International Construction Contract Law
International Construction Contract Law

Lukas Klee
Head of Legal at Metrostav a.s.
Professor of International Construction Law
Charles University, Prague
Contents

About the Author xv
Foreword xvii
Svend Poulsen
Acknowledgements xix
Introductory Remarks xxiii
Shuibo Zhang
Introductory Remarks xxv
Robert Werth
Introductory Remarks xxv
Ilya Nikiforov

1 International Construction Projects 1
1.1 The unique nature of the construction industry 1
1.2 Individuality of construction projects 1
1.3 Roles and relationships 2
1.4 Contract administration: The Engineer 4
1.5 Further important aspects of construction projects 10
1.6 Typical contractual relationships 11
1.7 Motivation for international business 11
1.8 Managerial analyses 13
1.9 Hazards and risks 14
1.10 Hazard identification 15
1.11 Risk analysis 15
1.12 Anti-risk measures 16
1.13 Typical hazards in the international construction business 17
1.14 Risk allocation in contracts 18
Vignette: Wrong forms of contract by James Bremen (UK) 18
1.15 Form of business organization 19
References 22
Further reading 23

2 Civil Law and Common Law 24
2.1 Specifics of the governing law 24
2.2 Common law versus civil law: Differences and interconnections 24
Vignette: The common law of Australia and the influence of statutory law by Donald Charrett (Australia) 26
2.3 Delay damages (liquidated damages) versus contractual penalty 28
2.4 Substantial completion versus performance 29
2.5 Binding nature of adjudication awards 31
2.6 Limitation of liability 31
2.7 Lapse of claim due to its late notification (time bars) 32
2.8 Allocation of unforeseeable and uncontrollable risk to the contractor 32
2.9 Contract administration (The Engineer’s neutrality and duty to certify) 42
2.10 Termination in convenience 43
Vignette: Is an employer in breach of contract prevented from terminating the contract for its convenience? by Cecilia Misu (Germany) 44
2.11 Time-related issues 45
2.12 Quantification of claims 46
2.13 Statutory defects liability 47
2.14 Performance responsibility: reasonable skill and care versus fitness for purpose 47
2.15 Common law, civil law and Sharia interconnections 48
References 49
Further reading 49
Website 50

3 Common Delivery Methods 51
3.1 Common delivery methods: Main features 51
3.2 General contracting 53
3.3 Design-build 54
3.4 Construction management 58
3.5 Multiple-prime contracts 60
3.6 Partnering 60
3.7 Alliancing 61
3.8 Extended delivery methods (PPP, BOT, DBO) 62
3.9 Further aspects of delivery methods 62
References 65
Further reading 65

4 Specifics of EPC and EPCM 66
4.1 EPC and EPCM 66
4.2 Engineer procure construct (EPC) 66
4.3 Bespoke EPC contracts 69
4.4 Turnkey EPC contracts 70
Vignette: Water treatment, wind farm and road construction projects in Asian and African countries by Stéphane Giraud (France) 71
4.5 Front end engineering design 72
Vignette: Key issues in the procurement of international hydropower construction contracts by Alex Blomfield (UK) 73
4.6 Engineer procure construction management (EPCM) 77
Vignette: The use of the EPCM delivery method in the mining industry by Mark Berry (UK) and Matthew Hardwick (UK) 79
4.7 EPC versus EPCM 85
Reference 86
Further reading 87

5 Unification and Standardization in International Construction 88
5.1 Unification of contracts 88
5.2 Unification per law, principles and sample documents 88
5.3 Lenders and their influence on unification 90
5.4 Standard form of contract in a governing law context 92
5.5 Purpose of sample documents in construction projects 93
5.6 Standard sample forms as a source of law 94
5.7 Lex causae 95
5.8 Interpretation 96
5.9 Trade usage and business custom 97
Vignette: A common law of construction contracts – or vive la différence? by Donald Charrett (Australia) 98
5.10 Lex constructionis principles 100
5.11 The use of lex constructionis 102
Vignette: Future-proofing construction contracts by Shy Jackson (UK) 102
References 105
Further reading 105
Websites 105

6 Price 106
6.1 Contract price 106
6.2 Bid pricing methods 107
6.3 Methods of contract price determination 109
6.4 Re-measurement 109
6.5 The lump sum 112
6.6 Cost plus 112
6.7 Guaranteed maximum price 113
6.8 Target price 113
6.9 Payment 114
Vignette: Taxation in international construction contracts by Alex Blomfield (UK) 115
6.10 Contract price under FIDIC forms 117
6.11 Cost overruns 119
6.12 Abnormally low tender (ALT) 120
6.13 Claims as part of contract price 121
6.14 Public procurement law limitations 122
Vignette: A concept of variation in a construction contract under Polish public procurement by Michał Skorupski (Poland) 123
References 126
Further reading 126
Websites 127
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Time</td>
<td>128</td>
</tr>
<tr>
<td>7.1</td>
<td>Time in construction</td>
<td>128</td>
</tr>
<tr>
<td>7.2</td>
<td>Delay</td>
<td>128</td>
</tr>
<tr>
<td>7.3</td>
<td>The United Kingdom Society of Construction Law Delay and Disruption</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Time programme</td>
<td>131</td>
</tr>
<tr>
<td>7.5</td>
<td>Ownership of floats</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>*Vignette: Time extension and float ownership under the FIDIC Red</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>and Yellow Books (1999 editions) (BAMCO FDTEA final argument) by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frank Thomas (France)</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Time at large and Extension of Time (EOT)</td>
<td>146</td>
</tr>
<tr>
<td>7.7</td>
<td>Concurrent delay</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>*Vignette: Delay clauses in different jurisdictions by Jacob C.</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Jørgensen (Denmark)</td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>Disruption</td>
<td>150</td>
</tr>
<tr>
<td>7.9</td>
<td>Time for completion under FIDIC forms</td>
<td>151</td>
</tr>
<tr>
<td>7.10</td>
<td>Time programme under FIDIC forms</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>*Vignette: A lack of realism in negotiations by James Bremen (UK)</td>
<td>154</td>
</tr>
<tr>
<td>7.11</td>
<td>Delay and suspension under FIDIC forms</td>
<td>154</td>
</tr>
<tr>
<td>7.12</td>
<td>Contract termination under FIDIC forms</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>160</td>
</tr>
<tr>
<td>8</td>
<td>Variations</td>
<td>161</td>
</tr>
<tr>
<td>8.1</td>
<td>Variation clauses</td>
<td>161</td>
</tr>
<tr>
<td>8.2</td>
<td>Variations under FIDIC forms</td>
<td>163</td>
</tr>
<tr>
<td>8.3</td>
<td>Claims related to variations</td>
<td>164</td>
</tr>
<tr>
<td>8.4</td>
<td>Acceleration</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>*Vignette: The US approach to constructive acceleration by Robert</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>A. Rubin and Sarah Biser (the USA)</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Proving the acceleration claim</td>
<td>173</td>
</tr>
<tr>
<td>8.6</td>
<td>Substantial change</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>*Vignette: Modification of contracts during their execution under</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>EU law by Odysseas P. Michaelides (Cyprus)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Websites</td>
<td>180</td>
</tr>
<tr>
<td>9</td>
<td>Claims</td>
<td>181</td>
</tr>
<tr>
<td>9.1</td>
<td>Claims</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>*Vignette: Claims caused by deficiencies in tender documents by</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>James Bremen (UK)</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Contractor’s claims under FIDIC forms</td>
<td>185</td>
</tr>
<tr>
<td>9.3</td>
<td>Employer’s claims under FIDIC forms</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>*Vignette: Claims in the St Petersburg flood protection barrier</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>construction by Aleksei Kuzmin (Russia)</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>Lapse of claim</td>
<td>189</td>
</tr>
<tr>
<td>9.5</td>
<td>Cause of the claim</td>
<td>191</td>
</tr>
</tbody>
</table>
9.6 Limits of the lapse of claim 191
 Vignette: Construction claims in the UK by Garry Kitt (UK) 193
 Vignette: Condition precedent and time-barred claims under Polish Law by Michał Skorupski (Poland) 196
 Vignette: Australian position on time bars by Andrew P. Downie (Australia) 197
References 204
Further reading 204

10 Claim Management 205
10.1 Claim management 205
10.2 Claims for Extension of Time (EOT) 206
10.3 Claims for additional payment 208
10.4 Claims resulting from delay and/or disruption under the provisions of the contract 209
 Vignette: Considerations related to site overhead claims by Gary Kitt (UK) 210
10.5 Claims resulting from governing law 220
10.6 Global claims 220
 Vignette: All global claims are not negatively ‘global!’ by Frank Thomas (France) 223
10.7 Contractor’s claim management under FIDIC forms 224
10.8 Employer’s claim management under FIDIC forms 227
10.9 Intercultural aspects 228
 Vignette: Cultural considerations in Southeast Asia by Salvador P. Castro, Jr. (The Philippines) 228
 Vignette: ‘Claim’ as perceived in the Polish civil law environment by Michał Skorupski (Poland) 230
10.10 Claim management implementation 231
 Vignette: Claims in a tunnel construction in the Republic of Serbia by Radim Wrana (the Czech Republic) 232
References 234
Further reading 234

11 Construction Dispute Boards 235
11.1 Construction disputes 235
 Vignette: Construction dispute in sheet metal galvanizing line project by Patrick Kain (South Africa) 235
11.2 Dispute boards 237
 Vignette: Project dispute avoidance by Christopher J. Mather (the USA) 238
 Vignette: The use of dispute boards in the Middle East and North Africa by Andy Hewitt (United Arab Emirates) 245
11.3 Contractual adjudication: The use of DAB in FIDIC forms 246
11.4 Enforcement of dispute board decisions 249
11.5 Statutory adjudication 254
 Vignette: Statutory adjudication by Nigel Grout (UK) 254
12 FIDIC

12.1 FIDIC expansion

12.2 FIDIC

12.3 FIDIC’s influence on the construction industry

12.4 FIDIC membership

12.5 Networking activities

Vignette: The use of FIDIC forms in Southeast Asia by Salvador P. Castro, Jr. (The Philippines)

Vignette: The use of FIDIC forms in Russia by Dmitry Nekrestyanov (Russia)

Vignette: The use of FIDIC forms in Brazil by Rafael Marinangelo (Brazil)

12.6 FIDIC forms of contract

12.7 The structure of the contract under FIDIC forms

12.8 Conditions of Contract for Construction (CONS) – 1999 Red Book

Vignette: Misapplications of FIDIC contracts in the United Arab Emirates by Kamal Adnan Malas (United Arab Emirates)

12.9 Conditions of Contract for Plant and Design-Build (P&DB) – 1999 Yellow Book

12.10 Conditions of Contract for EPC/Turnkey Projects (EPC) – 1999 Silver Book

12.11 Short Form of Contract – Green Book

12.12 Construction Subcontract

12.13 Conditions of Contract for Design, Build and Operate (DBO) – Gold Book

12.14 Other FIDIC standard forms

Vignette: Use of FIDIC contracts by the mining industry in Africa by Coenraad Snyman (South Africa)

12.15 Risk allocation under FIDIC forms

Vignette: China’s Standard form of construction contract in comparison with FIDIC forms by Shuibo Zhang (China)

Vignette: Explanation of FIDIC EPC risk allocation by FIDIC

12.16 Design responsibility under FIDIC forms

References

Further reading

13 Other Standard Forms of Construction Contracts: NEC, ICC, ENNA, IChemE, Orgalime, AIA, VOB

13.1 Common standard forms of construction contracts

13.2 The NEC (New Engineering Contract)
13.3 FIDIC forms versus NEC3 310
13.4 ICC forms of contract 313
13.5 ENAA forms of contract 314
13.6 IChemE forms of contract 314
13.7 Orgalime forms of contract 315
13.8 AIA forms of contract: US standard 316
13.9 VOB: German standard 318
13.10 Invalid clauses in German case law 324

Vignette: The standard forms of construction contract in Australia by John Sharkey (Australia) 325

References 328
Further reading 328
Websites 329

14 Risk and Insurance 330
14.1 Insurance in construction 330
14.2 Commercial risk, risk of damage and exceptional risk 331
Vignette: Weather risk in offshore wind construction contracts by Alex Blomfield (UK) 334
14.3 Risk management in the standard forms of contract 337
14.4 Hazards and risks in construction projects 339
14.5 Insurance requirements in standard forms of contract 342
Vignette: Insurance in hydroenergy projects by Alex Blomfield (UK) 345
14.6 Practical aspects of insurance in construction projects 346
Vignette: Incompatibility of the construction contract with the insurance contract by Karel Fabich (the Czech Republic) 348
14.7 International insurance law and insurance standards in the construction industry 349

References 352
Further reading 352
Website 353

15 Risk in Underground Construction 354
15.1 Underground construction hazards and risks 354
15.2 Code of practice for risk management of tunnel works 355
15.3 Alternatives of unforeseeable physical conditions risk allocation 356
15.4 Unforeseeability 357
15.5 ‘Unforeseeability’ according to FIDIC forms 358
15.6 Site data
Vignette: Water-related construction projects by Robert Werth (Germany) 361
15.7 Sufficiency of the accepted contract amount 364
15.8 Unforeseeable physical conditions 364
15.9 Unforeseeable operation of the forces of nature 366
Vignette: Clairvoyance: A contractor’s duty? by Gustavo Paredes and Katherine Waidhofer (Peru) 366
15.10 Force majeure 369
15.11 Release from performance under law 370
References 370
Further reading 370
Website 371

16 Securities 372
16.1 Securities in construction 372
16.2 Bank guarantees 373
16.3 Functions and parameters of bank guarantees 373
16.4 Specifics of Retention Guarantee 375
Vignette: Performance security and termination payment security in hydroenergy projects by Alex Blomfield (UK) 377
16.5 Governing law 378
Vignette: Common law specifics related to securities by Rupert Choat and Aidan Steensma (UK) 379
16.6 ICC rules related to securities 381
16.7 Suretyship 381
16.8 Stand-by letter of credit 382
16.9 Securities under FIDIC forms 383
Further reading 384

17 Civil Engineering Works: Infrastructure Construction Projects 386
17.1 Investments in developing countries 386
17.2 The approach to the risk allocation in the United States 387
17.3 The approach to the risk allocation in the United Kingdom 389
Vignette: Construction of airports by Patrick Kain (South Africa) 390
17.4 The approach to the risk allocation in Central and Eastern Europe 392
Vignette: The Romanian experience by Claudia Teodorescu (Romania) 395
17.5 The Polish experience 399
Vignette: FIDIC forms and contractual relationships in Poland by Aleksandra Marzec (Poland) 399
Vignette: Market environment prior to and after 2008 by Michał Skorupski (Poland) 402
Vignette: Claims considerations by Aleksandra Marzec (Poland) 408
Vignette: Contractor defence measures by Michał Skorupski (Poland) 412
17.6 The Czech experience 415
Vignette: Local limits for development: An interview with Shy Jackson (UK) by Lukas Klee (the Czech Republic) 416
References 421
Further reading 421
Websites 422
18 Building Construction: Health Care Facilities

18.1 Health care facility construction project
18.2 Pre-design planning phase
18.3 Design phase
18.4 Basic structure of a hospital
18.5 Efficiency and cost effectiveness
18.6 Flexibility and expandability
18.7 Therapeutic environment
18.8 Cleaning and maintenance
18.9 Controlled circulation and accessibility
18.10 Aesthetics
18.11 Health and safety
18.12 Use of information technology
18.13 Relevant regulations and standards
18.14 Health care facility construction project: Suitable delivery method

Further reading

Appendix A: Interactive Exercises

A.1 Interactive exercise 1: Delivery method selection
A.2 Interactive exercise 2: Claim for delayed site handover
A.3 Interactive exercise 3: Claim due to suspension of work
A.4 Interactive exercise 4: Subcontractor claim for contractor delay (lack of cooperation, inadequate on-site coordination and improper, unclear and delayed instructions)

Appendix B: Sample Letters

B.1 Contractor's sample letters: Notice of probable future event
B.2 Contractor's sample letters: Notice of contractor's claims
B.3 Contractor's sample letters: Contractor's claim No._________ submission (quantification)
B.4 Contractor's sample letters: Request for evidences of financial arrangements
B.5 Contractor's sample letters: Written confirmation of oral instruction
B.6 Contractor's sample letters: Notice of dissatisfaction with a determination of the engineer
B.7 Contractor's sample letters: Notice of contractor's entitlement to suspend work
B.8 Contractor's sample letters: Notice of contractor's claim under the Sub-Clause 16.1
B.9 Contractor's sample letters: Application for taking-over certificate
B.10 Employer's sample letters: Notice of employer's claim
B.11 Employer's sample letters: Answer to request for evidence of financial arrangements
B.12 Engineer’s sample letters: Engineer’s determination 454
B.13 Engineer’s sample letters: Engineer’s instruction 456
B.14 Engineer’s sample letters: Engineer’s notice to correct 457
B.15 Engineer’s sample letters: Engineer’s instruction to remove a person employed on the site 458
B.16 Engineer’s sample letters: Engineer’s instruction – lack of mobilisation 459

Appendix C: Dictionary of Construction Terms: Chinese, Czech, English, French, German, Hungarian, Polish, Portuguese, Russian, Spanish 461
C.1 Dictionary – General part 462
C.2 Dictionary – Contractor’s claims 470
C.3 Dictionary – Employer’s claims 474

Appendix D: Claim Management System under FIDIC Forms 478
D.1 Claim Management Team Responsibilities 478
D.2 Claim Management Processes 481
D.3 Table of Contractor’s claims under FIDIC CONS 482
D.4 Table of Employer’s claims under FIDIC CONS 482

Appendix E: FIDIC Forms Risk Allocation Charts 484
E.1 Chart No.1: Basic risk allocation alternatives in connection with unforeseeable physical conditions 484

Appendix F: Engineer’s Determination Within the Ambit of the 1999 Edition of the FIDIC Contract Forms: A Case Study of Contractor’s Claims in Respect of Sand and Gravel Borrow Areas 487
by Khalil T. Hasan
F.1 Preface 490
F.2 Introduction 490
F.3 Contractual provisions for a claim 491
F.4 Compliance with the contractual provisions 492
F.5 Consultations with the employer and the contractor 493
F.6 Contractor’s original intent 507
F.7 Stage 2 – Contractor’s tender submission 512
F.8 Conclusion in respect of contractor’s original intent 512
F.9 Post contract award period 513
F.10 Contractor’s reasons for refusal to exploit the river bed borrow areas 516
F.11 Equipment required for exploitation of river bed borrow areas 518
F.12 Engineer’s analysis of the foregoing circumstances and facts 520
F.13 Additional costs and delays 523
F.14 Unjust enrichment of the contractor all at the expense of the employer 525
F.15 Engineer’s determination of S&G borrow area claim notices 526

Index 529
About the Author

Lukas Klee, JD, LL.M., Ph.D., MBA, is an international construction law expert, adjudicator and currently head of the legal department at Metrostav a.s., a large construction company based in central Europe.

For over a decade Lukas has dealt with international construction contracts (FIDIC) on a daily basis and has participated in large construction projects in the Czech Republic and internationally. When away from the office, he lectures on international construction law for example at the Charles University Faculty of Law in Prague, the Czech Technical University in Prague and at the University of Warsaw, Faculty of Law.

Over the course of his LL.M. studies at the Nottingham Trent University and PhD studies at the Charles University Faculty of Law, Lukas focused on FIDIC forms of contracts. His MBA dissertation at Sheffield Hallam University further examined claim management implementation.

Lukas regularly gives lectures for many organizations including FIDIC, provides training, publishes articles worldwide and is the author of several books related to international construction law.

Contact details: klee@email.cz.
We often hear the word ‘project’ when work needs to be done. ‘I have a project at home’ is a regular phrase in daily conversation. In general, we see more and more of our life as a series of projects. Going on holiday is a project; preparing a dinner with friends can be a project and training for a marathon can be a project. This mindset is likely to be something we have adopted from the construction industry.

One of the first things you notice when starting work in the construction industry is that the unknown has a major impact on any project. You can even divide the unknown into the ‘known unknown’ and the ‘unknown unknown’. The way to handle the unknowns is to use tools developed in the risk management field. These tools have been developed over many years and, when used correctly and continuously, can lead to more successful projects.

We do not know all the risk aspects when starting a project. For example, can we know and predict all the risks and problems associated with an industrial process for mass manufacturing? Designing a new car is a project. Once the design is agreed upon and all the details for manufacture are in place, the task is complete. The next step is industrial production with certainty of performance and quality of the car known – at least in principle.

Projects in the building and construction industry are unique and often only have a limited aspect of industrial process. For example, construction might use some well-defined processes such as the laying of sleepers and rail on a railway using a track-laying machine. However, uncertainty of the sub-soil conditions and other specific local conditions for the completed works will always sow the seed for risks and surprises. During execution of the works, the weather, the market situation, labour availability and so on influence the progress and certainty of achieving the agreed quality, budgeted price and finishing date.

An essential element of any project is the need for good agreements between the parties to a project. Since the 1950s, FIDIC has produced standard contracts for the construction industry. The principles of these contracts focus on fair risk sharing and the most effective mechanisms for administering the project. FIDIC contracts for construction and design-build make the Engineer the responsible party for administering the contract and managing the project. Thus, FIDIC contracts are two-party agreements for a three-party process.

The role of the Engineer is an issue that is often discussed. As an example, how can the Engineer avoid actual or apparent bias towards/against the contractor when being paid by the employer? The Engineer is an agent of the employer but their job is also to act fairly when making determinations under the contract. Contract conditions do state this obligation and it is paramount for the correct administration
of contracts that the assigned Engineer acts in accordance with this requirement. One of the advantages of having an Engineer and not a project manager is that the Engineer has the technical understanding of the project complexity and can manage the project so that questions and unforeseen events are handled properly. Therefore, it is very difficult to succeed with a complex project without the right understanding of the contractual arrangements and the nature of the project.

In the construction business, various kinds of standard contracts are available and set different priorities depending on where they are from. Some have a very strong focus on administrative procedures and are very prescriptive. Others set up a standard framework for the contract and are very dependent on a set of special or particular conditions. Thus, choosing the right form of contract from the outset is critical. The employer should think about how they want to monitor the project and handle risks. On one side of the spectrum are the works designed by the employer and, on the other, turnkey agreements. Some extreme versions of the latter place all risk on the contractor. Risk and influence, therefore, go hand in hand.

Transfer of all risks to the contractor under a turnkey form of contract gives the contractor full control of the processes to mitigate consequences of risks. The employer has to accept that by transferring risk, they also transfer control. Why is this form of contract so popular then? Answer: the industry has seen a growing need for certainty of price and time. Financial institutions focus on budgets and time more than ever. Under these circumstances, it is extremely important that the technical requirements for the project are well defined because changes at a later stage are, in principle, not possible.

The reader of this book will see that there are a lot of people in the industry striving to make projects successful and they put in a lot of effort into improving contracts, procedures and tools to become even better at managing complex projects. Our industry has produced spectacular achievements throughout modern history. In particular, the world's need for efficient transport has been a huge driver for the engineering industry. When new and more efficient transport is introduced, society prospers. Today the focus on sustainability also influences the way we design and construct. New ways of working, new ways of co-operating and new types of projects call for new types of agreements.

Whether you read this book from cover to cover or as reference guide, you should realize that because of this book your contribution to more successful projects will have a higher value. The book gives you access to a treasure chest of knowledge collected by experienced engineers and contract managers – experience you can use when faced with the challenges that projects bring – challenges that arise from the basic fundamental nature of projects themselves.

We who work with projects know that successful projects give out positive energy and a good feeling of developing our society. With this book in hand, it is now your turn to feel the power of this positive energy.
Acknowledgements

Many thanks to Andrea, Sam, Ben and the whole family for your understanding and endless support. I could not have done it without you.

Special thanks to Martin Udall as English language editor for his tireless work and assistance.

Many thanks to Josef Neuwirth, Jiří Bělohlav, Milík Tichý, Prof. Růžička, Paul Sayer and Harriet Konishi.

Many thanks to all my friends and colleagues who contributed with a vignette or helped with particular chapters. Your worldly insights have given this book a truly global perspective:

God says, 'If as one people speaking the same language they have begun to do this, then nothing they plan to do will be impossible for them.' (Genesis 11:6)

The modern era has brought with it a never-before-seen demand for high quality and high quantity civil infrastructures and industrial facilities. Their importance cannot be underestimated in raising the living standards of human beings, particularly in developing countries. Estimates of global demand for infrastructure over the next decade is somewhere between US$10 to 20 trillion. Meanwhile, with the advances in productivity, construction projects are getting larger in scope and more complex in technology. They usually involve an input of vast resources, including human expertise, equipment and various materials, among other things. This makes it very hard, if not impossible, for a single country or region to cope alone. In addition, comparative advantages make it more likely and efficient for construction-related firms from all over the world to work on the same project. As a matter of fact, large and global projects are ubiquitous on current international construction markets. Take China’s World Bank-financed Xiaolanglangdi Multipurpose Hydro Project as an example. More than one hundred organizations participated in the construction, including contractors, subcontractors, suppliers and consultants, from over fifty countries/regions. This project was thus nicknamed the ‘small United Nations’. According to the Engineering News Record, the overseas turnover of the top international 225 contractors has been increasing for the past 10 consecutive years, reaching a total of US$511 billion in 2012 compared to US$116 billion in 2003. This indicates an annual average growth rate of more than 15%.

Indeed, the construction industry has been globalizing with the globalization of the whole world. However, globalized construction projects are temporary and inter-organizational activities and require intense communication and coordination efforts from many participants who possess different cultural and legal backgrounds. Such institutional differences tend to act as obstacles and pose problems in communication among project participants, resulting in poor coordination, misunderstandings, chaos, and even unfortunate project failures. The very recent project of the A2 motorway in Poland undertaken by a Chinese contractor is a good illustration of the latter situation. The frequent occurrence of disputes in international construction is an ever-occurring phenomenon. Therefore, a good mechanism must be designed to alleviate such a situation – namely, the construction contract. This document, at its core, is designed to make all participants speak the same language.
Project contracts are legally enforceable and binding, and managerially instrumental, offering ‘the rules of play’ to act as a guide for the parties to work together. To cooperate efficiently and effectively, it is a must for all parties involved in international projects to have a good understanding of the rules first. However, due to the very nature of construction contracts and the different legal systems governing each individual contract, confusion may arise in the understanding, interpretation and execution of a given contract. For construction project professionals in general, this presents a challenge unless they are well informed with sound knowledge of construction-related contractual and legal issues. To the best of my knowledge, very few books on the market are available to explicitly deal with this topic.

I am pleased to learn that Dr. Lukas Klee, an experienced lawyer in international construction, has filled this gap with this new book that specifically targets international construction contracts in practical terms. This book covers the key legal and contractual knowledge areas for international construction, such as civil law/common law interrelationships, delivery methods, standard forms of contracts, risk allocation, variations, claims, dispute resolution, insurance and securities. Accompanying these subjects, the lessons learnt from the industry and around 50 vignettes collected from more than 15 countries and all continents make this book a real ‘international’ and ‘practical’ guide. The comprehensive knowledge conveyed in this book, in my personal judgement, will perfectly cater for the urgent needs of international construction professionals.

I am confident that this new book will be a great help to professionals allowing them to speak the same construction language in international projects and, in turn, will facilitate them in building a stairway to a better world in an efficient and harmonious way.
Introduction Remarks

Robert Werth

Owner of werth-consult engineering and consultancy services Essen, Germany

Construction law literature is usually written by lawyers for lawyers. This often means that texts are very technical and contain a lot of law-related jargon. To a large extent this is necessary but may exclude or ‘scare off’ the majority of construction project practitioners.

From my daily business dealings I have seen that the biggest issues in international contracts are managing communication, understanding and the behaviour of people. We all know that international contracts are usually large, complex documents and we could assume that the people involved have the proper skills to do the job. But do these people have the proper skills under the conditions agreed to under the terms of the contract? Many construction project participants (usually engineers) use the skills gained from working with domestic construction contracts and apply this knowledge internationally. Effectively, this often means that the job goes ahead, irrespective of what the contract says. This approach may be correct from a technical aspect but riskier when considering the administrative requirements under international contracts.

For these reasons, the most important issues for management staff when dealing with international contracts is an understanding of (1) the contract itself; and (2) the legal system in which it operates.

The advantage of this book is that it covers all important international construction law aspects in a comprehensible, easy-to-read and user-friendly manner. This helps find the common understanding of an issue before it can be discussed in terms of specific contract conditions in a particular case. It is an essential reference for all parties involved directly or indirectly in international construction projects.

This book is particularly helpful because it contains a number of practical examples from real ‘on-site’ experience that can assist the practitioner immerse themselves quickly into the specifics of construction projects. This also makes the book interesting and ‘readable’.

I highly recommend this book to anyone involved in international construction contracts.
My experience with international contracting in Eastern Europe, Russia and the CIS began twenty years ago. Despite the international prominence of commonly applicable construction practices (for example, under FIDIC standard forms of contract) their use and implementation in construction projects are relatively unknown in Russia and the CIS. In these regions, domestic industries work on the basis of traditional workflow documentation and contract writing dating back to the socialist era. This can cause significant problems when international construction projects ‘come to town’. Typically, there is conflict of expectations of accepted standards of contract and the rights and responsibilities of the parties.

In a fast moving and globalized world, local participants need a quick-reference guide to manage their expectations in an international construction project environment. As a professional in this field, I have many books in my legal library dealing with construction projects. However, all of these references are limited in their scope to a particular legal system or territory of implementation. Prior to the publication of this book I had no materials that provided universal coverage of construction topics at a global level.

Construction disputes are infamous for being costly, lengthy and voluminous. In an industry where ‘time is money’ more than anywhere else, participants in the field need knowledge, a calm head and oversight to minimize delays and keep the project moving. This book is a vital tool for making this possible. Therefore, it is of great benefit to all private consultants involved in the industry. For example, engineers in developing countries and emerging markets where international practices of implementation of infrastructure projects are just becoming known will find it particularly useful. The title will also appeal to in-house counsel and privately practising lawyers for whom construction law is not their mainstream practice area. It’s also a ‘must read’ for the wider audience of consultants, surveyors, architects and executives of project owners, employers (public and private) and domestic construction industry specialists.

The style of this book is characterized by its practical approach, lucidity of text and clarity. The author’s experience, know-how and international perspective as in-house counsel of a major construction company make him perfectly positioned to write this text.

The book has the further advantage of being written by an author from a non-common law country that has just recently begun to implement international contracting practices. His exposure to these matters provides readers with a unique, fresh and unbiased look at the subject matters as they stand today, for example, the
chapters on claims and claims management. These two chapters are literally ‘from the front lines’ and convey the author’s experiences in a practical way.

The majority of prominent publications are written by Anglo-American authors. Mr. Klee was trained and practises in a European law setting. The legal system is based on Roman and Napoleonic Law principles which operate not only in continental Europe, but also in South-East Asia, the Middle East, Africa and South America. For this reason, readers in these jurisdictions will find this title an invaluable, relevant and user-friendly tool to solve daily questions that arise in construction, for instance, how to apply the standard forms of contract developed in common law countries locally. Common law practitioners will similarly benefit from knowing what to expect when dealing with colleagues and partners in non-common law countries.

Another key feature of this book is the fact that the author is not a native English speaker. Most of the forms and precedents relating to the subject matter are in English. Thus, the author is in the best position to assess ‘translation difficulties’ – in other words, managing the linguistic aspect. Readers will become familiar with technical terms used in the industry. Moreover, the reference material included in the Appendices – tables, a dictionary of construction terms, and FIDIC forms add great value and facilitate learning. This treatise is an information source which the reader will turn to time and time again as construction project demands unwind and develop.

International supranational construction law lives and develops primarily through arbitration. Arbitration awards are not systematically published and the counsels who participate ‘learn by doing’. Unfortunately, the benefits of experience of arbitration are seldom passed down to other participants of construction projects (including to those whom counsel represent). The book is generously enriched and illustrated by case studies and references to arbitration awards, decisions and findings of arbitration tribunals. It is an entertaining and excellent supplement to the black letter law.

We have all been told to write in plain, easy-to-understand terms, to avoid legalese and to employ construction industry terms where possible while maintaining accuracy. This is not always an easy thing to do. The title successfully implements these principles and empowers its readers.

There is a clear need and niche for this publication for many readers from across the globe – notably in new independent states and developing countries. The author approaches the subject matters from their standpoint – that is, a non-native English-speaking construction project participant in a new economy where the forms and principles may not be familiar to them. Dr Klee’s practical and concise approach to issues will be welcomed by the busy practitioner.
1.1 The unique nature of the construction industry

The construction industry does not have clearly defined borders and its characteristics range from simple to complex. Construction supplies basic materials (such as aggregate, cement, steel reinforcement and pre-packaged mixtures) right up to cutting-edge technology developed and used by experts. The industry has contributed to, and is a vital element of, almost everything we see around us. For example, the diversion of water courses, land reclamation, houses, shopping centres, offices, factories, health care facilities and large infrastructure-related civil engineering works such as bridges, tunnels, highways, airports and harbours. Others installations include water treatment plants, dams, nuclear power plants, wind power plants and projects in the field of electricity generation. The contribution made by the construction of factories, warehouses and production lines that serve other industries, (including mining and research centres) cannot be ignored. The particular activities relate not only to new construction works, but also repairs, extensions, reconstructions and demolitions.

The diverse nature of the construction industry reflects the complexity of contemporary society as a whole, leading then to necessary specialization of particular activities in construction. A construction project is further comprised of complex processes, services and supplies reaching beyond the scope of this industry alone. For example, insurance, financing, bonds and guarantees, purchase of plant and equipment, security guards, operations and maintenance of work processes.

1.2 Individuality of construction projects

A construction project is a specific process or, rather, a sum of many processes. Mostly, it is an individual process. There are variables relating to the positions of its participants, their assignments and relationships, external conditions (concerning the economy, the nature of the site, climatic conditions, project risk and hazard
Construction projects face hazards of various kinds, caused either by humans or natural elements. Therefore, people, time and environmental elements play a major part here. The construction project itself tends to be a unique set-up of processes with unpredictable impacts caused by individual hazards. For large construction projects, their duration will often exceed two years. These projects are realized over extensive areas and are often difficult to safeguard perfectly. Therefore, a construction project is not a production line you can just program to smoothly create a product, within a well-defined time, quality and financial outlay.

Design errors, extremely adverse climatic conditions, unforeseeable on-site conditions in physical or social terms, site access-related issues, building permit problems, delays due to the requirements of environmentalists and variations are just some examples of potential complications.

Effective risk management must be the aim of everyone involved in a construction project. In other words, to identify patterns and potential problems, variations, hazards and risks in order to manage them effectively. This can only be achieved through the perfect preparation of each particular project. This is the theory.

However, in practice, the lowest bid price tends to be the most important criterion in public tender evaluations nowadays. This is also a reason why contracts (for works or for design) that determine particular project relations must anticipate and involve transparent, efficient and reasonable solutions to potential problems and complications.

1.3 Roles and relationships

In the course of time, five main groups of construction project participants have emerged as major players in the construction industry. These groups are directly involved in construction projects or have an influence or a particular function within the industry. They are the contractors, designers, regulators, employers and users (Murdoch and Hughes, 2008). Lenders (banks), insurance and reinsurance companies must also be mentioned as further (indirect) construction project participants because of their significant influence on construction projects. We will now discuss these important roles in the construction project.

1.3.1 Contractors

Most frequently, contractors can be encountered as either global or local construction companies. Construction companies differ in specialization and size – from small contractors for specialized activities up to supranational organizations that enjoy major industrial and political influence.

In the field of large construction projects, contractors often collaborate within joint ventures, setting up delivery chains at numerous levels. A general contractor enters into relationships with the subcontractors who further delegate parts of their obligations down to other specialized trade contractors, and so on down