Cascade Biocatalysis

Integrating Stereoselective and Environmentally Friendly Reactions
Edited by
Sergio Riva and
Wolf-Dieter Fessner

Cascade Biocatalysis
Related Titles

Tietze, Lutz F. (ed.)

Domino Reactions
Concepts for Efficient Organic Synthesis
2014
ISBN: 978-3-527-33432-2

Crabtree, R. H. (ed.)

Handbook of Green Chemistry - Green Catalysis
Volume 3 - Biocatalysis
Series: Handbook of Green Chemistry edited by Anastas, P. T.
2013
ISBN: 978-3-527-32498-9

Drauz, K., Gröger, H., May, O. (eds.)

Enzyme Catalysis in Organic Synthesis
Third, Completely Revised and Enlarged Edition
2012
ISBN: 978-3-527-32547-4

Buchholz, K., Kasche, V., Bornscheuer, U.T.

Biocatalysts and Enzyme Technology
Second, Completely Revised and Enlarged Edition
2012
ISBN: 978-3-527-32989-2

Lutz, S., Bornscheuer, U. T. (eds.)

Protein Engineering Handbook
Volume 3
2012
ISBN: 978-3-527-33123-9

Loos, K. (ed.)

Biocatalysis in Polymer Chemistry
2011
ISBN: 978-3-527-32618-1

Fessner, W.-D., Anthonsen, T. (eds.)

Modern Biocatalysis
Stereoselective and Environmentally Friendly Reactions
2009
ISBN: 978-3-527-32071-4
Cascade Biocatalysis

Integrating Stereoselective and Environmentally Friendly Reactions
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33522-0
ePDF ISBN: 978-3-527-68248-5
Mobi ISBN: 978-3-527-68250-8
oBook ISBN: 978-3-527-68249-2

Cover Designer Adam-Design, Weinheim, Germany
Typesetting Laserwords Private Limited, Chennai, India
Printing and Binding Markono Print Media Pte Ltd, Singapore

Printed on acid-free paper
Contents

List of Contributors XIII
Preface XXI

1 Directed Evolution of Ligninolytic Oxidoreductases: from Functional Expression to Stabilization and Beyond 1
Eva Garcia-Ruiz, Diana M. Mate, David Gonzalez-Perez, Patricia Molina-Espeja, Susana Camarero, Angel T. Martínez, Antonio O. Ballesteros, and Miguel Alcalde
1.1 Introduction 1
1.2 Directed Molecular Evolution 1
1.3 The Ligninolytic Enzymatic Consortium 3
1.4 Directed Evolution of Laccases 6
1.4.1 Directed Evolution of Low-Redox Potential Laccases 7
1.4.2 Directed Evolution of Medium-Redox Potential Laccases 7
1.4.3 Directed Evolution of Ligninolytic High-Redox Potential Laccases (HRPLs) 8
1.5 Directed Evolution of Peroxidases and Peroxygenases 11
1.6 Saccharomyces cerevisiae Biomolecular Tool Box 15
1.7 Conclusions and Outlook 16
Acknowledgments 17
Abbreviations 17
References 18

2 New Trends in the In Situ Enzymatic Recycling of NAD(P)(H) Cofactors 23
Erica Elisa Ferrandi, Daniela Monti, and Sergio Riva
2.1 Introduction 23
2.2.1 In Situ Regeneration of Reduced NAD(P)H Cofactors 24
2.2.1.1 Formate Dehydrogenase and Glucose Dehydrogenase 24
2.2.1.2 Phosphite Dehydrogenase 26
2.2.1.3 Hydrogenase 27
2.2.1.4 Glucose 6-Phosphate Dehydrogenase 29
2.2.1.5 Alcohol Dehydrogenase 29
2.2.2 In Situ Regeneration of Oxidized NAD(P)⁺ Cofactors 31
2.2.2.1 Lactate Dehydrogenase 31
2.2.2.2 NAD(P)H Oxidase 32
2.2.2.3 Alcohol Dehydrogenase 34
2.2.2.4 Mediator-Coupled Enzyme Systems 35
2.3 Conclusions 37
Acknowledgments 38
References 38

3 Monooxygenase-Catalyzed Redox Cascade Biotransformations 43
Florian Rudroff and Marko D. Mihovilovic
3.1 Introduction 43
3.1.1 Scope of this Chapter 43
3.1.2 Enzymatic Oxygenation 43
3.1.3 Effective Cofactor Recycling 44
3.1.4 In Vitro Multistep Biocatalysis 46
3.1.5 Combined In Vitro and In Vivo Multistep Biocatalysis 48
3.1.6 In Vivo Multistep Biocatalysis 51
3.1.7 Chemo-Enzymatic Cascade Reactions 56
3.1.8 Conclusion and Outlook 60
References 61

4 Biocatalytic Redox Cascades Involving ω-Transaminases 65
Robert C. Simon, Nina Richter, and Wolfgang Kroutil
4.1 Introduction 65
4.2 General Features of ω-Transaminases 66
4.2.1 Cascades to Shift the Equilibrium for Amination 67
4.3 Linear Cascade Reactions Involving ω-Transaminases 69
4.3.1 Redox and Redox-Neutral Cascade Reactions 70
4.3.2 Carbonyl Amination Followed by Spontaneous Ring Closure 75
4.3.3 Deracemization of Racemic Amines Employing Two ω-Transaminases 78
4.3.4 Cascade Reactions of ω-TAs with Lyases and C–C Hydrolases/Lipases 80
4.4 Concluding Remarks 82
References 83

5 Multi-Enzyme Systems and Cascade Reactions Involving Cytochrome P450 Monooxygenases 87
Vlada B. Urlacher and Sebastian Schulz
5.1 Introduction 87
5.1.1 Multistep Cascade Reactions 87
5.1.2 Cytochrome P450 Monooxygenases 88
5.1.3 General Overview of presented cascade types 91
5.2 Physiological Cascade Reactions Involving P450s 92
5.2.1 Multistep Oxidations Catalyzed by a Single P450 92
5.2.2 Multistep Oxidations Catalyzed by Multiple P450s 102
5.3 Artificial Cascade Reactions Involving P450s 108
5.3.1 Cascade Reactions Involving P450s and Cofactor Regenerating Enzymes 108
5.3.1.1 Cofactor Regeneration in Cell-Free Systems (In Vitro) 108
5.3.2 Cofactor Regeneration in Whole-Cell Biocatalysts 114
5.3.3 Artificial Enzyme Cascades Involving P450s and Other Enzymes 115
5.3.3.1 Artificial Multi-Enzyme Cascades with Isolated Enzymes 116
5.3.3.2 Artificial Multi-Enzyme Cascades In Vivo 120
5.4 Conclusions and Outlook 124
References 125

6 Chemo-Enzymatic Cascade Reactions for the Synthesis of Glycoconjugates 133
Ruben R. Rosencrantz, Bastian Lange, and Lothar Elling
6.1 Introduction 133
6.1.1 Impact of Glycoconjugates and Their Synthesis 133
6.1.2 Biocatalysts for the Synthesis of Glycoconjugates 134
6.1.2.1 Glycosyltransferases 134
6.1.2.2 Glycosidases and Glycosynthases 136
6.1.3 Definition of Cascade Reactions 137
6.2 Sequential Syntheses 139
6.2.1 Nucleotide Sugars 139
6.2.2 Glycoconjugates 141
6.3 One-Pot Syntheses 146
6.3.1 Nucleotide Sugars 146
6.3.2 Glycan Structures 148
6.4 Convergent Syntheses 151
6.5 Conclusion 153
Acknowledgment 153
References 153

7 Synergies of Chemistry and Biochemistry for the Production of β-Amino Acids 161
Josefa María Clemente-Jiménez, Sergio Martínez-Rodríguez, Felipe Rodríguez-Vico, and Francisco Javier Las Heras-Vázquez
7.1 Introduction 161
7.2 Dihydropyrimidinase 163
7.3 N-Carbamoyl-β-Alanine Amidohydrolase 166
7.4 Bienzymatic System for β-Amino Acid Production 173
7.5 Conclusions and Outlook 174
Acknowledgments 174
References 174
8 Racemizable Acyl Donors for Enzymatic Dynamic Kinetic Resolution

Davide Tessaro

8.1 Introduction 179
8.2 The Tools 180
8.2.1 The Enzymes 180
8.2.2 The Racemization of Acyl Compounds 182
8.3 Applications of DKR to Acyl Compounds 183
8.3.1 Base-Catalyzed Racemization 183
8.3.2 DKR of Oxoesters 185
8.3.3 DKR of Thioesters 188
8.4 Conclusions 193
Acknowledgments 194
References 194

9 Stereoselective Hydrolase-Catalyzed Processes in Continuous-Flow Mode

Zoltán Boros, Gábor Hornyánszky, József Nagy, and László Poppe

9.1 Introduction 199
9.1.1 General Remarks on Reactions in Continuous-Flow Systems 199
9.1.1.1 Stereoselective Reactions in Continuous Flow Systems 202
9.1.1.2 Analytical Applications 203
9.1.2 Nonstereoselective Enzymatic Processes 204
9.2 Enzyme-Catalyzed Stereoselective Reactions in Continuous-Flow Systems 204
9.2.1 Stereoselective Processes Catalyzed by Nonhydrolytic Enzymes 204
9.2.2 Stereoselective Processes Catalyzed by Hydrolases 207
9.2.2.1 Applicable Types of Selectivities 207
9.2.2.2 Stereoselective Hydrolytic Reactions 207
9.2.2.3 Stereoselective Acylations 211
9.2.2.4 Effects of the Operation Conditions and the Mode of Enzyme Immobilization 220
9.3 Outlook and Perspectives 222
References 222

10 Perspectives on Multienzyme Process Technology

Paloma A. Santacoloma and John M. Woodley

10.1 Introduction 231
10.2 Multienzyme System Classification 233
10.3 Biocatalyst Options 233
10.3.1 Transport Limitations 235
10.3.2 Compartmentalization 237
10.4 Reactor Options 237
11 Nitrile Converting Enzymes Involved in Natural and Synthetic Cascade Reactions

Ludmila Martínková, Andreas Stolz, Fred van Rantwijk, Nicola D’Antona, Dean Brady, and Linda G. Otten

11.1 Introduction 249
11.2 Natural Cascades 250
11.2.1 Nitrile Hydratase – Amidase 250
11.2.2 Aldoxime Dehydratase–Nitrile Hydratase–Amidase 255
11.2.3 Other Natural Cascades 256
11.3 Artificial Cascades 257
11.3.1 Nitrile Hydratase–Amidase 257
11.3.2 Nitrilase–Amidase 258
11.3.3 Hydroxynitrile Lyase–Nitrilase 259
11.3.4 Hydroxynitrile Lyase–Nitrilase–Amidase 261
11.3.5 Hydroxynitrile Lyase–Nitrile Hydratase 261
11.3.6 Oxygenase–Nitrilase 262
11.3.7 Lipase–Nitrile Hydratase–Amidase 263
11.4 Conclusions and Future Use of These Enzymes 264

Acknowledgments 265
References 265

12 Mining Genomes for Nitrilases

Ludmila Martínková

12.1 Strategies in Nitrilase Search 271
12.2 Diversity of Nitrilase Sequences 272
12.2.1 Nitrilases in Bacteria 274
12.2.2 Nitrilases in Fungi 274
12.2.3 Nitrilases in Plants 275
12.3 Structure–Function Relationships 275
12.3.1 Sequence Clustering 275
12.3.2 Analysis of Specific Regions 276
12.3.3 Analysis of Enzyme Mutants 276
12.4 Enzyme Properties and Applications 277
12.4.1 Arylacetonitrilases 277
12.4.2 Aromatic Nitrilases 278
12.4.3 Aliphatic Nitrilases 278
12.4.4 Cyanide-Transforming Enzymes 279
15.2.1 Coupling with Other Enzymes as Auxiliary Agents 317
15.2.1.1 Coupling with NAD(H)-Dependent Dehydrogenases 317
15.2.1.2 Coupling with Bovine Serum Albumin 319
15.2.1.3 Coupling with BSA and Polyphenol Oxidase 321
15.2.2 Coupling with a Nonprotein Auxiliary Agent 325
15.2.2.1 Chemoenzymatic Cascade Reaction Based on Redox Chromophore 325
15.2.2.2 Phenol Red as pH Indicator 326
15.3 Cascade Reactions for Assaying Transketolase Activity by In Vivo Selection 329
15.3.1 Biocatalyzed Synthesis of Probes 16a,b 330
15.3.2 In Vitro Studies with Wild-Type TK and Probes 16a,b by LC/MS 330
15.3.3 Detection of TK Activity in E. coli Auxotrophs from Amino Acid Precursors 331
15.4 Conclusion 334
References 335

16 Aldolases as Catalyst for the Synthesis of Carbohydrates and Analogs 339
Pere Clapés, Jesús Joglar, and Jordi Bujons
16.1 Introduction 339
16.2 Iminocyclitol and Aminocyclitol Synthesis 340
16.3 Carbohydrates and Other Polyhydroxylated Compounds 351
16.4 Conclusions 355
Acknowledgments 356
References 356

17 Enzymatic Generation of Sialoconjugate Diversity 361
Wolf-Dieter Fessner, Ning He, Dong Yi, Peter Unruh, and Marion Knorst
17.1 Introduction 361
17.2 A Generic Strategy for the Synthesis of Sialoconjugate Libraries 363
17.2.1 Synthesis of Sialic Acid Diversity 368
17.2.1.1 Neuraminic Acid Aldolase 368
17.2.1.2 Neuraminic Acid Synthase 371
17.2.2 Nucleotide Activation of Sialic Acids 372
17.2.2.1 Kinetics of Sialic Acid Activation 373
17.2.2.2 Substrate Binding Model 373
17.2.2.3 Engineering of Promiscuous CSS Variants 376
17.2.3 Sialic Acid Transfer 377
17.3 Cascade Synthesis of neo-Sialoconjugates 378
17.3.1 Choice of Sialyl Acceptor 378
17.3.2 One-Pot Two-Step Cascade Reactions 379
17.3.3 One-Pot Three-Step Cascade Reactions 383
17.3.4 Metabolic Diversification 385
17.3.5 Post-Synthetic Diversification 386
Contents

17.3.6 Biomedical Applications of Sialoconjugate Arrays 388
17.4 Conclusions 388
Acknowledgments 389
References 389

18 Methyltransferases in Biocatalysis 393
 Ludger Wessjohann, Martin Dippe, Martin Tengg, and Mandana Gruber-Khadjawi
 18.1 Introduction 393
 18.2 SAM-Dependent Methyltransferases 395
 18.2.1 Substrates 396
 18.2.2 Cofactors 400
 18.2.3 Higher Homologs and Derivatives of SAM 403
 18.2.4 Cofactor (Re)Generation 406
 18.2.5 Cascade Applications 410
 18.3 Conclusion and Outlook 415
 Abbreviations 417
 Acknowledgement 417
 References 418

19 Chemoenzymatic Multistep One-Pot Processes 427
 Harald Gröger and Werner Hummel
 19.1 Introduction: Why Chemoenzymatic Cascades and Why One-Pot Processes? 427
 19.2 Concepts of Chemoenzymatic Processes 427
 19.3 Combination of Substrate Isomerization and their Derivatization with Chemo- and Biocatalysts Resulting in Dynamic Kinetic Resolutions and Related Processes 429
 19.4 Combination of Substrate Synthesis (Without Isomerization) and Derivatization Step(s) 438
 19.4.1 One-Pot Processes with an Initial Biocatalytic Step, Followed by Chemocatalysis or a Noncatalyzed Chemical Process 439
 19.4.2 One-Pot Process with an Initial Chemo Process, Followed by Biocatalysis 443
 19.4.2.1 Combination of Noncatalyzed Organic Reactions and Biocatalysis 443
 19.4.2.2 Combination of Metal Catalysis and Biocatalysis 445
 19.4.2.3 Combination of Organocatalysis and Biocatalysis 449
 19.5 Conclusion and Outlook 453
 References 453

Index 457
List of Contributors

Miguel Alcalde
Institute of Catalysis, CSIC
Department of Biocatalysis
C/Marie Curie n°2
Cantoblanco
28049 Madrid
Spain

Antonio O. Ballesteros
Institute of Catalysis, CSIC
Department of Biocatalysis
C/Marie Curie n°2
Cantoblanco
28049 Madrid
Spain

Moira Bode
University of the Witwatersrand
Molecular Sciences Institute
School of Chemistry
PO Wits
2050 Johannesburg
South Africa

Zoltán Boros
Budapest University of Technology and Economics
Department for Organic Chemistry and Technology
Szt Gellért tér 4
H-1111 Budapest
Hungary

Dean Brady
University of the Witwatersrand
School of Chemistry, Molecular Sciences Institute
PO Wits
2050 Johannesburg
South Africa

and

CSIR Biosciences
Scientia campus
CSIR Building 18
Meiring Naude Road
Pretoria, 0184
South Africa

Jordi Bujons
Instituto de Química Avanzada de Cataluña IQAC-CSIC
Dept Chemical Biology and Molecular Modeling
Biotransformation and Bioactive Molecules Group
Jordi Girona 18-26
08034 Barcelona
Spain
Susana Camarero
CSIC, Centro de Investigaciones Biológicas
Ramiro de Maeztu 9
E-28040 Madrid
Spain

Laura Cantarella
University of Cassino and of Lazio Meridionale
Department of Civil and Mechanical Engineering
via Di Biasio 43
03043 Cassino (FR)
Italy

Maria Cantarella
University of L’Aquila
Department of Industrial and Information Engineering and Economics
via Giovanni Gronchi
n.18-Nucleo industriale di Pile
67100 L’Aquila
Italy

Franck Charmantray
Université Blaise Pascal
Institut de Chimie de Clermont-Ferrand (ICCF)
UMR CNRS 6296
BP 10448, F-63177 Aubière
France

Varsha Chhiba
CSIR Biosciences
Scientia campus
CSIR Building 18
Meiring Naude Road
Pretoria, 0184
South Africa

Pere Clapés
Instituto de Química Avanzada de Cataluña IQAC-CSIC
Dept Chemical Biology and Molecular Modeling
Biotransformation and Bioactive Molecules Group
Jordi Girona 18-26
08034 Barcelona
Spain

Josefa María Clemente-Jiménez
Universidad de Almería
Departamento de Química y Física
Carretera de Sacramento S/N
Edificio C.I.T.E. I
La Cañada de San Urbano
04120 Almería
Spain

Nicola D’Antona
CNR National Research Council of Italy
Institute of Biomolecular Chemistry
Via P. Gaifami 18
95126 Catania
Italy

Martin Dippe
Leibniz Institute of Plant Biochemistry
Weinberg 3
D-06120 Halle
Germany
Lothar Elling
RWTH Aachen University
Department of Biotechnology and
Helmholtz-Institute for
Biomedical Engineering
Worringer Weg 1
52056 Aachen
Germany

Erica Elisa Ferrandi
Istituto di Chimica del
Riconoscimento Molecolare
C. N. R.
Via Mario Bianco 9
20131 Milano
Italy

Wolf-Dieter Fessner
Technische Universität
Darmstadt
Department of Organic
Chemistry and Biochemistry
Petersenstr. 22
D-64287 Darmstadt
Germany

Eva Garcia-Ruiz
Institute of Catalysis, CSIC
Department of Biocatalysis
C/Marie Curie n°2
Cantoblanco
28049 Madrid
Spain

David Gonzalez-Perez
Institute of Catalysis, CSIC
Department of Biocatalysis
C/Marie Curie n°2
Cantoblanco
28049 Madrid
Spain

Harald Gröger
Bielefeld University
Faculty of Chemistry
Universitätsstr. 25
33615 Bielefeld
Germany

Mandana Gruber-Khadjawi
ACIB GmbH
c/o Graz University of
Technology
Institute of Organic Chemistry
Stremayrgasse 9
8010 Graz
Austria

Ning He
Technische Universität
Darmstadt
Department of Organic
Chemistry and Biochemistry
Petersenstr. 22
D-64287 Darmstadt
Germany

Laurence Hecquet
Université Blaise Pascal
Institut de Chimie de
Clermont-Ferrand (ICCF)
UMR CNRS 6296
BP 10448, F-63177 Aubière
France

Virgil Hélaine
Université Blaise Pascal
Institut de Chimie de
Clermont-Ferrand (ICCF)
UMR CNRS 6296
BP 10448, F-63177 Aubière
France
List of Contributors

Gábor Hornyánszky
Budapest University of Technology and Economics
Department for Organic Chemistry and Technology
Szt Gellért tér 4
H-1111 Budapest
Hungary

Werner Hummel
Heinrich-Heine-University of Düsseldorf
Research Centre Jülich
Institute of Molecular Enzyme Technology
Stetternicher Forst
52426 Jülich
Germany

Jesús Joglar
Instituto de Química Avanzada de Cataluña IQAC-CSIC
Dept Chemical Biology and Molecular Modeling
Biotransformation and Bioactive Molecules Group
Jordi Girona 18-26
08034 Barcelona
Spain

Marion Knorst
Technische Universität Darmstadt
Department of Organic Chemistry and Biochemistry
Petersenstr. 22
D-64287 Darmstadt
Germany

Wolfgang Kroutil
University of Graz
Institute of Chemistry
Heinrichstr. 28
8010 Graz
Austria

Bastian Lange
RWTH Aachen University
Department of Biotechnology and Helmholtz-Institute for Biomedical Engineering
Worringer Weg 1
52056 Aachen
Germany

Francisco Javier Las Heras-Vázquez
Universidad de Almería
Departamento de Química y Física
Carretera de Sacramento S/N
Edificio C.I.T.E. I
La Cañada de San Urbano
04120 Almería
Spain

Angel T. Martínez
CSIC, Centro de Investigaciones Biológicas
Ramiro de Maeztu 9
E-28040 Madrid
Spain

Sergio Martínez-Rodríguez
Universidad de Almería
Departamento de Química y Física
Carretera de Sacramento S/N
Edificio C.I.T.E. I
La Cañada de San Urbano
04120 Almería
Spain

Ludmila Martínková
Academy of Sciences of the Czech Republic
Institute of Microbiology Laboratory of Biotransformation
Videnská 1083
CZ-142 20 Prague
Czech Republic
Diana M. Mate
Institute of Catalysis, CSIC
Department of Biocatalysis
C/Marie Curie n°2
Cantoblanco
28049 Madrid
Spain

Kgama Mathiba
CSIR Biosciences
Scientia campus
CSIR Building 18
Meiring Naude Road
Pretoria, 0184
South Africa

Marko D. Mihovilovic
Vienna University of Technology
Institute of Applied Synthetic Chemistry
Getreidemarkt 9/163-OC
A-1060 Vienna
Austria

Patricia Molina-Espeja
Institute of Catalysis, CSIC
Department of Biocatalysis
C/Marie Curie n°2
Cantoblanco
28049 Madrid
Spain

Daniela Monti
Istituto di Chimica del Riconoscimento Molecolare
C. N. R.
Via Mario Bianco 9
20131 Milano
Italy

József Nagy
Budapest University of Technology and Economics
Department for Organic Chemistry and Technology
Szt Gellért tér 4
H-1111 Budapest
Hungary

Linda G. Otten
Delft University of Technology
Department of Biotechnology
Biocatalysis
Julianalaan 136
2628 BL Delft
The Netherlands

Fabrizia Pasquarelli
University of L’Aquila
Department of Industrial and Information Engineering and Economics
via Giovanni Gronchi n.18-Nucleo industriale di Pile
67100 L’Aquila
Italy

László Poppe
Budapest University of Technology and Economics
Department for Organic Chemistry and Technology
Szt Gellért tér 4
H-1111 Budapest
Hungary

Nina Richter
University of Graz
Institute of Chemistry
Heinrichstr. 28
8010 Graz
Austria
List of Contributors

Sergio Riva
Istituto di Chimica del
Riconoscimento Molecolare
C. N. R.
Via Mario Bianco 9
20131 Milano
Italy

Felipe Rodríguez-Vico
Universidad de Almería
Departamento de Química y
Física
Carretera de Sacramento S/N
Edificio C.I.T.E. I
La Cañada de San Urbano
04120 Almería
Spain

Ruben R. Rosencrantz
RWTH Aachen University
Department of Biotechnology and
Helmholtz-Institute for
Biomedical Engineering
Worringer Weg 1
52056 Aachen
Germany

Florian Rudroff
Vienna University of Technology
Institute of Applied Synthetic
Chemistry
Getreidemarkt 9/163-OC
A-1060 Vienna
Austria

Paloma A. Santacoloma
Technical University of Denmark (DTU)
Department of Chemical and
Biochemical Engineering
Søltofts Plads
2800 Kgs. Lyngby
Denmark

Sebastian Schulz
Heinrich-Heine University
Düsseldorf
Institute of Biochemistry
Universitätsstr. 1
40225 Düsseldorf
Germany

Robert C. Simon
University of Graz
Institute of Chemistry
Heinrichstr. 28
8010 Graz
Austria

Agata Spera
University of L’Aquila
Department of Industrial and
Information Engineering and
Economics
via Giovanni Gronchi
n.18-Nucleo industriale di Pile
67100 L’Aquila
Italy

Andreas Stolz
University of Stuttgart
Institute of Microbiology
Allmandring 31
70569 Stuttgart
Germany

Martin Tengg
ACIB GmbH
c/o Graz University of
Technology
Institute of Molecular
Biotechnology
Petersgasse 14
8010 Graz
Austria
Davide Tessaro
Politecnico di Milano
Department of Chemistry
Materials and Chemical Engineering “G. Natta”
Piazza Leonardo da Vinci 32
20131 Milano
Italy

and

The Protein Factory University
Center for Protein Biotechnology
via Mancinelli, 7
30131 Milano
Italy

Fred van Rantwijk
Delft University of Technology
Department of Biotechnology
Biocatalysis
Julianalaan 136
2628 BL Delft
The Netherlands

Ludger Wessjohann
Leibniz Institute of Plant Biochemistry
Weinberg 3
D-06120 Halle
Germany

Peter Unruh
Technische Universität
Darmstadt
Department of Organic Chemistry and Biochemistry
Petersenstr. 22
D-64287 Darmstadt
Germany

John M. Woodley
Technical University of Denmark (DTU)
Department of Chemical and Biochemical Engineering
Søltofts Plads
2800 Kgs. Lyngby
Denmark

Dong Yi
Technische Universität
Darmstadt
Department of Organic Chemistry and Biochemistry
Petersenstr. 22
D-64287 Darmstadt
Germany

Vlada B. Urlacher
Heinrich-Heine University
Düsseldorf
Institute of Biochemistry
Universitätsstr. 1
40225 Düsseldorf
Germany
Preface

Sustainability is one of the key issues to enhance, or at least maintain, the quality of life in our modern society. As it has been codified in 1987 in an official UN document, a “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs”. Applied to chemical processes, sustainability has generated the concept of Green Chemistry, for which guidelines have been summarized as the well-known Twelve Principles of Green Chemistry.

In Europe, this effort has been recognized at the institutional level: the European Technology Platform for Sustainable Chemistry (SusChem, http://www.suschem.org) was created in 2004 with the main objective to revitalize and inspire the European chemistry research, development, and innovation in a sustainable way. Industrial Biotechnology, also known as White Biotechnology, is one of the three pillars that support sustainable chemistry nowadays and that are expected to support it even more profoundly in the future. It is defined as “the use of enzymes and micro-organisms to make efficient and sustainable products in sectors as diverse as chemicals, plastics, food and feed, detergents, paper and pulp, textiles or bioenergy.”

Although long and reiterating, this introduction is meant to raise the awareness that the roots and the branches of biocatalysis – as well as its fruits! – are deeply embedded in modern synthetic chemistry. In fact, the majority of the above-mentioned Principles of Green Chemistry (PGC) fit perfectly with the peculiar properties and synthetic application of enzymes, which are Nature’s catalysts. The contributions collected in this book offer a convincing testimony that biocatalysis is highly qualified to contribute to the development of future sustainable technologies. Enzymes are highly efficient catalysts offering superior selectivity (PGC #9), thereby meeting criteria for atom economy by maximizing the incorporation of starting materials into the final product (PGC #2) while avoiding unnecessary and unproductive derivatization, such as the use of temporary protection groups (PGC #8). Such steps are unavoidable when using conventional synthetic chemistry approaches and require additional reagents and generate waste materials, particularly when utilizing multifunctionalized, bio-based renewable feedstocks.

Inherently, enzymes are biodegradable (PGC #10) and innocuous to the environment (PGC #3), not the least because they operate in water as a safe solvent (PGC #5) at ambient temperature and pressure, which minimizes energy consumption (PGC #6).

Cascade Biocatalysis is an effort to imitate the style of chemical conversions occurring in living beings, which are totally different from the traditional use of single enzymes by synthetic chemists in the laboratory for catalyzing isolated transformations. Instead, cells apply multistep synthetic strategies, catalyzed by several enzymes acting sequentially along a pathway, in which a product formed in one reaction \textit{in situ} becomes the substrate of the next catalyst. This is possible because of the very similar mild reaction conditions under which most enzymes operate, which facilitates their combination and allows effective strategies of reaction engineering, for example, to shift unproductive equilibria by coupling to thermodynamically favored processes for overall high conversion and economic efficiency.

This concept has recently been recognized as the major focus for a series of international symposia on \textit{Multistep Enzyme-Catalyzed Processes}, the last symposium having just been celebrated in Madrid in April 2014. Research in this area has also been coordinated within the activities of the European Union funded COST network CM0701 entitled \textit{Cascade Chemoenzymatic Processes – New Synergies Between Chemistry and Biochemistry} (2008–2012; http://www.cost-cascat.polimi.it). This handbook brings together contributions from scientists deeply involved in the activities of this COST action as well as complementary chapters on related research from additional authors, who are well known for their seminal work in this contemporary research field. The topics covered in the chapters span from examples related to integrated applications of cofactor-dependent oxidoreductases to the exploitation of transferases; from the multistep modification of the nitrile functional group to the synthesis of complex carbohydrates; and from developments of new dynamic kinetic resolution processes to intricate examples of chemoenzymatic multistep one-pot procedures.

We would like to thank all the authors who, despite their busy schedules, have participated in this project to share their expertise with the future readers of this book. Thanks are also due to Elke Maase and Stefanie Volk at Wiley-VCH Publishers, for their careful editorial support and for their continuous goad in order to meet assigned deadlines.

Finally, we hope that our readers will find this volume useful as a stimulating source of ideas for their own research and/or teaching activities.

\textit{Sergio Riva}

\textit{Wolf-Dieter Fessner}
1 Directed Evolution of Ligninolytic Oxidoreductases: from Functional Expression to Stabilization and Beyond

Eva García-Ruiz, Diana M. Mate, David Gonzalez-Perez, Patricia Molina-Espeja, Susana Camarero, Angel T. Martínez, Antonio O. Ballesteros, and Miguel Alcalde

1.1 Introduction

The ligninolytic enzymatic consortium, formed mainly by nonspecific oxidoreductases (laccases, peroxidases, and \(\text{H}_2\text{O}_2 \)-supplying oxidases), is a potentially powerful multipurpose tool for industrial and environmental biotechnology. In nature, these enzymes are typically produced by basidiomycete white-rot fungi that are involved in lignin decay. Thanks to their broad substrate specificity, high redox potential, and minimal requirements, these enzymes have many potential applications in the field of green chemistry, including the production of biofuels, bioremediation, organic syntheses, pulp biobleaching, food and textile industries, and the design of bionanodevices. The implementation of this enzymatic armoury in different biotechnological sectors has been hampered by the lack of appropriate molecular instruments (including heterologous hosts for directed evolution) with which to improve their properties. Over the last 10 years, a wealth of directed evolution strategies in combination with hybrid approaches has emerged in order to adapt these oxidoreductases to the drastic conditions associated with many biotechnological settings (e.g., high temperatures, the presence of organic co-solvents, extreme pHs, the presence of inhibitors). This chapter summarizes all efforts and endeavors to convert these ligninolytic enzymes into useful biocatalysts by means of directed evolution: from functional expression to stabilization and beyond.

1.2 Directed Molecular Evolution

Enzymes are versatile biomolecules that exhibit a large repertory of functions acquired over millions of years of natural evolution. Indeed, they are the fastest known catalysts (accelerating chemical reactions as much as \(10^{19} \)-fold) and are environmentally friendly molecules, working efficiently at mild temperatures, in water, and releasing few by-products. Moreover, they can exhibit high enantioselectivity and chemoselectivity. Nonetheless, when an enzyme is removed...
Directed Evolution of Ligninolytic Oxidoreductases

from its natural environment and introduced into a specific biotechnological location (e.g., the transformation of a hydrophobic compound in the presence of co-solvents or at high temperatures), its molecular structure may not tolerate the extreme operational conditions and may unfold becoming inactive. Unfortunately, the enzymes that cells use to regulate strict metabolic pathways and that promote fitness and survival in nature are not always applicable to the harsh requirements of many industrial processes.

The development of the polymerase chain reaction (PCR) in the early 1980s heralded a biotechnological revolution for protein engineers, allowing us for the first time to manipulate and design enzymes by site-directed mutagenesis supported by known protein structures: the so-called rational design. However, further advances were frustrated owing to the limited understanding of protein function and the lack of protein structures available at the time. Nevertheless, the following decade saw a second biotechnological revolution with the development of directed molecular evolution. This powerful protein engineering tool does not require prior knowledge of protein structure to enhance the known features or to generate novel enzymatic functions, which are not generally required in natural environments. The key events of natural evolution (random mutation, DNA recombination, and selection) are recreated in the laboratory, permitting

![Figure 1.1 Directed molecular evolution.](image)

The basic premises to carry out a successful directed evolution experiment are (i) a robust heterologous expression system (typically *S. cerevisiae* or *E. coli*); (ii) a reliable high-throughput (HT)-screening assay; and (iii) the use of different molecular tools for the generation of DNA diversity.
1.3 The Ligninolytic Enzymatic Consortium

Lignin is the most abundant natural aromatic polymer and the second most abundant component of plant biomass after cellulose. As a structural part of the plant cell wall, lignin forms a complex matrix that protects cellulose and hemicellulose chains from microbial attack and hence from enzymatic hydrolysis. This recalcitrant and highly heterogeneous biopolymer is synthesized by the dehydrogenative polymerization of three precursors belonging to the \(p \)-hydroxycinnamyl alcohol group: \(p \)-coumaryl, coniferyl, and sinapyl alcohols [9]. As one-third of the carbon fixed as lignocellulose is lignin, its degradation is considered a key step in the recycling of carbon in the biosphere and in the use of the plant biomass for biotechnological purposes [10, 11]. Lignin is modified and degraded to different extents by a limited number of microorganisms, mainly filamentous fungi and bacteria. Lignin degradation by bacteria is somewhat limited and much slower than that mediated by filamentous fungi [12, 13]. Accordingly, the only organisms capable of completing the mineralization of lignin are the white-rot fungi, which produce a white-colored material upon delignification because of the enrichment in cellulose [14, 15].

Through fungal genome reconstructions, recent studies have linked the formation of coal deposits during the Permo-Carboniferous period (~260 million years ago) with the nascent and evolution of white-rot fungi and their lignin-degrading enzymes [16]. Lignin combustion by white-rot fungi involves a very complex extracellular oxidative system that includes high-redox potential laccases (HRPLs), peroxidases and unspecific peroxygenases (UPOs), \(\text{H}_2\text{O}_2 \)-supplying oxidases and auxiliary enzymes, as well as radicals of aromatic compounds and oxidized metal ions that act as both diffusible oxidants and electron carriers [12, 13, 15, 17]. Although the role of each component of the consortium has been studied extensively, many factors remain to be elucidated (Figure 1.2).

Laccases typically oxidize the phenolic units of lignin. Lignin peroxidases (LiPs) oxidize both nonphenolic lignin structures and veratryl alcohol (VA), a metabolite synthesized by fungi that helps LiP to avoid inactivation by \(\text{H}_2\text{O}_2 \) and whose radical...
Directed Evolution of Ligninolytic Oxidoreductases
cation may act as a redox mediator [20]. Manganese peroxidases (MnPs) generate Mn$^{3+}$, which upon chelation with organic acids (e.g., oxalate synthesized by fungi) attacks phenolic lignin structures; in addition, MnP can also oxidize nonphenolic compounds via lipid peroxidation [21]. Versatile peroxidases (VPs) combine the catalytic activities of LiP, MnP, and generic peroxidases to oxidize phenolic and nonphenolic lignin units [22]. Some fungal oxidases produce the H$_2$O$_2$ necessary for the activity of peroxidases. Among them, aryl-alcohol oxidase (AAO) transforms benzyl alcohols to the corresponding aldehydes; glyoxal oxidase (GLX) oxidizes glyoxal producing oxalate, which in turn chelates Mn$^{3+}$; and then methanol oxidase (MOX) converts methanol into formaldehyde; all the above oxidations are coupled with O$_2$ reduction of H$_2$O$_2$. Other enzymes such as cellobiose dehydrogenase (CDH) have been indirectly implicated in lignin degradation. This is because of CDH ability to reduce both ferric iron and O$_2$-generating hydroxyl radicals via Fenton reaction. These radicals are strong oxidizers that act as redox mediators playing a fundamental role during the initial stages of lignin polymer decay, when the small pore size of the plant cell wall prevents the access of fungal enzymes [23]. The same is true for laccases, whose substrate spectrum can be broadened in the presence of natural mediators to act on nonphenolic parts of lignin [24].

High-redox potential laccases and peroxidases/peroxygenases are of great biotechnological interest [25, 26]. With minimal requirements and high redox potentials (up to +790 mV for laccases and over +1000 mV for peroxidases), these enzymes can oxidize a wide range of substrates, finding potential applications in a variety of areas, which are as follows:

Figure 1.2 General view of the plant cell wall and the action of the ligninolytic enzymatic consortium. The lignin polymer is oxidized by white-rot fungi laccases and peroxidases, producing nonphenolic aromatic radicals (1) and phenoxy radicals (2). Nonphenolic aromatic radicals can suffer nonenzymatic modifications such as aromatic ring cleavage (3), ether breakdown (4), C$_a$–C$_b$ cleavage (5), and demethoxylation (6). The phenoxy radicals (2) can repolymerize on the lignin polymer (7) or be reduced to phenolic compounds by AAO (8) (concomitantly with aryl alcohol oxidation). These phenolic compounds can be re-oxidized by fungal enzymes (9). In addition, phenoxy radicals can undergo C$_a$–C$_b$ cleavage to produce p-quinones (10). Quinones promote the production of superoxide radicals via redox cycling reactions involving QR, laccases, and peroxidases (11, 12). The aromatic aldehydes released from C$_a$–C$_b$ cleavage, or synthesized by fungi, are involved in the production of H$_2$O$_2$ via another redox cycling reaction involving AAD and AAO (13, 14). Methanol resulting from demethoxylation of aromatic radicals (6) is oxidized by MOX to produce formaldehyde (15). Fungi also synthesize glyoxal, which is oxidized by GLX to produce H$_2$O$_2$ and oxalate (16), which in turn chelate Mn$^{3+}$ ions produced by MnP (17). The Mn$^{3+}$ chelated with organic acids acts as a diffusible oxidant for the oxidation of phenolic compounds (2). The reduction of ferric ions present in wood is mediated by the superoxide radical (18) and they are re-oxidized by the Fenton reaction (19) to produce hydroxyl radicals, which are very strong oxidizers that can attack the lignin polymer (20). AAO, aryl-alcohol oxidase; AAD, aryl-alcohol dehydrogenase; GLX, glyoxal oxidase; LiP, lignin peroxidase; MnP, manganese peroxidase; MOX, methanol oxidase; QR, quinone reductase; VP, versatile peroxidase. (Figure adapted from [18, 19].) (Source: Bidlack, J.M. et al. 1992 [18], Fig. 1, p. 1. Reproduced with permission of the Oklahoma Academy of Science.)
1 Directed Evolution of Ligninolytic Oxidoreductases

- The use of lignocellulosic materials (e.g., agricultural wastes) in the production of second-generation biofuels (bioethanol, biobutanol) or the manufacture of new cellulose-derived and lignin-derived value-added products.
- The organic synthesis of drugs and antibiotics, cosmetics and complex polymers, and building blocks.
- In nanobiotechnology as (i) biosensors (for phenols, oxygen, hydroperoxides, azides, morphine, codeine, catecholamines, or flavonoids) for clinical and environmental applications; and (ii) biofuel cells for biomedical applications.
- In bioremediation: oxidation of polycyclic aromatic hydrocarbons (PAHs), dioxins, halogenated compounds, phenolic compounds, benzene derivatives, nitroaromatic compounds, and synthetic organic dyes.
- The food industry: drink processing and bakery products.
- The paper industry: pulp biobleaching, pitch control, manufacture of mechanical pulps with low energy cost, and effluent treatment.
- The textile industry: remediation of dyes in effluents, textile bleaching (e.g., jeans), modification of dyes and fabrics, detergents.

A few years ago, the engineering and improvement of ligninolytic oxidoreductases was significantly hampered by the lack of suitable heterologous hosts to carry out directed evolution studies. Fortunately, things have changed and several reliable platforms for the directed evolution of ligninolytic peroxidases, peroxygenases, and several medium-redox potential laccases and high-redox potential laccases (HRPLs) have been developed using the budding yeast *Saccharomyces cerevisiae*. These advances have allowed us, for the first time, to specifically tailor ligninolytic oxidoreductases to address new challenges.

1.4 Directed Evolution of Laccases

Laccases (EC 1.10.3.2) are extracellular glycoproteins that belong to the blue multicopper oxidase family (along with ascorbate oxidase, ceruloplasmin, nitrite reductase, bilirubin oxidase, and ferroxidase). Widely distributed in nature, they are present in plants, fungi, bacteria, and insects [27, 28]. Laccases are *green* catalysts, which are capable of oxidizing dozens of compounds using O$_2$ from air and releasing H$_2$O as their sole by-product [29–31]. These enzymes harbor one type I copper (T1), at which the oxidation of the substrates takes place, and a trinuclear copper cluster (T2/T3) formed by three additional coppers, one T2 and two T3s, at which O$_2$ is reduced to H$_2$O. The reaction mechanism resembles a battery, storing electrons from the four monovalent oxidation reactions of the reducing substrate required to reduce one molecule of oxygen to two molecules of H$_2$O. Laccases catalyze the transformation of a wide variety of aromatic compounds, including ortho- and para-diphenols, methoxy-substituted phenols, aromatic amines, benzenothiols, and hydroxyindols. Inorganic/organic metal compounds are also substrates of laccases, and it has been reported that Mn$^{2+}$ is oxidized by laccase to form Mn$^{3+}$, and organometallic compounds such