

Greene's

Protective Groups in Organic Synthesis

FIFTH EDITION

Peter G.M. Wuts

WILEY

GREENE'S PROTECTIVE GROUPS IN ORGANIC SYNTHESIS

GREENE'S PROTECTIVE GROUPS IN ORGANIC SYNTHESIS

Fifth Edition

PETER G. M. WUTS
Kalamazoo, Michigan, USA

WILEY

Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at <http://www.wiley.com/go/permissions>.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Wuts, Peter G. M.

Greene's protective groups in organic synthesis. – Fifth edition / Peter G.M. Wuts.

pages cm

Includes index.

ISBN 978-1-118-05748-3 (cloth)

1. Organic compounds—Synthesis. 2. Protective groups (Chemistry) I. Greene, Theodora W. (Theodora Whatmough), 1931-2005. II. Greene, Theodora W. (Theodora Whatmough), 1931-2005. Protective groups in organic synthesis. III. Title. IV. Title: Protective groups in organic synthesis.

QD262.G665 2014

547.2-dc23

2014011451

Printed in the United States of America

eBook ISBN: 9781118905074

ePDF ISBN: 9781118905098

ePub ISBN: 9781118905128

CONTENTS

Preface to the Fifth Edition	xi
Preface to the Fourth Edition	xiii
Preface to the Third Edition	xv
Preface to the Second Edition	xvii
Preface to the First Edition	xix
Abbreviations	xxi
1. The Role of Protective Groups in Organic Synthesis	1
Properties of a Protective Group, 1	
Historical Development, 2	
Development of New Protective Groups, 2	
Selection of a Protective Group from This Book, 4	
Synthesis of Complex Substances: Two Examples (As used in the Synthesis of Himastatin and Palytoxin) of the Selection, Introduction, and Removal of Protective Groups, 5	
Synthesis of Himastatin, 5	
Synthesis of Palytoxin Carboxylic Acid, 9	
2. Protection for the Hydroxyl Group, Including 1,2- and 1,3-Diols	17
Ethers, 26	
Substituted Methyl Ethers, 33	
Substituted Ethyl Ethers, 87	

Methoxy-Substituted Benzyl Ethers, 146	
Silyl Ethers, 201	
Esters, 271	
Bisfluorous Chain-Type Propanoate (Bfp-OR) Ester, 307	
Proximity-Assisted Deprotection for Ester Cleavage, 329	
Miscellaneous Esters, 336	
Sulfonates, Sulfenates, and Sulfinites as Protective Groups for Alcohols, 337	
Carbonates, 347	
Carbamates, 371	
Protection for 1,2- and 1,3-Diols, 375	
Monoprotection of Diols, 375	
Cyclic Acetals and Ketals, 385	
Chiral Ketones, 446	
Cyclic Orthoesters, 447	
Silyl Derivatives, 456	
Cyclic Carbonates, 465	
Cyclic Boronates, 468	
3. Protection for Phenols and Catechols	472
Protection for Phenols, 475	
Ethers, 475	
Silyl Ethers, 522	
Esters, 528	
Carbonates, 535	
Carbamates, 538	
Phosphinates, 540	
Sulfonates, 541	
Protection for Catechols (1,2-Dihydroxybenzenes), 545	
Cyclic Acetals and Ketals, 545	
Cyclic Esters, 551	
Protection for 2-Hydroxybenzenethiols, 552	
4. Protection for the Carbonyl Group	554
Acetals and Ketals, 559	
Acyclic Acetals and Ketals, 559	
Cyclic Acetals and Ketals, 576	
Chiral Acetals and Ketals, 611	
Dithio Acetals and Ketals, 615	
Cyclic Dithio Acetals and Ketals, 620	
Monothio Acetals and Ketals, 644	
Diseleno Acetals and Ketals, 649	
Miscellaneous Derivatives, 650	
O-Substituted Cyanohydrins, 650	
Substituted Hydrazones, 654	

Oxime Derivatives, 661	
1,2-Adducts to Aldehydes and Ketones, 669	
Cyclic Derivatives, 674	
Protection of the Carbonyl Group as Enolate Anions, Enol Ethers, Enamines, and Imines, 676	
Monoprotection of Dicarbonyl Compounds, 679	
Selective Protection of α - and β -Diketones, 679	
Cyclic Ketals, Monothio and Dithio Ketals, 684	
5. Protection for the Carboxyl Group	686
Esters, 692	
General Preparation of Esters, 692	
General Cleavage of Esters, 699	
Transesterification, 704	
Enzymatically Cleavable Esters, 711	
Substituted Methyl Esters, 723	
2-Substituted Ethyl Esters, 739	
2,6-Dialkylphenyl Esters, 768	
Substituted Benzyl Esters, 775	
Silyl Esters, 792	
Activated Esters, 796	
Miscellaneous Derivatives, 799	
Stannyli Esters, 812	
Amides and Hydrazides, 812	
Amides, 820	
Hydrazides, 825	
Protection of Sulfonic Acids, 828	
Protection of Boronic Acids, 831	
6. Protection for the Thiol Group	837
Thioethers, 841	
<i>S</i> -Diphenylmethyl, Substituted <i>S</i> -Diphenylmethyl, and <i>S</i> -Triphenylmethyl Thioethers, 855	
Substituted <i>S</i> -Methyl Derivatives: Monothio, Dithio, and Aminothio Acetals, 864	
Substituted <i>S</i> -Ethyl Derivatives, 875	
Silyl Thioethers, 880	
Thioesters, 881	
Thiocarbonate Derivatives, 883	
Thiocarbamate Derivatives, 885	
Miscellaneous Derivatives, 886	
Unsymmetrical Disulfides, 886	
Sulfenyl Derivatives, 888	
Protection for Dithiols: Dithio Acetals and Ketals, 891	

Protection for Sulfides, 892	
S-P Derivatives, 893	
Protection for the Amino Thiol Group, 894	
7. Protection for the Amino Group	895
Carbamates, 907	
Substituted Ethyl Carbamates, 921	
Carbamates Cleaved by a 1,6-Elimination, 977	
Carbamates Cleaved by β -Elimination, 979	
Photolytically Cleaved Carbamates, 983	
Miscellaneous Carbamates, 987	
Urea-Type Derivatives, 989	
Amides, 990	
Assisted Cleavage of Amides, 1007	
Bisprotection of Amines, 1009	
Special $-Nh$ Protective Groups, 1025	
<i>N</i> -Alkyl and <i>N</i> -Aryl Amines, 1025	
Imine Derivatives, 1060	
Enamine Derivatives, 1069	
Quaternary Ammonium Salts, 1072	
<i>N</i> -Heteroatom Derivatives, 1073	
<i>N</i> -Metal Derivatives, 1073	
<i>N</i> -N Derivatives, 1078	
<i>N</i> -P Derivatives, 1083	
<i>N</i> -Si Derivatives, 1086	
<i>N</i> -S Derivatives, 1088	
Protection of Amino Alcohols, 1116	
Protection for Imidazoles, Pyrroles, Indoles, and Other Aromatic Heterocycles, 1120	
<i>N</i> -Sulfonyl Derivatives, 1120	
Carbamates, 1124	
<i>N</i> -Alkyl and <i>N</i> -Aryl Derivatives, 1129	
<i>N</i> -Trialkylsilylamines $R_2N-SiR'_3$, 1131	
<i>N</i> -Allylamine $CH_2=CHCH_2NR_2$, 1131	
<i>N</i> -Benzylamine ($Bn-NR_2$) $PhCH_2-NR_2$, 1132	
Amino Acetal Derivatives, 1137	
Amides, 1141	
Protection for the Amide $-NH$, 1151	
Protection for the Sulfonamide $-NH$, 1182	
8. Protection for the Alkyne $-CH$	1194
9. Protection for the Phosphate Group	1203
Some General Methods for Phosphate Ester Formation, 1209	
Removal of Protective Groups from Phosphorus, 1210	

Alkyl Phosphates, 1214	
Phosphates Cleaved by Cyclodeesterification, 1223	
2-Substituted Ethyl Phosphates, 1228	
Haloethyl Phosphates, 1236	
Benzyl Phosphates, 1239	
Phenyl Phosphates, 1246	
Photochemically Cleaved Phosphate Protective Groups, 1254	
Amidates, 1258	
Miscellaneous Derivatives, 1261	
10. Reactivities, Reagents, and Reactivity Charts	1263
Reactivities, 1263	
Reagents, 1264	
Reactivity Charts, 1267	
Reactivity Chart 1. Protection for Hydroxyl Group: Ethers, 1269	
Reactivity Chart 2. Protection for Hydroxyl Group: Esters, 1274	
Reactivity Chart 3. Protection for 1,2- and 1,3-Diols, 1278	
Reactivity Chart 4. Protection for Phenols and Catechols, 1282	
Reactivity Chart 5. Protection for the Carbonyl Group, 1286	
Reactivity Chart 6. Protection for the Carboxyl Group, 1290	
Reactivity Chart 7. Protection for the Thiol Group, 1294	
Reactivity Chart 8. Protection for the Amino Group: Carbamates, 1298	
Reactivity Chart 9. Protection for the Amino Group: Amides, 1302	
Reactivity Chart 10. Protection for the Amino Group: Special –NH Protective Groups, 1306	
Reactivity Chart 11. Selective Deprotection of Silyl Ethers, 1311	
Index	1333

PREFACE TO THE FIFTH EDITION

The fifth edition continues in the tradition of the previous volumes. The literature search is complete to the middle of 2013, and was done using a hand search where I looked at the individual papers to find appropriate material and by using the search engines provided by the various publishers. SciFinder was also used to complement my search, by looking for specific information rather than a general search of protective group chemistry as this results in too many hits to examine. Given the ever-expanding literature, it is becoming increasingly more time consuming to maintain the comprehensive tradition of the last four editions. If I have passed over a favorite method or even a new protective group, it was not done intentionally.

During the preparation of this edition, I processed over 4100 new references. Not all have been included because in many cases the examples did not offer anything new. However, approximately 2800 new references have been included in this edition. Overall, I have tried to be as all-inclusive as possible because this book is about giving the user all the available options for protection and deprotection.

Protective group chemistry is largely driven by natural product synthesis, and over the years since the last edition, the emphasis on highly hydroxylated natural products has given way to more alkaloid natural products that tend not to use protective groups as heavily. In fact, there are many syntheses that have avoided the use of protective groups altogether. There are, however, many classes of molecules where our chemical technology is still not adequate to completely avoid the use of protective groups, such as in polypropionate macrolide synthesis, peptide synthesis, and oligonucleotide synthesis.

Again, I have tried to emphasize examples that provide selectivity information. In many of the methodology papers, this issue is barely addressed because the reported examples are largely on rather simple substrates and thus these methods must still be

tested on more complex systems. How protective groups affect reactivity is an area that is only lightly covered. It turns out to be a book in itself based on the piles of literature that I have collected.

In conclusion, I would like to thank my editor Jonathan Rose, who gave me complete access to the Wiley collection of books and journals for a year, which greatly facilitated obtaining papers from journals that in some cases I had no other access to. Many thanks go to Jed Fisher, who gave me a copy of his database from which I was able to obtain numerous useful references, and to the Chemistry Department at Western Michigan University, for giving me an Adjunct Professorship, which gave me access to their library. I would also like to thank José L. Giner and Nathalie Stransky-Heilkron for pointing out a couple of errors in the previous edition, which have been corrected. And finally my greatest thanks must go to my wife, Lizzie, who has encouraged me to undertake this edition and then helped with various aspects of its preparation, such as printing out papers and proofreading. She also put up with me while I was glued to my computer night after night and many a long weekend. However, when it was time to call it quits for the night, she would graciously bring me a glass of wine.

PETER G. M. WUTS

January 2014

PREFACE TO THE FOURTH EDITION

After completing the mammoth third edition, I never imagined that a fourth edition would eventuate because of the sheer volume of literature that must be examined to cover the subject comprehensively. Nonetheless, I took on the task with the encouragement and help of my wife, Lizzie, who agreed to assist me with this one, since Theo was not able to. As with the last edition, the searches were primarily done by hand because databases such as SciFinder fail to be selective and have such a prodigious output that no one can be expected to filter all that material in a reasonable amount of time. Nevertheless, SciFinder was used to locate material in journals that were not readily accessible. In recent years, in both corporate and academic America, there has also been a trend to do away with physical libraries, which makes doing a literature search extremely difficult, especially if you like reading the literature at home in a comfortable chair. Reading journals on a computer screen may be easy for Spock, but I find it difficult and stressful. With limited access to hard copies of some of the literature, I may have missed some things. For this I apologize and will not be offended if the author sends me the material for inclusion in a possible future edition. The literature search is complete through the end of 2005.

With that said, the fourth edition contains over 3100 new references compared to the 2349 new citations in the third edition. In keeping with the tradition of the past, I tried to include material covering new methods for existing protective groups along with new groups that have been developed. When the authors disclosed the information, I also provided the rationale for the choice of a given protective group. In that synthetic chemistry is still not sufficiently developed to do away with protective groups altogether, I have included many examples that highlight selective protection and deprotection, especially when the selectivity might not be totally obvious or expected. Issues of unexpected reactivity are also included, since these

cases should help in choosing a group during the development of a synthetic plan. On the whole, this is a book of options for the synthetic chemist, since no one method is suitable for all occasions. Also, many of the published methods have not been tested in complex situations; thus, it is impossible to determine which method of a particular set might be the best, and, as such, no attempt was made to try and order the various methods that appear in a section. The issue of functional group compatibility is often not addressed in papers describing new methods, and this further complicates the evaluation process. Comparative studies for either protection or deprotection are rarely done, and as a result, trial and error and chemical intuition must be used to define the most suitable method in a given situation.

All sections of the book have seen some expansion, especially the chapters on alcohol and amine protection. I had considered adding a section that covered areas such as diene protection as metal complexes and Diels–Alder adducts, but the use of these is rather limited. The Reactivity Charts of Chapter 10 have not been altered, but a new chart covering selectivity in silyl group deprotection has been added. The overall format of the book has been retained, and in some of the larger sections, similar methods have been grouped together. A new area has emerged since the last edition, and this is the use of fluorous protective groups. These have been included and placed in the appropriate sections rather than having collected them together.

The completion of this project was aided by a number of people. First of all, this work would not have been started without the encouragement and dedication of my wife, Lizzie, who looked up and downloaded many of the references and then typed every new reference into an EndnoteTM database. She double-checked the entire set in order to prevent errors. She also read through the entire manuscript to check it for punctuation, grammar, and consistency. She has a degree in Near Eastern Medieval History; thus, I take full responsibility for any chemical errors. I must also thank her for not complaining about becoming a book widow while I spent countless hours on this project over a period of ~ 3 years. A special note of thanks must be extended to Peter Green, the Pfizer Michigan site head, who approved giving Lizzie access to the company library system even though she was not an employee. I would also like to thank Jake Szmuszkovicz, Raymond Conrow, and Martin Lang for providing me with references to be included in the fourth edition, and finally I wish to thank Joseph Muchowski for bringing an error in the third edition, now corrected, to my attention.

PETER G. M. WUTS

January 2006

PREFACE TO THE THIRD EDITION

Organic synthesis has not yet matured to the point where protective groups are not needed for the synthesis of natural and unnatural products; thus, the development of new methods for functional group protection and deprotection continues. The new methods added to this edition come from both electronic searches and a manual examination of all the primary journals through the end of 1997. We have found that electronic searches of *Chemical Abstracts* fail to find many new methods that are developed during the course of a synthesis, and issues of selectivity are often not addressed. As with the second edition, we have attempted to highlight unusual and potentially useful examples of selectivity for both protection and deprotection. In some areas, the methods listed may seem rather redundant, such as the numerous methods for THP protection and deprotection, but we have included them in an effort to be exhaustive in coverage. For comparison, the first edition of this book contains about 1500 references and 500 protective groups, the second edition introduces an additional 1500 references and 206 new protective groups, and the third edition includes 2349 new citations and 348 new protective groups.

Two new sections on the protection of phosphates and the alkyne-CH are included. All other sections of the book have been expanded, some more than others. The section on the protection of alcohols has increased substantially, reflecting the trend of the 1990s to synthesize acetate- and propionate-derived natural products. An effort was made to include many more enzymatic methods of protection and deprotection. Most of these are associated with the protection of alcohols as esters and the protection of carboxylic acids. Here we have not attempted to be exhaustive, but hopefully a sufficient number of cases are provided that illustrate the true power of this technology, so that the reader will examine some of the excellent monographs and review articles cited in the references. The Reactivity Charts in Chapter 10 are

identical to those in the first edition. The chart number appears beside the name of each protective group when it is first introduced. No attempt was made to update these charts, not only because of the sheer magnitude of the task, but also because it is nearly impossible in a two-dimensional table to adequately address the effect that electronic and steric controlling elements have on a particular instance of protection or deprotection. The concept of fuzzy sets as outlined by Lotfi Zadeh would be ideally suited for such a task.

The completion of this project was aided by the contributions of a number of people. I am grateful to Rein Virkhaus and Gary Callen, who for many years forwarded me references when they found them, to Jed Fisher for the information he contributed on phosphate protection, and to Todd Nelson for providing me a preprint of his excellent review article on the deprotection of silyl ethers. I heartily thank Theo Greene for checking and rechecking the manuscript—all 15 cm of it—for spelling and consistency and for the arduous task of checking all the references for accuracy. I thank Fred Greene for reading the manuscript, for his contribution to Chapter 1 on the use of protective groups in the synthesis of himastatin, and for his contribution to the introduction to Chapter 9, on phosphates. I thank my wife, Lizzie, for encouraging me to undertake the third edition, for the hours she spent in the library looking up and photocopying hundreds of references, and for her understanding while I sat in front of the computer night after night and numerous weekends over a two-year period. She is the greatest!

PETER G. M. WUTS

Kalamazoo, Michigan

June 1998

PREFACE TO THE SECOND EDITION

Since publication of the first edition of this book in 1981, many new protective groups and many new methods of introduction or removal of known protective groups have been developed: 206 new groups and approximately 1500 new references have been added. Most of the information from the first edition has been retained. To conserve space, generic structures used to describe Formation/Cleavage reactions have been replaced by a single line of conditions, sometimes with explanatory comments, especially about selectivity. Some of the new information has been obtained from online searches of *Chemical Abstracts*, which have limitations. For example, *Chemical Abstracts* indexes a review article about protective groups only if that word appears in the title of the article. References are complete through 1989. Some references, from more widely circulating journals, are included for 1990.

Two new sections on the protection for indoles, imidazoles, and pyrroles and the protection for the amide –NH are included. They are separated from the regular amines because their chemical properties are sufficiently different to affect the chemistry of protection and deprotection. The Reactivity Charts in Chapter 8 are identical with those in the first edition. The chart number appears beside the name of each protective group when it is first discussed.

A number of people must be thanked for their contributions and help in completing this project. I am grateful to Gordon Bundy, who loaned me his card file, which provided many references that the computer failed to find, and to Bob Williams, Spencer Knapp, and Tohru Fukuyama for many references on amine and amide protection. I thank Theo Greene who checked and rechecked the manuscript for spelling and consistency and for the herculean task of checking all the references to make sure my 3's and 8's and 7's and 9's were not interchanged, all without a single complaint. I thank Fred Greene who read the manuscript and provided valuable

suggestions for its improvement. My wife Lizzie was a major contributor to getting this project finished, by looking up and photocopying references, by turning on the computer in an evening ritual, and by typing many sections of the original book, which made the changes and additions much easier. Without her understanding and encouragement, the volume probably would never have been completed.

PETER G. M. WUTS

Kalamazoo, Michigan

May 1990

PREFACE TO THE FIRST EDITION

The selection of a protective group is an important step in synthetic methodology, and reports of new protective groups appear regularly. This book presents information on the synthetically useful protective groups (~500) for five major functional groups: $-\text{OH}$, $-\text{NH}$, $-\text{SH}$, $-\text{COOH}$, and $>\text{C}=\text{O}$. References through 1979, the best method(s) of formation and cleavage, and some information on the scope and limitations of each protective group are given. The protective groups that are used most frequently and that should be considered first are listed in Reactivity Charts, which give an indication of the reactivity of a protected functionality to 108 prototype reagents.

The first chapter discusses some aspects of protective group chemistry: the properties of a protective group, the development of new protective groups, how to select a protective group from those described in this book, and an illustrative example of the use of protective groups in a synthesis of brefeldin. The book is organized by functional group to be protected. At the beginning of each chapter are listed the possible protective groups. Within each chapter protective groups are arranged in order of increasing complexity of structure (e.g., methyl, ethyl, *t*-butyl, . . . , benzyl). The most efficient methods of formation or cleavage are described first. Emphasis has been placed on providing recent references, since the original method may have been improved. Consequently, the original reference may not be cited; my apologies to those whose contributions are not acknowledged. Chapter 8 explains the relationship between reactivities, reagents, and the Reactivity Charts that have been prepared for each class of protective groups.

This work has been carried out in association with Professor Elias J. Corey, who suggested the study of protective groups for use in computer-assisted synthetic analysis. I appreciate his continued help and encouragement. I am

grateful to Dr. J. F. W. McOmie (Ed., *Protective Groups in Organic Chemistry*, Plenum Press, New York and London, 1973) for his interest in the project and for several exchanges of correspondence, and to Mrs. Mary Fieser, Professor Frederick D. Greene, and Professor James A. Moore for reading the manuscript. Special thanks are also due to Halina and Piotr Starewicz for drawing the structures, and to Kim Chen, Ruth Emery, Janice Smith, and Ann Wicker for typing the manuscript.

THEODORA W. GREENE

*Harvard University
September 1980*

ABBREVIATIONS

PROTECTIVE GROUPS

In some cases, several abbreviations are used for the same protective group. We have listed the abbreviations as used by an author in his original paper, including capital and lowercase letters. Occasionally, the same abbreviation has been used for two different protective groups. This information is also included.

AAM	anthranilamide
ABn	4-azidobenzyl
ABO	2,7,8-trioxabicyclo[3.2.1]octyl
Ac	acetyl
ACBZ	4-azidobenzylloxycarbonyl
ACE	<i>O</i> -bis(2-acetoxyethoxy)methyl
	1-chloroethylcarbonyl
AcHmb	2-acetoxy-4-methoxybenzyl
Acm	acetamidomethyl
Ad	1-adamantyl
ADMB	4-acetoxy-2,2-dimethylbutanoate
Adoc	1-adamantyloxycarbonyl
Adpoc	1-(1-adamantyl)-1-methylethoxycarbonyl
Alloc or AOC	allyloxycarbonyl
Allocam	allyloxycarbonylaminomethyl
Als	allylsulfonyl
AMB	2-(acetoxymethyl)benzoyl
Amoc	acridin-9-ylmethyl

AMPA	(2-azidomethyl)phenylacetate
AN(An)	4-methoxyphenyl or anisyl
Anpe	2-(4-acetyl-2-nitrophenyl)ethyl
Ans	anisylsulfonyl
AOC or Alloc	allyloxy carbonyl
<i>p</i> -AOM	<i>p</i> -anisyl oxymethyl or (4-methoxyphenoxy)methyl
APAC	2-allyloxyphenylacetate
APOE	(2-acetoxyphenoxy)ethyl
Aqmoc	anthraquinone-2-ylmethoxycarbonyl
Az	azulen-1-yl-oxo-acetyl
Azb	<i>p</i> -azidobenzyl
AZBn	4-[(2-azidomethyl)benzoyloxy]benzyl
AzDMB	2,2-dimethyl-4-azidobutanoate
Azm	azidomethyl
AZMB	2-(azidomethyl)benzoate
Azoc	azidomethylcarbonyl
Bam	benzamidomethyl
BBA	butane-2,3-bisacetal
Bbc	but-2-ynylbisoxycarbonyl
BCMACM	{7-[bis(carboxymethyl)amino]coumarin-4-yl}methyl
BDIPS	biphenyldiisopropylsilyl
BDMS	biphenyldimethylsilyl
Bdt	benzyldimethylsilyl
BEC	1,3-benzodithiolan-2-yl
Betsyl or Bts	bromoethylcarbonyl
Bhcmoc	benzothiazole-2-sulfonyl
BHQ	6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl
BHT	6-bromo-7-hydroxycoumarin-4-ylmethyl
BIBS	8-bromo-7-hydroxyquinoline-2-ylmethyl
Bic	2,6-di- <i>t</i> -butyl-4-methylphenyl
Bim	di- <i>t</i> -butylisobutylsilyl
Bimoc	5-benzisoxazolylmethoxycarbonyl
BIPSOP	5-benzisoazolylmethylene
BMB	benz[f]inden-3-ylmethoxycarbonyl
Bmcmoc	N-2,5-bis(triisopropylsiloxy)pyrrolyl
Bmpc	<i>o</i> -(benzoyloxy)methylbenzoyl
Bmpm	6-bromo-7-methoxycoumarin-4-ylmethylcarbonyl
Bn	2,4-dimethylthiophenoxy carbonyl
Bnf	bis(4-methoxyphenyl)-1'-pyrenylmethyl
Bnpeoc	benzyl
Bns	fluorousbenzyl
	2,2-bis(4'-nitrophenyl)ethoxycarbonyl
	benzylsulfonate

BOB	benzyloxybutyrate
BOC	<i>t</i> -butoxycarbonyl
Bocdene	2-(<i>t</i> -butylcarbonyl)ethylidene
BOM	benzyloxymethyl
	Beer of the month
Bpf	bisfluorous chain propanyl
Bpoc	1-methyl-1-(4-biphenyl)ethoxycarbonyl
Bs	benzenesulfonyl
BSB	benzostabase
Bsmoc	1,1-dioxobenzo[<i>b</i>]thiophene-2-ylmethoxycarbonyl
BTB	2,6-bis(trifluoromethyl)benzyl
BTM	<i>t</i> -butylthiomethyl
Bts or BetsyI	benzothiazole-2-sulfonyl
B'SE	2- <i>t</i> -butylsulfonylethyl
Bts-Fmoc	2,7-bis(trimethylsilyl)fluorenylmethoxycarbonyl
Bum	<i>t</i> -butoxymethyl
<i>t</i> -Bumeoc	1-(3,5-di- <i>t</i> -butylphenyl)-1-methylethoxycarbonyl
Bus	<i>t</i> -butylsulfonyl
Bz	benzoyl
CAEB	2-[(2-chloroacetoxy)ethyl]benzoyl
Cam	carboxamidomethyl
CAMB	2-(chloroacetoxyethyl)benzoyl
Cbz or Z	benzyloxycarbonyl
CDA	cyclohexane-1,2-diacetal
CDM	2-cyano-1,1-dimethylethyl
CE or Cne	2-cyanoethyl
Cee	1-(2-chloroethoxy)ethyl
CEE	1-(2-cyanoethoxy)ethyl
CEM	2-cyanoethoxymethyl
Ceof	cyclic ethyl orthoformate
cHex	cyclohexyl
Chx	cyclohexyl
Cin	cinnamyl
ClAzab	4-azido-3-chlorobenzyl
Climoc	2-chloro-3-indenylmethoxycarbonyl
Cms	carboxymethylsulfenyl
CNAP	2-naphthylmethoxycarbonyl
Cne or CE	2-cyanoethyl
Coc	cinnamylloxycarbonyl
CPC	<i>p</i> -chlorophenylcarbonyl
CPDMS	(3-cyanopropyl)dimethylsilyl
Cpeoc	2-(cyano-1-phenyl)ethoxycarbonyl
Cpep	1-(4-chlorophenyl)-4-methoxypiperidin-4-yl
CPTr	4,4',4''-tris(4,5-dichlorophthalimido)triphenylmethyl
CTFB	4-trifluoromethylbenzyloxycarbonyl

CTMP	1-[(2-chloro-4-methyl)phenyl]-4-methoxypiperidin-4-yl
Cyclo-SEM	5-trimethylsilyl-1,3-dioxane
Cys	cysteine
DAM	di- <i>p</i> -anisylmethyl or bis(4-methoxyphenyl)methyl
	2'- <i>O</i> -{[2,2-dimethyl-2-(2-nitrophenyl)acetyl]oxy}methyl
DAN	dansyl
DATE	1,1-di- <i>p</i> -anisyl-2,2,2-trichloroethyl
DB- <i>t</i> -BOC	1,1-dimethyl-2,2-dibromoethoxycarbonyl
DBD-Tmoc	2,7-di- <i>t</i> -butyl[9-(10,10-dioxo-10,10,10,10-tetrahydrothioxanthyl)]methoxycarbonyl
dbf	<i>N</i> -(<i>N'</i> , <i>N'</i> -dibutylaminomethylene)
DBS	dibenzosuberyl
DCP	dichlorophthalimide
Dcpm	dicyclopropylmethyl
DCV	dichlorovinyl
Dde	2-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl
Ddm or Dmbh	bis(4-methoxyphenyl)methyl (2,6-dichloro-4-alkoxyphenyl)(2,4-dichlorophenyl)methyl (2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methyl
Ddz	1-methyl-1-(3,5-dimethoxyphenyl)ethoxycarbonyl
DEACE	1-(7-(<i>N,N</i> -diethylamino)-coumarin-4-yl)-1-ethyl
DECDO	4,5-bis(ethoxycarbonyl)-[1,3]-dioxolan-2-yl
DEIPS	diethylisopropylsilyl
DEM	diethoxymethyl
Desyl	2-oxo-1,2-diphenylethyl
DG	diglycoloyl
DIFA	<i>N</i> -(<i>N'</i> , <i>N'</i> -diisopropylaminomethylene)
Dim	1,3-dithianyl-2-methyl
Dios	2-(1,3-dioxan-2-yl)ethylsulfonyl
Dmab	4-{ <i>N</i> -[1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl]amino}benzyl
8-DMAQ	8-(<i>N,N</i> -dimethylamino)quinolone-2-ylmethyl
DMATr	3-dimethylaminophenyldiphenylmethyl
Dmb	2,4-dimethoxybenzyl
DMB	3',5'-dimethoxybenzoin
DMBM	[(3,4-dimethoxybenzyl)oxy]methyl
DMIPS	dimethylisopropylsilyl
DMN	2,3-dimethylmaleimide
Dmoc	dithianylmethoxycarbonyl
Dmp	2,4-dimethyl-3-pentyl dimethylphosphinyl

DMP	dimethoxyphenyl
	dimethylphenacyl
	dimethylphosphinothioyl
	2,4-dimethyl-3-pentyl
DMPM	3,4-dimethoxybenzyl
DMT or DMTr	di(<i>p</i> -methoxyphenyl)phenylmethyl or dimethoxytrityl
DMTC	dimethylthiocarbamate
DMTM	2,2-dimethyltrimethylene phosphate
DMTr or DMT	di(<i>p</i> -methoxyphenyl)phenylmethyl or dimethoxytrityl
DNAP	2-(dimethylamino)-5-nitrophenyl
DNB	<i>p,p'</i> -dinitrobenzhydryl
DNMBS	4-(4',8'-dimethoxynaphthylmethyl) benzenesulfonyl
DNP	2,4-dinitrophenyl
Dnpe	2-(2,4-dinitrophenyl)ethyl
Dnpeoc	2-(2,4-dinitrophenyl)ethoxycarbonyl
DNs	2,4-dinitrobenzenesulfonyl
DNse	2-(2,4-dinitrophenylsulfonyl)ethoxycarbonyl
Dnseoc	2-dansylethoxycarbonyl
Dobz	<i>p</i> -(dihydroxyboryl)benzyloxycarbonyl
Doc	2,4-dimethylpent-3-yloxycarbonyl
Dod	bis(4-methoxyphenyl)methyl
DOD	bis(trimethylsiloxy)cyclododecyloxysilyl
DOPS	dimethyl[1,1-dimethyl-3-(tetrahydro-2 <i>H</i> -pyran- 2-yloxy)propyl]silyl
DPA	diphenylacetyl
DPE	diphenylphosphinoylethyl
DPIPS	diphenylisopropylsilyl
DPM or Dpm	diphenylmethyl
DPMS	<i>N</i> -2,3-diphenylmaleimide
Dpp	diphenylmethylsilyl
Dppe	diphenylphosphinyl
Dppm	2-(diphenylphosphino)ethyl
DPSE	(diphenyl-4-pyridyl)methyl
DPSide	2-(methyldiphenylsilyl)ethyl
Dpt	diphenylsilyldiethylene
DPTBOS	diphenylphosphinothioyl
DPTBS	<i>t</i> -butoxydiphenylsilyl
Dtb-Fmoc	diphenyl- <i>t</i> -butoxysilyl
DTBMS	diphenyl- <i>t</i> -butylsilyl
DTBS	di- <i>t</i> -butylsilylene

DTE	2-(hydroxyethyl)dithioethyl or dithiodiethanol
DTPM	N-(1,3-dimethyl-2,4,6-(1 <i>H</i> ,3 <i>H</i> ,5 <i>H</i>)- trioxopyrimidine-5-ylidene)methyl
Dts	dithiasuccinimidyl
E-DMT	1,2-ethylene-3,3-bis(4'4''-dimethoxytrityl)
EE	1-ethoxyethyl
EOM	ethoxymethyl
^F BOC	fluorous BOC
^F Cbz	fluorous benzoyloxycarbonyl
Fcm	ferrocenylmethyl
Flu	fluorenyl
Fm	9-fluorenylmethyl
Fmoc	9-fluorenylmethoxycarbonyl
Fms	(9 <i>H</i> -fluoren-9-yl)methanesulfonyl
Fnam	<i>N</i> -[2,3,5,6-tetrafluoro-4-(<i>N'</i> -piperidino)phenyl]- <i>N</i> -allyloxycarbonylaminomethyl
Fpmp	1-(2-fluorophenyl)-4-methoxypiperidiny-4-yl
Froc	2-bromo-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10- heptadecafluoro-1-decylcarbonyl
Fsec	2-[(4-fluorophenyl)sulfonyl]ethyl
GUM	guaiacolmethyl
HAPE	1-[2-(2-hydroxyalkyl)phenyl]ethanone
HBn	2-hydroxybenzyl
Hdoc	hexadienyloxycarbonyl
HFB	hexafluoro-2-butyl
HIP	1,1,1,3,3,3-hexafluoro-2-phenylisopropyl
Hoc	cyclohexyloxycarbonyl
HPsc	[2-[(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- heptadecafluoroundecyl)sulfonyl]ethyl
Hqm	<i>S</i> -[[2-[8-[(1,1-dimethylethyl)dimethylsilyl]oxy] octahydro-1(2 <i>H</i>)-quinolinyl]acetyl]amino] methyl]
HSDIS	(hydroxystyryl)diisopropylsilyl
HSDMS	(hydroxystyryl)dimethylsilyl
hZ or homo Z	homobenzoyloxycarbonyl
IDTr	3-(imidazol-1-ylmethyl)-4',4''- dimethoxytriphenylmethyl
IETr	4,4'-dimethoxy-3''-[<i>N</i> -(imidazolylethyl)carba- moyl]trityl
iMds	2,6-dimethoxy-4-methylbenzenesulfonyl
Ipaoc	1-isopropylallyloxycarbonyl
Ipc	isopinocampheyl
IPDMS	isopropyldimethylsilyl
Lev	levulinoyl

LevS	4,4-(ethylenedithio)pentanoyl levulinoyldithioacetal ester
LMMo(<i>p</i>)NBz	6-(levulinoyloxymethyl)-3-methoxy-2-nitrobenzoate
MAB	2-{{[(4-methoxytrityl)thio]methylamino}methyl}benzoate
MAQ	2-(9,10-anthraquinonyl)methyl or 2-methyleneanthraquinone
MBE	1-methyl-1-benzoyloxyethyl
MBF	2,3,3a,4,5,6,7,7a-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl
Mbh	bis(4-methylphenyl)methyl
NBOM	<i>N</i> -bis(4-methylphenyl)methyl
MBS or Mbs	<i>N</i> -4-methoxybenzyloxymethyl
MCPM	<i>p</i> -methoxybenzenesulfonyl
MDPM	1-methyl-1'-cyclopropylmethyl
MDPS	[1-(6-nitro-1,3-benzodioxol-5-yl)ethoxy]methyl
Mds	methyleno-bis(diisopropylsilanoloxanylidene)
Me	2,6-dimethyl-4-methoxybenzenesulfonyl
ME	methyl
MEC	methoxyethyl
MEDAM	α -methylcinnamyl
Mee	<i>N</i> -bis(3,5-dimethyl-4-methoxyphenyl)methyl
MEM	methoxyethoxyethyl
Menpoc	2-methoxyethoxymethyl
MeOAc	α -methylnitropiperonyloxycarbonyl
MeOZ or Moz	methoxyacetyl
Mes	<i>p</i> -methoxybenzyloxycarbonyl
MIDA	mesityl or 2,4,6-trimethylphenyl
MIP	<i>N</i> -methyliminodiacetic acid
MIS	methoxyisopropyl or 1-methyl-1-methoxyethyl
MM	1,2-dimethylindole-3-sulfonyl
MMPPOC	menthoxymethyl
MMT or MMTr	2-(3,4-methylenedioxy-6-nitrophenyl)propyloxycarbonyl
MMTr or MMT	<i>p</i> -methoxyphenyldiphenylmethyl
MMTrS	<i>p</i> -methoxyphenyldiphenylmethyl
MOB	4-monomethoxytritylsulfenyl
Mocdene	2-{{[(4-methoxytrityl)thio]oxy}methyl}benzoate
MoEt	2-(methoxycarbonyl)ethylidene
MOM	2- <i>N</i> -(morpholino)ethyl
MOMO	methoxymethyl
MOTES	methoxymethoxy
Mov or MocVinyl	(<i>-</i>)(<i>R</i>)- and (<i>+</i>)(<i>S</i>)-(1-methoxy-2,2,2-triphenylethyl)dimethylsilyl
	<i>N</i> -1-(carboxymethyl)ethen-2-yl

Moz or MeOZ	<i>p</i> -methoxybenzyloxycarbonyl
MP	<i>p</i> -methoxyphenyl
MPDMB	2,2-dimethyl-4-(4-methoxyphenoxy)butanoate
Mpe	3-methyl-3-pentyl
MPM or PMB	<i>p</i> -methoxyphenylmethyl or <i>p</i> -methoxybenzyl
MPMP	1-(4-methoxyphenyl)-2-methylpropane-1,2-diol
MPoc	(1-ethyl)cyclopropylcarbonyl
Mps	<i>p</i> -methoxyphenylsulfonyl
Mpt	dimethylphosphinothioyl
Mptc	4-methylthiophenylcarbonyl
Ms	methanesulfonyl or mesyl
Msc	2-(methylsulfonyl)ethylcarbonyl
MSE	2-(methylsulfonyl)ethyl
Msem	methylsulfonylethoxymethyl
Msib	4-(methylsulfinyl)benzyl
Mspoc	2-methylsulfonyl-3-phenyl-1-prop-2-enyloxy
Msz	4-methylsulfinylbenzyloxycarbonyl
MTAD	4-methyl-1,2,4-triazoline-3,5-dione
Mtb	2,4,6-trimethoxybenzenesulfonyl
Mte	2,3,5,6-tetramethyl-4-methoxybenzenesulfonyl
MTFOC	<i>cis</i> -[4-[(<i>p</i> -methoxytrityl)sulfonyl]oxy]tetrahydrofuran-3-yl]oxycarbonyl
MTHP	4-methoxytetrahydropyranyl
MTM	methylthiomethyl
MTMB	4-(methylthiomethoxy)butyryl
MTMEC	2-(methylthiomethoxy)ethoxycarbonyl
MTMT	2-(methylthiomethoxymethyl)benzoyl
Mtpc	4-(methylthio)phenoxy carbonyl
Mtr	2,3,6-trimethyl-4-methoxybenzenesulfonyl
Mts	2,4,6-trimethylbenzenesulfonyl or mesitylenesulfonyl
Mtt	4-methoxytrityl
	4-methyltrityl
Nap	2-naphthylmethyl
NBM	nitrobenzyloxymethyl
NBOM	nitrobenzyloxymethyl
NDBF	<i>N</i> -3-[(1-(3-nitro-2-dibenzofuranyl)ethoxy)methyl]
NDMS	2-norbornyldimethylsilyl
Ne	2-nitroethyl
NNM	3-nitro-2-naphthylmethyl
Noc	4-nitrocinnamylloxycarbonyl
Nosyl or Ns	2- or 4-nitrobenzenesulfonyl
Nox	naphtho[2,3- <i>d</i>]oxazole-2-ylmethyl
NPAC	(2-nitrophenyl)acetate
NPB	4-nitrophthalimidobutyryl