CODE OF PRACTICE FOR PROJECT MANAGEMENT
FOR CONSTRUCTION AND DEVELOPMENT

FIFTH EDITION

The first edition of the Code of Practice for Project Management for Construction and Development, published in 1992, was groundbreaking in many ways. Now in its fifth edition, prepared by a multi-institute task force coordinated by the CIOB and including representatives from RICS, RIBA, ICE, APM and CIC, it continues to be the authoritative guide and reference to the principles and practice of project management in construction and development.

Good project management in construction relies on balancing the key constraints of time, quality and cost in the context of building functionality and the requirements for sustainability within the built environment. Thoroughly updated and restructured to reflect the challenges that the industry faces today, this edition continues to drive forward the practice of construction project management. The principles of strategic planning, detailed programming and monitoring, resource allocation and effective risk management, widely used on projects of all sizes and complexity, are all fully covered.

The integration of Building Information Modelling at each stage of the project life is a feature of this edition. In addition, the impact of trends and developments such as the internationalisation of construction projects and the drive for sustainability are discussed in context.

Code of Practice will be of particular value to clients, project management professionals and students of construction, as well as to the wider construction and development industries. Much of the information will also be relevant to project management professionals operating in other commercial spheres.

About the CIOB

The Chartered Institute of Building is at the heart of a management career in construction. It is the world’s largest and most influential professional body for construction management and leadership, with a Royal Charter to promote the science and practice of building and construction for the benefit of society. With over 48,000 members worldwide, the CIOB is the international voice of the building professional.

Also Available

Guide to Good Practice in the Management of Time in Complex Projects
Chartered Institute of Building
Paperback, 978-1-4443-3493-7

The Design Manager’s Handbook
John Eynon
Paperback, 978-0-470-67402-4

William Godwin
Paperback, 978-0-470-65572-6

wiley.com/go/construction
Code of Practice for Project Management for Construction and Development
Contents

Foreword xi
Acknowledgements xiii
Working group for the revision of the *Code of Practice for Project Management* – Fifth Edition xv
List of tables xvii
List of figures xix
List of diagrams – Briefing Notes xxi

Introduction

Project management 1
Definitions 1
Characteristics of construction projects 2
Characteristics of construction project management 3
Adding value 4
Scope of project management 4
Project lifecycle 4

CHAPTER 1

Inception 11
Stage checklist 11
Stage process and outcomes 11
The client 12
 - *Client obligations and responsibilities* 12
 - *Client project objectives* 12
 - *Client engagement: Internal team* 12
Project manager 13
 - *Project manager’s objectives* 13
 - *Project manager’s duties* 14
 - *Project manager’s appointment* 14
Project mandate 14
Environmental mandate 16
BIM mandate 17
BN 1.01 Leadership in project management 19
BN 1.02 Typical terms of engagement: Project manager 21
BN 1.03 Typical project mandate outline 26
BN 1.04 Project handbook 27
BN 1.05 Government Soft Landings 45
CHAPTER 2 Feasibility

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage checklist</td>
<td>47</td>
</tr>
<tr>
<td>Stage process and outcomes</td>
<td>47</td>
</tr>
<tr>
<td>Client’s objectives</td>
<td>48</td>
</tr>
<tr>
<td>Outline project brief</td>
<td>48</td>
</tr>
<tr>
<td>Feasibility studies</td>
<td>48</td>
</tr>
<tr>
<td>Energy in a building environment</td>
<td>51</td>
</tr>
<tr>
<td>Lifecycle costing and sustainability</td>
<td>52</td>
</tr>
<tr>
<td>Sustainability in the built environment</td>
<td>52</td>
</tr>
<tr>
<td>Towards sustainable development</td>
<td>53</td>
</tr>
<tr>
<td>Responsible sustainable development</td>
<td>54</td>
</tr>
<tr>
<td>Achieving sustainable development</td>
<td>55</td>
</tr>
<tr>
<td>Site selection and acquisition</td>
<td>56</td>
</tr>
<tr>
<td>Project brief</td>
<td>58</td>
</tr>
<tr>
<td>Design brief</td>
<td>58</td>
</tr>
<tr>
<td>Funding and investment appraisal</td>
<td>60</td>
</tr>
<tr>
<td>Development planning and control</td>
<td>60</td>
</tr>
<tr>
<td>Stakeholder identification</td>
<td>61</td>
</tr>
<tr>
<td>Business case</td>
<td>61</td>
</tr>
<tr>
<td>Approval to proceed</td>
<td>61</td>
</tr>
<tr>
<td>BIM brief</td>
<td>62</td>
</tr>
<tr>
<td>BN 2.01 Key sustainability issues</td>
<td>63</td>
</tr>
<tr>
<td>BN 2.02 Environmental sustainability assessment methods</td>
<td>67</td>
</tr>
<tr>
<td>BN 2.03 Guidance on environmental impact assessment</td>
<td>72</td>
</tr>
<tr>
<td>BN 2.04 Site investigation</td>
<td>79</td>
</tr>
<tr>
<td>BN 2.05 Business case development</td>
<td>82</td>
</tr>
</tbody>
</table>

CHAPTER 3 Strategy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage checklist</td>
<td>85</td>
</tr>
<tr>
<td>Stage process and outcomes</td>
<td>85</td>
</tr>
<tr>
<td>Client’s objectives</td>
<td>86</td>
</tr>
<tr>
<td>Project governance</td>
<td>86</td>
</tr>
<tr>
<td>Strategy outline and development</td>
<td>89</td>
</tr>
<tr>
<td>Project organisation and control</td>
<td>90</td>
</tr>
<tr>
<td>Project team structure</td>
<td>91</td>
</tr>
<tr>
<td>Selecting the project team</td>
<td>91</td>
</tr>
<tr>
<td>Project management procedures and systems</td>
<td>92</td>
</tr>
<tr>
<td>Information and communication technology</td>
<td>92</td>
</tr>
<tr>
<td>Project planning</td>
<td>94</td>
</tr>
<tr>
<td>Cost planning and controls</td>
<td>94</td>
</tr>
<tr>
<td>Cost control</td>
<td>96</td>
</tr>
<tr>
<td>Design management process (managing the design delivery)</td>
<td>97</td>
</tr>
<tr>
<td>Risk identification and management</td>
<td>98</td>
</tr>
<tr>
<td>Environmental management and controls</td>
<td>98</td>
</tr>
<tr>
<td>Environmental statements</td>
<td>98</td>
</tr>
<tr>
<td>Contractor’s environmental management systems</td>
<td>98</td>
</tr>
<tr>
<td>Stakeholder management</td>
<td>99</td>
</tr>
</tbody>
</table>
Contents

Quality management 99
Commissioning strategy 100
Selection and appointment of project team consultants 100
Collaborative arrangements 102
Framework arrangements 102
Private public partnership/private finance initiative (PPP/PFI) 102
Procurement strategy 103
 Traditional 103
 Design and build 104
 Management contracting 104
 Construction management 104
 Hybrid procurement approaches 104
 Innovative form of procurement 105
Characteristics of procurement options 106
Procuring the supply chain 106
Responsible sourcing 106
Tender procedure 106
Procurement under EU directives 108
e-Procurement 108
Employer’s requirement document 108
Facility management strategy/considerations 109
Project execution plan 109
 Checklist for the PEP 110
 Essential contents 110
 Approval to PEP 111
BIM strategy 111
BN 3.01 Health and safety in construction including CDM guidance 113
BN 3.02 Guidance on value management 121
BN 3.03 Project risk assessment 124
BN 3.04 Information and communication technology 131
BN 3.05 Building information modelling 144
BN 3.06 Project planning 153
BN 3.07 Characteristics of different procurement options 154
BN 3.08 Framework agreements 158
BN 3.09 Procedure for the selection and appointment of consultants 160
BN 3.10 Selection and appointment of contractors 163
BN 3.11 Guidance on EU procurement rules 177
BN 3.12 Project governance 180
BN 3.13 Change management 184
BN 3.14 Strategic collaborative working 187
BN 3.15 PPP/PFI arrangements 193
BN 3.16 Guidance on e-procurement 209
BN 3.17 Design management process 213

Pre-construction 217
Stage checklist 217
Stage process and outcomes 217
Design process 218
Managing the design delivery 218
Contents

- Project coordination and progress meetings 219
- Design team meetings 219
- Managing design team activities 219
- Statutory consents 221
- Planning approval
 - Planning consultants 221
 - Legislation 222
 - Timing 222
 - Negotiations 222
 - Presentations 222
 - Refusal 222
 - Appeal 222
 - Enforcement powers 222
- Other statutory consents 223
- Building Regulations 223
- Disability Discrimination Act (DDA) 224
- Impact of utilities on project planning/scheduling 224
- Technical design and production information 224
- Value management 226
- Contract award 226
- Pre-start meeting 226
- Agenda items at pre-start meeting
 - Introduction 227
 - Contract 227
 - Contractors’ matters 227
 - Resident engineer/clerk of works’ matters 228
 - Consultants’ matters 228
 - Quantity surveyor’s matters 228
 - Communications and procedures 229
 - Meetings 229
- Contractual arrangements 229
- Establish site 231
- Control and monitoring systems 232
- Contractor’s working schedule 233
- Value engineering (related to construction methods) 233
- Management of the supply chain 234
- Risk management 235
- Payments 235
- Benchmarking 236
- Change and variation control 236
- Dispute resolution 238
- BIM strategy 239
- BN 4.01 Regular report to client 241
- BN 4.02 Dispute resolution methods 243
- BN 4.03 Implications of Housing Grants, Construction and Regeneration Act 1996, Amended 2011 247
- BN 4.04 Typical meetings and their objectives 248

CHAPTER 5: Construction

- Stage checklist 251
- Stage process and outcomes 251
Contents

Project team duties and responsibilities 252
 Client 252
 Project manager 252
 Design team 253
 Quantity surveyor 253
 Contractor 253
 Construction manager 254
 Management contractor 254
 Subcontractors and suppliers 254
 Other parties 255
Performance monitoring 255
Health, safety and welfare systems 256
Environmental statements 256
Contractor’s environmental management systems 257
Compliance with site waste management plan regulations 2008 257
Monitoring of the works 258
Reporting 258
Public liaison and profile 259
Quality management systems 259
Commissioning and production of operation and maintenance manuals
 Commissioning 259
 Operation and maintenance manuals 260
 BIM strategy 260
BN 5.01 Performance management plan 261

CHAPTER 6

Testing and commissioning 263
 Stage checklist 263
 Stage processes and outcomes 263
 Project manager’s duties and responsibilities 264
 Commissioning generally 264
 Procurement of commissioning services 264
 Smaller projects 264
 Larger projects 265
 Role of the commissioning contractor 265
 The testing and commissioning process and its programming 266
 Differences between testing and commissioning
 Testing 267
 Commissioning 268
 Performance testing 268
 Main tasks to be undertaken 268
 Pre-construction 268
 Construction and post-construction 270
 Seasonal commissioning 270
 Commissioning documentation
 O&M manual (building owner’s manual) 273
 As-built documentation 274
 Health and safety file 274
 Occupier’s handbook 275
 BIM strategy 275
CHAPTER 7

Completion, handover and operation

BN 6.01 Contents of the health and safety file 277
BN 6.02 Contents of building owner's manual 280
BN 6.03 Contents of occupier's handbook 283

BN 7.01 Client commissioning checklist 297
BN 7.02 Introduction to facilities management 299
BN 7.03 Engineering services commissioning checklist 300
BN 7.04 Engineering services commissioning documents 302
BN 7.05 Handover checklists 303
BN 7.06 Practical completion checklist 306

CHAPTER 8

Post-completion review and in use

BN 8.01 Post-occupancy evaluation process chart 313

Glossary 315
Bibliography 319
Past working groups of Code of Practice for Project Management 325
Index 329
The first edition of this *Code of Practice*, published in 1992, set out a job specification for a project manager and provided guidance on the project manager’s role. Since then project management has become an integral part of the construction industry and been responsible for its increased reliability and quality of product.

The next few decades experienced some significant changes within the industry with much focus towards changing our culture and communication. The interaction between the key participants in this industry, which produces many spectacular projects with increasing levels of complexity and technological prowess, continue to evolve around the necessity to deliver projects within an agreed budget, to a level of acceptable quality and within an agreed time scale.

The fourth edition, published in 2010, captured a range of themes across the industry. In this fifth edition, prepared in collaboration with a number of key professional bodies, the entire document has been overhauled to make it more contemporary while maintaining the integrity and rationale of the role of a project manager and project management in context of the construction industry.

Following the spectacularly successful delivery of the Olympics (London 2012) and continuing with the UK Crossrail project, construction is at the forefront of successful project management. This fifth edition, although developed specifically for the UK construction industry, will continue to satisfy the ever increasing demand for an authoritative document on this subject in other parts of the world.

I strongly commend this valuable multi-institutional code of practice to all the industry’s clients, to practising project managers and indeed to all students of the subject and their mentors.

Jack Pringle, PPRIBA Hon AIA FRSA DipArch BA (Hons)
Principal, Managing Director
Pringle Brandon Perkins+Will
Acknowledgements

The fifth edition of the Code of Practice, under the stewardship of David Woolven FCIOB, has strived to keep pace, and in places perhaps steer the directions ahead, in the construction industry which has been at the centre of economic regeneration and development across the globe.

In keeping with the fourth edition, the fifth edition has also been prepared by a broad representation of the industry, with contributions from built environment specialists and interdisciplinary cooperation between professionals within the built environment. I would like to take this opportunity to thank the many people who have helped with the fifth edition. A list of participants and the organisations represented is included in this book.

Specific note of thanks must go to Piotr Nowak, who has been ably and patiently assisted by Una Mair throughout the delivery process, for coordinating all the disparate elements of the review of the Code of Practice by maintaining the information flow and also for managing the digitalisation of all the figures and diagrams.

I would also like to thank Arnab Mukherjee, FCIOB, who led the editorial and drafting team, for the successful delivery of this document.

Chris Blythe
Chief Executive
Chartered Institute of Building
Working group for the revision of the Code of Practice for Project Management – Fifth Edition

Saleem Akram, BEng (Civil) MSc (CM) PE FIE MAPM FlоД EurBE FCIOB
Colin Beane
Sarah Beck MRICS MAPM
Andrew Boyle
Shaun Darley
John Eynon
Dr Chung-Chin Kao
Una Mair

Gavin Maxwell-Hart BSc CEng FICE FIHT MCIarb FCIOB
Alan Midgley
Arnab Mukherjee BEng(Hons) MSc (CM) MBA MAPM FCIOB
Paul Nash MSc FCIOB
Piotr Nowak MSc Eng.
Dr Milan Radosavljevic UDIG MIZS-CEng ICIOB
Eric Stokes MCIoB FHEA MRIN
David Woolven MSc FCIOB

Roger Waterhouse MSc FRICS FCIOB FAPM

Director, Construction Innovation and Development, CIOB
Gardiner & Theobald
Royal Institute of British Architects
Tesco
Open Water Consulting
Innovation & Research Manager, CIOB
Scholarships & Faculties Officer, CIOB - Group’s Secretary
CIOB Trustee
Institution of Civil Engineers
ARUP
Technical Editor
Turner & Townsend
Development Manager, CIOB
University of the West of Scotland
Salford University
Chair Working Group
University College London
College of Estate Management,
Royal Institution of Chartered Surveyors,
Association for Project Management

The following also contributed in development of the fifth edition of the Code of Practice for Project Management

Andrew Barr
Richard Biggs MSc FCIOB MAPM MCI
Richard Humphrey FCIOB FRSA FCMI FlоД MAPM PGCert FHEA EurBE
Vaughan Burnand
Professor Farzad Khosrowshahi FCIOB

Dean Hyndman
Dr Sarah Peace BA (Hons) MSc
Dr Aeli Roberts MSc GDL BVC ICIoB
Dr Paul Sayer

Davis Langdon
Construction Industry Council
Northumbria University at Newcastle
Chair, Health & Safety Advisory Committee
Head of School of the Built Environment & Engineering
Faculty of Arts, Environment & Technology, Leeds
Metropolitan University
URS
Consultant, CIOB
University College London
Publisher, Wiley-Blackwell, John Wiley & Sons Ltd, Oxford
List of tables

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Definitions of project management</td>
<td>2</td>
</tr>
<tr>
<td>0.2</td>
<td>Specific key decisions</td>
<td>7</td>
</tr>
<tr>
<td>1.1</td>
<td>Duties of project manager</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Contents for project brief</td>
<td>59</td>
</tr>
<tr>
<td>2.2</td>
<td>Client's decision prompt list</td>
<td>62</td>
</tr>
<tr>
<td>3.1</td>
<td>Mapping common causes of project failure</td>
<td>88</td>
</tr>
<tr>
<td>3.2</td>
<td>Appointment of the project team consultants</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>Specimen agenda for pre-start meeting</td>
<td>230</td>
</tr>
<tr>
<td>4.2</td>
<td>Value engineering job plan</td>
<td>234</td>
</tr>
<tr>
<td>4.3</td>
<td>Result accelerators</td>
<td>234</td>
</tr>
<tr>
<td>4.4</td>
<td>Changes in the client’s brief: checklist</td>
<td>238</td>
</tr>
</tbody>
</table>
List of figures

0.1 Key project constraints ... 4
0.2 Project lifecycle .. 5
 2.1 Outline project brief .. 49
 2.2 Development of project brief from objectives 51
 2.3 A summary of sustainable development 56
 2.4 Site selection and acquisition 57
 2.5 Relationship between scope for change and cost of change 59
 2.6 Stakeholder mapping: the power/interest matrix 61
 3.1 Stages of the project development 86
 3.2 Typical project team structure 87
 3.3 Elements of the strategy stage 89
 3.4 Examples of (a) construction expenditure graph and (b) cash flow histogram .. 95
 3.5 Tender procedure .. 107
 4.1 Design team activities ... 220
 4.2 Development of design proposals 221
 4.3 Coordination of design work up to design freeze 225
 4.4 Changes in the client’s brief 237
 6.1 Small project installation testing and commissioning process and sign off 266
 6.2 Large project installation testing and commissioning process and sign off 267
 6.3 Project drawing issue flowchart 269
 6.4 Services installation, testing and commissioning data sheets flowchart 271
 6.5 Specialist maintenance contracts flowchart 272
 7.1 Occupation: structure for implementation 292
 7.2 Occupation: scope and objectives 293
 7.3 Occupation: review and methodology 294
 7.4 Occupation: organisation and control 295
List of diagrams – Briefing Notes

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoring system for the Code for Sustainable Homes</td>
<td>70</td>
</tr>
<tr>
<td>Calculating the total points score</td>
<td>70</td>
</tr>
<tr>
<td>Site investigation activities</td>
<td>79</td>
</tr>
<tr>
<td>Stages of VM study</td>
<td>123</td>
</tr>
<tr>
<td>Mitigation action plan</td>
<td>127</td>
</tr>
<tr>
<td>Project risk assessment checklist</td>
<td>128</td>
</tr>
<tr>
<td>Project planning</td>
<td>153</td>
</tr>
<tr>
<td>Selecting a procurement route</td>
<td>157</td>
</tr>
<tr>
<td>Framework agreements</td>
<td>159</td>
</tr>
<tr>
<td>Call-off stage</td>
<td>159</td>
</tr>
<tr>
<td>Pre-tender process</td>
<td>163</td>
</tr>
<tr>
<td>Selection questionnaire</td>
<td>165</td>
</tr>
<tr>
<td>Pre-qualification interview agenda</td>
<td>167</td>
</tr>
<tr>
<td>Tendering process checklist</td>
<td>168</td>
</tr>
<tr>
<td>Tender document checklist</td>
<td>169</td>
</tr>
<tr>
<td>Mid-tender interview agenda</td>
<td>170</td>
</tr>
<tr>
<td>Returned tender review process</td>
<td>171</td>
</tr>
<tr>
<td>Returned tender bids record sheet</td>
<td>172</td>
</tr>
<tr>
<td>Post-tender interview agenda</td>
<td>173</td>
</tr>
<tr>
<td>Final tender evaluation report</td>
<td>174</td>
</tr>
<tr>
<td>Approval to place contract order</td>
<td>175</td>
</tr>
<tr>
<td>Final general checklist</td>
<td>176</td>
</tr>
<tr>
<td>Design development control sheet</td>
<td>185</td>
</tr>
<tr>
<td>Change order request form</td>
<td>186</td>
</tr>
<tr>
<td>Essential actions of project partnering</td>
<td>188</td>
</tr>
<tr>
<td>Generic risk transfer model in PPP/PFI projects</td>
<td>204</td>
</tr>
<tr>
<td>CIPS e-procurement lifecycle</td>
<td>210</td>
</tr>
<tr>
<td>DMTCQ – a framework for design management</td>
<td>214</td>
</tr>
</tbody>
</table>
Introduction

Project management

Project management has come a long way since its modern introduction to construction projects in the late 1950s. Now, it is an established discipline which executively manages the full development process, from the client’s idea to funding coordination and acquirement of planning and statutory controls approval, sustainability, design delivery, through to the selection and procurement of the project team, construction, commissioning, handover, review, to facilities management coordination.

This Code of Practice positions the project manager as the client’s representative, although the responsibilities may vary from project to project; consequently, project management may be defined as ‘the overall planning, co-ordination and control of a project from inception to completion aimed at meeting a client’s requirements in order to produce a functionally and financially viable project that will be completed safely, on time, within authorised cost and to the required quality standards’.

The fifth edition of this Code of Practice is the authoritative guide and reference to the principles and practice of project management in construction and development. It will be of value to clients, project management practices and educational establishments and students, and to the construction and development industries. Much of the information contained in the Code of Practice will also be relevant to project management practitioners operating in other commercial spheres.

Definitions

There are many definitions in existence for the term ‘Project Management’. The CIOB, in this Code of Practice, and in all other publications, uses the following definition:

Project management

The overall planning, coordination and control of a project from inception to completion aimed at meeting a client’s requirements in order to produce a functionally viable and sustainable project that will be completed safely, on time, within authorised cost and to the required quality standards.

Table 0.1 summarises a number of definitions of project management, as practiced by a selection of leading organisations involved in project management within the construction and building industry in UK.
Characteristics of construction projects

Construction projects have inherent features that make them highly complicated enterprises. These features are characterised by high levels of complexity, uncertainty and uniqueness and include:

- Complexity created by the fragmentation of the organisational mechanism by which most projects are delivered. Usually the project delivery team is external to the client organisation, there is a separation between the designers and the constructors and the requirement for a wide range of specialist knowledge and skills demands the involvement of a large number of consultants, contractors, suppliers and statutory bodies.

- Complexity of the technology involved in the construction of modern buildings.

- Logistical complexity created by the locational aspects of projects – the site being a fixed location means that everything else must be taken to it. It is likely logistical complexity will be increased in a highly urbanised country where the pressure on land means the building footprint is likely to be the same as the site area, leaving minimal working space.

1Definition as available at http://www.apm.org.uk/content/project-management (accessed November 2012).
2Definition obtained from OGC Glossary of Terms & Definitions v06 March 2008 – at the time of publication the document is available at www.gov.uk through publications of the Department of Business, Innovation & Skills.
3Definition obtained from ICB 3.0 – page 127.
• Uncertainty created by exposure to the extremes of the weather.

• Uniqueness of each project; the project organisation and the participants vary, site conditions are different, technology adopted for the building varies, external influences on the project will be different and client constraints will be different.

• Uncertainty caused by the time necessary for the project life cycle. The longer the period of time, the greater the opportunity for the project to be impacted by changing external circumstances, such as economic conditions, or by changing client requirements.

Further pressures are created by a client needing to commit to key criteria such as the project duration and cost budget at an early stage, often before the full implications of what the project actually is about and how it is to be implemented have been developed in detail.

Most participants to the project are involved because they are offering a service or product as part of their business activity. It is usual practice for this involvement to be a formal contractual agreement with an agreed fixed, lump sum price based on a definition of the service or product required. Throughout their contribution to the project, participants are therefore balancing protecting their commercial position with working towards helping to achieve the overall project objectives. This relationship is not without difficulties and does not always work to the best advantage of the client or the project.

Characteristics of construction project management

Construction projects are intricate, resource consuming and often complex activities. The development and delivery of a project typically consists of several phases, sometimes overlapped but always linked, requiring a wide variety of skills and specialised services to balance the key project constraints (Figure 0.1). In progressing from initial feasibility to completion and occupation, a typical construction project passes through successive somewhat distinct stages that necessitate input from such asynchronous areas such as financial institutions, regulatory and statutory organisations, members of the public, engineers, planners, architects, specialist designers, cost engineers, building surveyors, lawyers, insurance companies, constructors, suppliers, tradesmen and cost managers.

During the construction stage itself, a project of relatively simple design and methodology involves a wide range of skills, materials and a plethora of different but often sequential activities and tasks that must follow a predetermined order that constitutes a complicated and sensitive pattern of individual criteria and restrictive sequential relationships.

The Construction Industry Council (CIC) suggests that the primary purpose of project management is to add significant and specific value to the process of delivering construction projects.1 This is achieved by the systematic application of a set of generic project-orientated management principles throughout the life of a project. Some of these techniques have been tailored to the sector requirements unique to the construction industry.

The function of project management is applicable to all projects. However, on smaller or less complex projects, the role may well be combined with another discipline, for example, leader of the design team. The value added to the project by project management is unique: no other process or method can add similar value, either qualitatively or quantitatively.

Introduction

Adding value

The raising of standards should lead significantly to the adding of value. Greater awareness can result in better design, improved methods and processes, new material choices, less waste, decreases in transportation costs and ultimately more efficient buildings, all of which can bring added value to the whole development process.

Scope of project management

Construction and development projects involve the coordinated actions of many different professionals and specialists to achieve defined objectives. The task of project management is to bring the professionals and specialists into the project team at the right time to enable them to make their best possible contribution, efficiently.

Professionals and specialists bring knowledge and experience that contributes to decisions, which are embodied in the project information. The different bodies of knowledge and experience all have the potential to make important contributions to decisions at every stage of projects. In construction and development projects, there are far too many professionals and specialists involved for it to be practical to bring them all together at every stage. This creates a dilemma because ignoring key bodies of knowledge and experience at any stage may lead to major problems and additional costs for everyone.

The practical way to resolve this dilemma is to carefully structure the way the professionals and specialists bring their knowledge and experience into the project team. The most effective general structure is formed by the eight project stages used in this Code of Practice's description of project management.

Project lifecycle

The different stages of the project lifecycle as identified across the industry have been summarised and compared in Figure 0.2.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Inception</td>
<td>0 Strategic definition</td>
<td>1 Strategy</td>
<td>1 Conception</td>
<td>1 Initiating</td>
</tr>
<tr>
<td>2 Feasibility</td>
<td>1 Preparation and brief</td>
<td>2 Brief</td>
<td>2 Feasibility</td>
<td></td>
</tr>
<tr>
<td>3 Strategy</td>
<td>2 Concept design</td>
<td>3 Concept</td>
<td></td>
<td>2 Planning</td>
</tr>
<tr>
<td>4 Pre-construction</td>
<td>3 Developed design</td>
<td>4 Definition</td>
<td>3 Realisation</td>
<td>3 Implementing</td>
</tr>
<tr>
<td>5 Construction</td>
<td>5 Construction</td>
<td>6 Build & commission</td>
<td></td>
<td>4 Controlling</td>
</tr>
<tr>
<td>6 Testing and commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Completion, handover and operation</td>
<td>6 Handover & close out</td>
<td>7 Handover & close out</td>
<td>4 Operation</td>
<td></td>
</tr>
<tr>
<td>8 Post-completion review and in use</td>
<td>7 In use</td>
<td>8 Operation & end of life</td>
<td>5 Termination</td>
<td>5 Closing</td>
</tr>
</tbody>
</table>

Figure 0.2 Project lifecycle.
In many projects, there will be a body of knowledge and experience in the client organisation which has to be tapped into at the right time and combined with the professional and specialists’ expertise.

Each stage in the project process is dominated by the broad body of knowledge and experience that is reflected in the stage name. As described earlier, essential features of that knowledge and experience need to be taken into account in earlier stages if the best overall outcome should be achieved. The way the professionals and specialists who own that knowledge and experience are brought into the project team at these earlier stages is one issue that needs to be decided during the strategy stage.

The results of each stage influence later stages, and it may be necessary to involve the professionals and specialists who undertook earlier stages to explain or review their decisions. Again, the way the professionals and specialists are employed should be decided in principle during the strategy stage.

Each stage relates to specific key decisions (see Table 0.2) Consequently, many project teams hold a key decision meeting at the end of each stage to confirm that the necessary actions and decisions have been taken and the project can therefore begin the next stage. There is a virtue in producing a consolidated document at the end of each stage that is approved by the client before proceeding to the next stage. This acts as a reference mark as well as acting as a vehicle for widespread ownership of the steps that have been taken.

Having considered the social, economic and environmental issues, projects begin with the inception stage which starts with the business decisions by the client that suggest a new construction or development project may be required. Essentially, the inception stage consists of commissioning a project manager to undertake the next stage which is to test the feasibility of the project. The feasibility stage is a crucial stage in which all kinds of professionals and specialists may be required to bring many kinds of knowledge and experience into a broad ranging evaluation of feasibility. It establishes the broad objectives and an approach to sustainability for the project, and so exerts an influence throughout subsequent stages.

The next stage is the strategy stage which begins when the project manager is commissioned to lead the project team to undertake the project. This stage requires the project’s objectives, an overall strategy and procedures in place to manage the sustainability and environmental issues, and the selection of key team members to be considered in a highly interactive manner. It draws on many different bodies of knowledge and experience and is crucial in determining the success of the project. In addition to selecting an overall strategy and key team members to achieve the project’s objectives, it determines the overall procurement approach and sets up the control systems that guide the project through to the final post-completion review and project close-out report stage. In particular, the strategy stage establishes the objectives for the control systems. These deal with much more than quality, time and cost. They provide agreed means of controlling value from the client’s point of view, monitoring time and financial models that influence the project’s success, managing risk, making decisions, holding meetings, maintaining the project’s information systems and all the other control systems necessary for the project to be undertaken efficiently.

At the completion of the strategy stage, everything is in place for the pre-construction stage. This is when the design is developed and the principal decisions are made concerning time, quality and cost management. This stage also includes statutory approvals and consents, considering utility provisions such as water and electricity, monitoring of the environmental performance targets, and bringing manufacturers, contractors and their supply chains into the project team. Like the earlier stages, the