatment, unnecessary testing, or misdiagnosis.

It is often helpful to review previous medical records. This can provide important information and save time during the interview process. The patient should be asked to describe the history of the present illness (HPI). Information should be gathered regarding onset, intensity, quality, location, duration, radiation, and any exacerbating or relieving factors. Constitutional symptoms that relate to the present illness should also be noted. Examples of pertinent positives and negatives with regard to the chief complaint may include fever, chills, loss of weight, weakness, etc.

The past medical history (PMH) alerts the clinician to any coexisting illnesses that may have an impact on any planned surgeries. A family history (FH) may reveal risk factors for patients as well as the possibility of inherited illnesses such as hemophilia or malignant hyperthermia.

The social history (SH) of a patient should include information regarding their social support system and also any habits such as tobacco, alcohol, or illicit drug use. These habits may adversely affect healing and also increase a patient’s risk for undergoing a planned surgical procedure.

A review of systems (ROS) is a comprehensive method of inquiring about a patient’s symptoms on an organ system basis. The review of systems may reveal undiagnosed medical conditions unknown to the patient.

Physical examination

During the physical exam the clinician further reinforces or disproves impressions gained during the history-taking portion. Vital signs are recorded at the beginning of the physical exam. These include blood pressure, pulse rate, respiratory rate, and temperature. The patient’s general appearance should be noted.

For a complete description of examination techniques the reader is advised to consult textbooks on physical diagnosis.

Comorbidities/systemic diseases

The clinician needs to assess potential risk factors and understand their effect on treatment. Changes in heart rate, rhythm, blood pressure, preload, afterload, and inotropy may occur during surgery and these can have deleterious effects, especially in patients with comorbidities. The risks for complications are greatest when caring for patients who are
already medically compromised. Many significant untoward events can be prevented by careful preoperative assessment along with attentive intraoperative monitoring and support.

Cardiovascular system

Cardiac disease
Cardiac complications following non-cardiac surgery constitute an enormous burden of perioperative morbidity and mortality. More than one million operations annually are complicated by adverse cardiovascular events, such as perioperative myocardial infarction or death from cardiac causes. Common cardiac risk factors include diabetes, hypertension, family history of heart disease, hypercholesterolemia, and obesity. Certain populations of patients, such as the elderly, diabetics, or women, may present with more atypical features.

Methods for evaluating a patient’s cardiac risk preoperatively include a careful history, including exercise tolerance, physical examination, and electrocardiogram (EKG). Based on this information, various risk indices, guidelines, and algorithms can assist the clinician in deciding which patients can undergo surgery without further testing and which patients may benefit from further cardiac evaluation or medical therapy prior to surgery. Risk assessment involves evaluating patients’ comorbidities and exercise tolerance, as well as the type of procedure to be performed to determine the overall risk of perioperative cardiac complications. Exercise tolerance is a major determinant of cardiac risk and need for further testing. Beta blockade has shown clear benefits in risk reduction whereas revascularization procedures, such as coronary artery bypass grafting, have not been shown to be useful in reducing non-cardiac surgical risk.

Hypertension
Hypertension is a common disease which can increase perioperative cardiac risk. Hypertension has been associated with an increase in the incidence of silent myocardial ischemia and infarction. The Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure recently revised their definition. Hypertensive patients with left ventricular hypertrophy are at a higher perioperative cardiac risk than non-hypertensive patients.

Controversy exists regarding whether to delay a surgical procedure in a patient with untreated or poorly controlled hypertension. Aggressive treatment of high blood pressure does diminish long-term risk. A study often quoted as the basis for delaying surgery for patients with a diastolic blood pressure greater than 110 mmHg actually demonstrated no major morbidity in that group of patients. Other authors have found little association between blood pressures less than 180 mmHg systolic or 110 mmHg diastolic and postoperative outcomes. Patients with severe hypertension are more prone to perioperative myocardial ischemia, ventricular dysrhythmias, and lability in blood pressure. For patients with blood pressures greater than 180/110 mmHg there is no absolute evidence that postponing surgery will decrease the cardiac risk. For patients without end-organ changes, such as renal insufficiency or left ventricular hypertrophy, it may be appropriate to proceed with surgery. However, patients with a markedly elevated blood pressure and new onset of a headache should have surgery delayed for further medical treatment. Patients with hypertension may have a contracted intravascular volume and therefore have an increased susceptibility to vasodilator effects of commonly used sedative and anesthetic agents. For elective surgery it is best to have the patient’s blood pressure optimized prior to surgery.

Risk factors for hypertension include smoking, hypercholesterolemia, increasing age, family history of cardiovascular disease, and diabetes. Untreated hypertension commonly causes coronary heart disease, cardiomegaly, congestive heart failure, and end-organ damage. When evaluating a patient with hypertension, it is important to determine the presence of end-organ damage (heart, lung, and cerebrovascular systems). An elevated systolic blood pressure may be a better predictor of postoperative myocardial ischemia than elevated diastolic blood pressure.

Pulmonary system
Pulmonary complications are a major cause of morbidity for patients undergoing a surgical procedure. They occur more frequently than cardiac complications with an incidence of 5–10% in those having major non-cardiac surgeries. Perioperative pulmonary complications include atelectasis, pneumonia, bronchitis, bronchospasm, hypoxemia, and respiratory complications. For patients with an upper respiratory illness, surgery should be delayed if possible for at least 2 weeks after resolution of the illness. Studies have indicated a 10% incidence of severe complications, respiratory as well as cardiac arrest, pneumonia, and prolonged intubation due to increased sputum, when surgery is performed on patients with an active upper respiratory tract infection.

During the presurgical evaluation, the clinician should obtain information about exercise tolerance, chronic cough, or unexplained dyspnea. On physical exam, findings of ronchi, wheezing, decreased breath sounds, dullness to percussion, and a prolonged expiratory phase are important. Preoperative pulmonary function tests are usually reserved for patients undergoing lung resection or those undergoing major surgery who have unexplained pulmonary signs and symptoms after a history and physical examination.

Obesity
A patient is considered obese when their body weight is 20% or more above ideal weight. Obesity can be
measured by the body mass index (BMI) which is derived by dividing the weight in kilograms by the height in meters squared (BMI = Wt/ht²).

A BMI greater than 30 suggests increased morbidity due to stroke, heart disease and diabetes. At a minimum, these conditions indicate the need for close evaluation of the patient’s airway and cardiac and pulmonary status. Even with an adequate airway, ventilation may be difficult because of the patient’s size and a tendency toward hypoxemia. There may also be significant cardiovascular changes.

On the other hand, the clinician should not dismiss a low BMI, especially with evidence suggesting an eating disorder. Nutritional deficiency may be present along with significant cardiac changes, fluid and electrolyte imbalances, delayed gastric emptying, and severe endocrine abnormalities.

Imaging

A patient’s presentation will dictate which films are required. Radiographs such as plain films, cone beam or fan beam computed tomography (CT), nuclear scans, and arteriography are helpful in various circumstances. The risks associated with these studies should be weighed against the added benefit from them.

Laboratory studies

Some institutions have preadmission screening test algorithms based on factors such as age of the patient (Table 1.1). Preoperative laboratory tests should be ordered based on defined indications such as positive findings on a history and physical exam. A thorough history and physical examination can be used to identify those medical conditions that might affect perioperative management and direct further laboratory testing. A study by Golub et al. reviewed the records of 325 patients who had undergone preadmission testing prior to surgery. Of these 272 (84%) had at least one abnormal screening test, while only 28 surgeries were canceled or delayed. Only three patients potentially benefited from preadmission testing, including a new diagnosis of diabetes in one and non-specific EKG changes in two. Another study

Table 1.1 Sample preadmission screening test algorithm. (EBL, estimated blood loss; HTN, hypertension; IVDA, intravenous drug abuse; LMP, last menstrual period; ABG, arterial blood gases; CBC, complete blood count; PT, prothrombin time; PTT, partial thromboplastin time; LFTs, liver function tests; CXR, chest X-ray; EKG, electrocardiogram; HCG, human chorionic gonadotropin; UA, urinalysis; PFTs, pulmonary function tests; T/S, type and screen.)

<table>
<thead>
<tr>
<th>Preoperative condition</th>
<th>ABGs</th>
<th>CBC</th>
<th>Lytes</th>
<th>BUN/Creat</th>
<th>Blood/Glucose or Accucheck</th>
<th>LFT</th>
<th>CXR</th>
<th>EKG</th>
<th>Hcg preg/UA</th>
<th>PFTs</th>
<th>T/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible EBL >500 ml</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Neonates</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Age: >40 yr</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Age: >75 yr</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular disease/chronic HTN</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of diuretics, digoxin</td>
<td>X</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe pulmonary disease/ prethoracotomy</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignancy/radiation/chemotherapy</td>
<td>X, plt</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatic disease</td>
<td>X, plt</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic alcoholism</td>
<td>X, plt</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal disease (dialysis)</td>
<td>X</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleeding disorder/anticoagulant therapy</td>
<td>X,plt*</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>+/-</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Not all diseases are included. Therefore, the physician should use own judgment regarding patients having diseases that are not listed. In patients with stable medical conditions, labs and EKGs within the last 3 months, and CXR within the last year, will be acceptable. X Items should be done within 72 hours of surgery.

*Urine pregnancy test if LMP > 21 days with possibility of pregnancy or menstruating females < 18 years of age, all women undergoing tubal ligation and all women having a hysterectomy who are in their reproductive years or who are experiencing the first year of menopause.
Based locations. Many variables are considered when deciding on whether to perform a surgery in the office or perform the surgery elsewhere, including the size and severity of the surgery.

Patient factors should also be an important part of the decision on where to perform the procedure. Patients with poorly controlled medical conditions such as morbid obesity or poorly controlled hypertension should be carefully evaluated, and appropriate preoperative testing should be performed to determine their surgical risk. Patient factors such as increased age, an operating time longer than 120 minutes, cardiac diagnoses, peripheral vascular disease, cerebrovascular disease, malignancy, and immunodeficiency can place patients at higher risk for immediate hospital admission.

Advantages of performing surgery in a hospital setting include the addition of another health care provider to administer anesthetic during the surgical procedure. Imaging techniques such as ultrasonography, CT, and chest radiographs are readily available, as are blood chemistries to rapidly diagnose and treat complications. Also, procedures such as interventional radiology, for such things as embolization, are available. Ultimately the decision on where to perform a surgery depends on both the surgeon and informed patient considering the type and length of the procedure, patient health factors, and safety.

Summary

The process of preoperative evaluation is essential in assessing the medical condition of patients, evaluating their overall health status, determining risk factors, and educating them. The goal of preoperative evaluation is to reduce patient risk and the morbidity of surgery.

Recommended reading

Radiographic Imaging in Oral and Maxillofacial Surgery

Introduction

The most common radiographic examinations of oral and maxillofacial surgery patients are intraoral and panoramic radiographs. However, today computed tomography (CT) and magnetic resonance imaging (MRI) are common examinations in imaging of many different conditions. A useful investigation is one in which the result – positive or negative – will alter management or add confidence to the clinician’s diagnosis. It is important to try to minimize the radiation dose to the patient (particularly children). CT can potentially give significant absorbed doses to the patient. The trend today is to use a low-dose technique for CT, but this can be at the expense of the image quality and its use depends on the clinical problem.

Computed tomography (CT)

CT is a digital technique providing images of thin slices of the patient with a variable thickness. The slice thickness can be less than 1 mm by use of very small X-ray detectors and a fan-shaped X-ray beam transmitted through the patient. By simultaneously scanning several slices of the body (multislice CT), the scan time can be reduced significantly and the smallest details can be imaged within short scan times. Multislice CT enables a wide range of clinical applications and, through the use of computer software, three-dimensional (3D) images can be produced. Images can be viewed in the axial, coronal, or sagittal planes depending on the diagnostic task. This is referred to as multiplanar reformatteed (MPR) imaging. Images can also be viewed in any other plane decided by the operator. CT has the advantage over other radiographic techniques that it eliminates superimposition of images of structures outside the area of interest. It has an inherent high-contrast resolution and differences between tissues that differ in physical density by less than 1% can be distinguished. For image display, each pixel is assigned a CT number (Hounsfield units – HU) representing density. The density of air is defined as -1000 HU, water as 0 HU and bone tissue has more than $+400$ HU. To allow the observer to interpret the image, only a limited number of HU are displayed. A clinically useful gray scale is achieved by setting the window level and window width on the computer console to a suitable range of HU, depending on the tissue being studied. The term “window level” represents the central HU of all the numbers within the window width. The window width covers the HU of all the tissues of interest and these are displayed as various shades of gray.

Cone-beam computed tomography (cone-beam CT)

This technique has been commercially available since the early years of the present century. Cone-beam CT is based on volumetric tomography, in contrast to conventional fan-beam CT where slices are scanned. From this, volume slices can be reconstructed in various planes. One advantage with cone-beam CT compared to conventional CT is the lower radiation dose. The radiation dose is reduced by up to 98% compared with conventional CT and is comparable to 2–28 average panoramic radiographs. The dose varies substantially, however, depending on the device, imaging field and selected technique factors. The scan time is relatively short (around 10s) and the resolution is high (i.e. around 0.125 mm) and approaches that of fan-beam CT. The software is usually adapted to maxillofacial imaging and is real-time interactive, for example for implant planning.
In both cone-beam CT and conventional CT, artifacts are produced by metal objects and it is important to try to avoid exposing metal fillings and crowns.

Magnetic resonance imaging (MRI)

MRI does not use ionizing radiation, but rather uses magnetic fields to align protons in the body, which can then be recorded electronically as they revert to their baseline orientation, and reformatted to build up an image. There are, however, some contraindications since the presence of ferromagnetic metals is a potential hazard. Patients with magnetic or paramagnetic metallic foreign objects, pacemakers, and metal clips must not be examined. Pregnancy is a relative contraindication.

The advantage of MRI is that it offers the best resolution of tissues of low inherent contrast and it has an excellent soft tissue contrast resolution. Disadvantages are relatively long imaging times and patients who suffer from claustrophobia cannot be examined. Open MRI scanners are sometimes used for claustrophobic patients but the images are of low resolution and are usually unsuitable for head and neck imaging.

MRI physics is complex and an understanding of the basic concepts is important in order to manipulate the scan parameters to improve the quality of the images.

Impacted teeth

A preoperative examination of an impacted tooth usually consists of two intraoral radiographs exposed at different angles (Fig. 2.1 a and b) or a panoramic radiograph. Using intraoral films in three different projections gives an insight into the true anatomy of third molars when the radiographic appearance was compared to the clinical observation. Intraoral and panoramic radiographs are usually sufficient to show

Fig. 2.1 Impacted lower third molar in a mesioangular position. (a) Periapical radiograph taken with +10° vertical angulation of the X-ray tube. Two mesial roots (one straight and one curved) and one distal root are seen. (b) Periapical radiograph taken with −10° vertical angulation of the X-ray tube. The mandibular canal seems to be buccal to the curved root. (c) Cone-beam CT with 1 mm thick sections. Upper left image is a cross-section of the mandible through the roots. The mandibular canal is seen below the mesial roots, lingual to the buccal root and buccal to the lingual root. Upper right image is a sagittal view of the buccal part of the tooth and the straight mesio-buccal root is shown. Lower section shows an axial view of the tooth, which is situated close to the lingual compact bone. (d) Same as (c), but the section is lingually placed. The curved mesio-lingual root is shown in the sagittal view.
Fig. 2.2 Cone-beam CT examination of a non-erupted maxillary canine causing resorption of the root of the lateral incisor. The crown of the canine is situated palatal to the root of the incisor. (a) Upper left, sagittal view. Upper right, cross-section of the jaw. Lower, axial view. (b) Same as (a), but the 1 mm thick section is placed more palatal in the sagittal section. The root tip of the canine is curved mesially.

the relationship between the roots of the third molar and the mandibular canal. However, narrowing of the canal, increased radiolucency (“dark band”) and interruption of the radiopaque border of the mandibular canal can justify a CT examination. Cone-beam CT has been shown to have a high diagnostic accuracy in predicting neurovascular bundle exposure during extraction of impacted mandibular third molars. Figure 2.1 c and d show an example of an impacted mandibular third molar with a complicated root anatomy examined with cone-beam CT.

CT is also valuable when examining impacted teeth in other regions. Cone-beam CT has been shown to be indicated for localization of impacted maxillary canines and has demonstrated root resorption better on the adjacent incisors compared to conventional radiography. Figure 2.2 shows a cone-beam CT examination of a non-erupted maxillary canine causing resorption of the root of the lateral incisor.

Pathological conditions – inflammatory lesions, cysts, benign and malignant tumors

The aims of the radiographic examination are to give information that leads to the most probable diagnosis and to the optimal treatment. The examination must cover the whole pathological area in at least two dimensions. A combination of different radiographic techniques can lead to a more certain diagnosis, but it should always be kept in mind that the treatment also must be affected positively by the extended examinations in order to be justified. There are some radiological signs that always must be looked for when interpreting radiographs of pathological conditions, such as:

- location and size;
- periphery and shape;
- internal structures;
- effects on surrounding structures.

Inflammatory lesions

There are several lesions that present as a radiolucent area in the jaws. Inflammatory lesions located in the periapical area are by far the most common changes. It is not possible to differentiate radiologically between a radicular cyst and apical periodontitis. Radicular cysts tend to be larger than periapical granulomas, but a large variation in size has been shown for both types of lesions. This is not a diagnostic problem for small periapical radiolucencies as endodontic treatment has a high success rate and the prevalence of true cystic lesions is low. At follow-up after endodontic treatment and periapical surgery it is important to standardize the radiographic examination regarding projection and density/contrast of the image to be able to compare different examinations. An example is given in Figure 2.3 where the projection was changed between the two radiographs taken on the same occasion and it appears that the size of the periapical bone destruction has changed.

Cone-beam CT should be considered when no detectable pathology is found in periapical radiographs and clinical tests indicate pathology, as more periapical lesions are found with cone-beam CT. This is especially important in patients with chronic
Basic Principles

10

Rapidly growing malignant lesions destroy the alveolar bone but usually no root resorption is present. A typical sign is that the teeth may appear to be floating in space: “floating teeth.”

The radiographic examination of malignant tumors often comprises CT and MRI to determine the extent of the tumor and to evaluate cervical lymphadenopathy. Post-treatment examinations are usually performed to evaluate the effect of treatment. A combination of CT and positron emission tomography (PET) has been introduced and PET/CT is now widely used as an advanced clinical tool for the diagnosis, staging, and restaging of cancer, and for the assessment of tumor therapy. A combination of MRI and PET is also becoming available. PET is a functional study where a radiolabelled isotope of glucose is given intravenously and areas of high metabolic activity can be recorded. The uptake is recorded by a nuclear imaging system and is normally merged with CT or MRI imaging for improved localization.

Cysts and benign tumors

Radicular cysts are the most common cysts found in the jaws, followed by dentigerous cysts and keratocystic odontogenic tumors (KCOT). Large cysts in the region of the maxillary sinus may be difficult to image with conventional radiographs and CT is usually indicated to see the extension of the cyst (Fig. 2.5). Dentigerous cysts and KCOTs are usually incidental findings in panoramic radiographs, with KCOT predominantly found in the mandible (Fig. 2.6).

Malignant tumors

Primary malignant bone tumors are uncommon in the jaws. Squamous cell carcinoma is the most common head and neck cancer and it may invade the underlying bone. The typical appearance on a panoramic radiograph of a malignant lesion involving the jaw bone is bone destruction with a border that is ill defined. Figure 2.7 shows an example of a carcinoma of the maxillary sinus involving the upper jaw detected on a panoramic radiograph. Rapidly growing malignant lesions destroy the alveolar bone but usually no root resorption is present. A typical sign is that the teeth may appear to be floating in space: “floating teeth.”

The radiographic examination of malignant tumors often comprises CT and MRI to determine the extent of the tumor and to evaluate cervical lymphadenopathy. Post-treatment examinations are usually performed to evaluate the effect of treatment. A combination of CT and positron emission tomography (PET) has been introduced and PET/CT is now widely used as an advanced clinical tool for the diagnosis, staging, and restaging of cancer, and for the assessment of tumor therapy. A combination of MRI and PET is also becoming available. PET is a functional study where a radiolabelled isotope of glucose is given intravenously and areas of high metabolic activity can be recorded. The uptake is recorded by a nuclear imaging system and is normally merged with CT or MRI imaging for improved localization.

Temporomandibular joint (TMJ)

Imaging of TMD patients plays a minor role in the management of these patients as it has been shown that the treatment outcome is not affected by the radiological findings. Despite the success of conservative care, however, some patients do not improve and TMJ surgery may be indicated. In these cases...
Radiographic imaging is indicated, as well as in patients with trauma, tumors, ankylosis and developmental anomalies. Further, radiographic examination of patients with polyarthritic conditions, such as rheumatoid arthritis, can be recommended to evaluate the degree of joint destruction. Bone scanning with 99mtechnetium phosphate isotopes might be indicated to determine the level of growth activity in condylar hyperplasia.

There are different techniques for imaging the TMJ: panoramic radiography, plain radiography, conventional and computed tomography, arthrography, and MRI. Panoramic radiography is not a reliable method for accurately showing the shape of the mandibular condyle and the temporal component is poorly visualized. Plain radiography of the TMJ

Fig. 2.5 Patient with a fistula in the maxillary right canine region. Buccal swelling and symptoms of sinusitis. He mentions that a tooth was extracted in the region about 10 years ago when he had similar symptoms. The final diagnosis was proved to be residual cyst. (a) Panoramic radiograph which is difficult to interpret. (b) CT with an axial section showing well-defined bone destruction in the right maxillary canine region. (c) Coronal section showing the cystic lesion with thickened bone around the cyst. Soft tissue swellings are seen in the maxillary sinus. (d) Axial CT taken 10 years earlier, when the patient had symptoms of sinusitis. A cystic lesion is seen around the root tip of the right maxillary canine. The tooth was later extracted.

Fig. 2.6 Panoramic radiograph showing a multilocular bone destruction in the right mandibular ramus area. The patient had no symptoms and the cyst was detected in bitewing radiographs taken by his dentist. The tentative radiological diagnoses were ameloblastoma or keratocystic odontogenic tumor (KCOT). The diagnosis from the pathologist’s report was KCOT.
Basic Principles

depicts the mineralized part of the joint, but superimposition of adjacent anatomic structures can make interpretation difficult. Conventional tomography improves the depiction of the bone structures. However, minor bony changes will not be shown in conventional tomography. CT imaging provides exquisite detail for bony abnormalities, such as ankylosis, fractures (Fig. 2.8), osseous tumors and arthrosis and 3D images can be produced; 3D reconstructions of a patient with condylar aplasia are shown in Figure 2.9.

MRI has replaced arthrography and can provide information about disk position, joint fluid, bone marrow changes, and bone structure at multiple levels of the joint. MRI is the prime diagnostic imaging technique in TMD patients. The technique, however, is expensive and there are no studies showing when the results of the MRI examination will result in a better treatment outcome for the typical TMD patient. Imaging of the TMJ is definitely indicated prior to TMJ surgery and the preferred method is MRI if the soft tissue should be shown and CT if the hard tissue is of prime interest. In cases of tumors the methods often are combined.

Implant treatment

Panoramic radiography is the first choice for the radiological appraisal before implant treatment. The technique is, however, dependent on proper positioning of the patient during exposure and objects located

Fig. 2.7 The patient complains of pain in the upper left jaw. A swelling of the left cheek is noticed. (a) Panoramic radiography shows an ill defined bone destruction in the area of the left maxillary sinus and the edentulous jaw seems to be involved in the bone destruction. (b, c) Contrast-enhanced axial CT sections showing bone destruction of the anterior and medial walls of the maxillary sinus and of the alveolar bone. The tumor is expanding buccally into the cheek. (d) Coronal section showing complete destruction of the jaw. The superior bony wall to the orbit seems intact.
outside the center of the sharply depicted plane are reproduced with distortions. Reliable measurements have been found for digital panoramic radiography, but both over and underestimation of vertical linear measurements have been found in other studies of panoramic radiography. The inherent errors in panoramic radiography should always be kept in mind whenever an exact assessment of a distance is required. Panoramic radiography is inferior to CT in visualization of the mandibular canal and in measurements related to the mandibular canal. Today, CT has almost totally replaced conventional tomography. There is equal accuracy so cone-beam CT should be preferred as this technique gives lower radiation dose compared to multislice CT and has a superior array of software for dental implant and related planning procedures. However, when a completely edentulous patient is examined several exposures with cone-beam CT with a narrow field size are necessary (Fig. 2.10). CT is indicated whenever the bone volume

Fig. 2.8 Cone-beam CT of a fracture of the condylar neck after a bicycle accident. Upper left, sagittal view; upper right, coronal view; lower right, axial view. The condylar fragment has been dislocated medially and inferiorly. The images are taken with 3D Accuitomo (Morita Corp.)

Fig. 2.9 CT 3D reconstructions of a patient with hemifacial microsomia and aplasia of the right condyle. The patient is missing the ear and a defective zygomatic arch is seen on the right side. The left side has developed normally.

Fig. 2.10 Multislice CT examination for planning of implant treatment of an edentulous maxilla. (a) Panoramic radiograph. The bucco-palatal bone width of the maxilla was judged to be questionable. (b) 3 mm thick paraxial reconstructions made perpendicular to the alveolar bone (cross-sections) of the left side from the incisor to the premolar region. The images are produced in scale 1:1. B = buccal, L = lingual. (c) 3 mm thick panoramic reconstructions. The number of the vertical lines can be identified in the paraxial sections in order to locate the section.
must be evaluated accurately and when localizing the mandibular canal. Figure 2.11 shows cone-beam CT of the mandibular canal. Another indication for CT is when evaluating bone grafting procedures in relation to implants, as two-dimensional radiographs underestimate bone resorption. Postoperative follow-up examinations after implant treatment are usually performed with intraoral radiographs taken in a standardized way.

Recommended reading

