Particle Adhesion and Removal
Adhesion and Adhesives: Fundamental and Applied Aspects

The topics to be covered include, but not limited to, basic and theoretical aspects of adhesion; modeling of adhesion phenomena; mechanisms of adhesion; surface and interfacial analysis and characterization; unraveling of events at interfaces; characterization of interphases; adhesion of thin films and coatings; adhesion aspects in reinforced composites; formation, characterization and durability of adhesive joints; surface preparation methods; polymer surface modification; biological adhesion; particle adhesion; adhesion of metallized plastics; adhesion of diamond-like films; adhesion promoters; contact angle, wettability and adhesion; superhydrophobicity and superhydrophilicity. With regards to adhesives, the Series will include, but not limited to, green adhesives; novel and high-performance adhesives; and medical adhesive applications.

Series Editor: Dr. K.L. Mittal
1983 Route 52,
P.O. Box 1280, Hopewell Junction, NY 12533, USA
Email: usharmittal@gmail.com

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)
Particle Adhesion and Removal

Edited by

K.L. Mittal and Ravi Jaiswal
Contents

Preface xv

Part 1: Particle Adhesion: Fundamentals 1

1 Fundamental Forces in Particle Adhesion 3
 Stephen Beaudoin, Priyanka Jaiswal, Aaron Harrison, Jennifer Laster, Kathryn Smith, Melissa Sweat, and Myles Thomas
 1.1 Introduction 3
 1.2 Various Forces in Particle Adhesion 4
 1.2.1 Capillary Forces 4
 1.2.2 van der Waals Forces 27
 1.2.3 Electrostatic Forces 49
 1.3 Summary 69
 References 70

2 Mechanics of Particle Adhesion and Removal 81
 Goodarz Ahmadi
 2.1 Introduction 81
 2.2 Models 83
 2.2.1 Particle Adhesion and Detachment Models 83
 2.2.2 Rough Particles Adhesion 89
 2.2.3 Charge Distribution 90
 2.2.4 Electrostatic Forces 92
 2.2.5 Capillary Force 93
 2.2.6 Hydrodynamic Forces and Torque 93
 2.2.7 Particle Detachment Models 95
 2.3 Simulations Results 96
 2.4 Summary and Conclusions 99
 Acknowledgements 100
 References 100
3 Microscopic Particle Contact Adhesion Models and Macroscopic Behavior of Surface Modified Particles

Katja Mader-Arndt, Zinaida Kutelova and Jürgen Tomas

3.1 Introduction 105

3.2 Constitutive Contact Models
 3.2.1 Elastic Contact Deformation 113
 3.2.2 Elastic-plastic Contact Deformation 115
 3.2.3 Plastic Contact Deformation 118
 3.2.4 Unloading 119

3.3 Macroscopic Powder Behavior – Continuum Mechanics Approach 121

3.4 Surface Modification to Alter the Adhesion Properties 124
 3.4.1 Surface Free Energy: Dispersion and Polar Components 124
 3.4.2 Glass Surface Cleaning Prior to Silanization 125
 3.4.3 Silanization 127

3.5 Experimental Measurements of the Adhesion Forces 130
 3.5.1 Single Particle Adhesion Measurements 130
 3.5.2 Shear Testing – Macromechanical Approach 140

3.6 Summary and Conclusions 146

Acknowledgements 147

List of Symbols 147

References 148

4 Characterization of Single Particle Adhesion: A Review of Recent Progress

Armin Saeedi Vahdat and Cetin Cetinkaya

4.1 Introduction 157

4.2 Background
 4.2.1 Adhesion Models 160
 4.2.2 Measurement Methods 161
 4.2.3 Non-contact Adhesion Characterization of Single Particles 161
 4.2.4 Particle Adhesion to Nano-film Coated Surfaces 162
 4.2.5 Non-contact Particle Manipulation 164
 4.2.6 Molecular-scale Characterization Challenges in Biological Adhesion 165

4.3 Recent Developments
 4.3.1 Nonlinear Dynamics in Adhesion Characterization of Micro-Particles 167
4.3.2 Adhesion Characterization of Monolayer Graphene by Vibrational Spectroscopy 177
4.3.3 Controllable Rolling Motion of Micro-Spherical Particles in SAW Fields 184
4.4 Conclusions and Remarks 193
Acknowledgments 194
List of Symbols 194
References 196

Part 2: Particle Removal Techniques 201

5 High Intensity Ultrasonic Cleaning for Particle Removal 203
Sami B. Awad and Nadia F. Awad
5.1 Introduction 204
5.2 Ultrasound and Ultrasonics 204
 5.2.1 Ultrasound Waves 205
 5.2.2 Factors Hindering the Transmission of Ultrasound Waves 206
 5.2.3 Principal Mechanism of High Power Ultrasound 206
5.3 Cavitation Phenomenon 207
 5.3.1 Cavitations and Micro-streaming 207
 5.3.2 Frequency and Cavitation Abundance 209
 5.3.3 Types of Cavitations 210
5.4 Generation of Ultrasound – Transducers 211
 5.4.1 Gas-driven Transducers 211
 5.4.2 Liquid-driven Transducers 212
 5.4.3 Electromechanical Transducers 213
 5.4.4 Transducer Assembly 215
 5.4.5 Ultrasonic Immersible Transducers 216
5.5 Ultrasonic Generators 217
 5.5.1 Power Requirements 217
 5.5.2 Multi-Frequency Ultrasonic Systems 217
5.6 Principles of Ultrasonic Cleaning for Particle Removal 219
 5.6.1 Cleaning Process Parameters 221
5.7 Determination of Residual Particles on Surfaces 223
5.8 Ultrasonic Aqueous Cleaning Equipment and Process 225
5.9 Precision Cleaning 228
5.10 Contaminants 228
5.11 Ultrasonic Cavitation Forces and Surface Cleaning 230
 5.11.1 Requirements to Produce Cavitations 231
5.12 Cleaning Chemistry 232
 5.12.1 Selection of Ultrasonic Cleaning Chemicals 234
 5.12.2 Maximizing the Overall Cleaning Effect 235
5.13 Mechanism of Cleaning 236
 5.13.1 Particle Removal 236
 5.13.2 Particle Removal Mechanism 236
 5.13.3 Prevention of Particle Re-deposition 237
 5.13.4 Cleaning Chemistry and Particle Removal 238
5.14 Cavitation Erosion 238
5.15 Summary 239
References 239

6 Megasonic Cleaning for Particle Removal 243

Manish Keswani, Rajesh Balachandran, and Pierre Deymier

6.1 Introduction 243
 6.1.1 Wafer Cleaning 244
6.2 Principles of Megasonic Cleaning 247
 6.2.1 Acoustic Streaming 248
 6.2.2 Acoustic Cavitation 251
6.3 Particle Removal Mechanisms During Megasonic Cleaning 259
6.4 Types of Megasonic Systems 262
6.5 Particle Removal and Feature Damage in Megasonic Cleaning 264
6.6 Summary 274
References 274

7 High Speed Air Jet Removal of Particles from Solid Surfaces 281

Kuniaki Gotoh

7.1 Introduction 281
7.2 Fundamental Characteristics of the Air Jet 282
7.3 Fundamentals of Air Jet Particle Removal 286
 7.3.1 Definition of Parameters and Removal Efficiency 286
 7.3.2 Effect of Pressure Drop ΔP_n and Distance d on Removal Efficiency η 288
 7.3.3 Effect of Impinging Angle θ 290
8 Droplet Spray Technique for Particle Removal

James T. Snow, Masanobu Sato and Takayoshi Tanaka

8.1 Introduction 313
8.2 Droplet Impact Phenomena 314
 8.2.1 Impact on Solid Surface 315
 8.2.2 Crown Formation 317
 8.2.3 Impact on Liquid Film 318
8.3 Cleaning Process Window 318
 8.3.1 Theoretical Studies 319
 8.3.2 Experimental Studies 320
8.4 Droplet Spray Technique for Semiconductor Wafer Cleaning 324
 8.4.1 Initial Studies 324
 8.4.2 Droplet Distribution Optimization 325
 8.4.3 Advanced Spray 329
8.5 Summary 331
References 331

9 Laser-Induced High-Pressure Micro-Spray Process for Nanoscale Particle Removal

Daehwan Ahn, Changho Seo and Dongsik Kim

9.1 Introduction 337
 9.1.1 Nanoscale Contamination Control 337
 9.1.2 Review of Physical Cleaning Methods 338
9.2 Concept of Droplet Opto-Hydrodynamic Cleaning (DOC) 340
9.3 Micro-Spray Generation by LIB 343
9.4 Mechanisms of Particle Removal by Laser-Induced Spray Jet 344
9.5 Generation of Micro-Spray Jet 345
9.5.1 Experimental Setup 345
9.5.2 Hydrodynamic Phenomena 346

9.6 Nanoscale Particle Removal 352
 9.6.1 Experimental Setup 352
 9.6.2 Optimization of Micro-Spray Jet 352
 9.6.3 Effect of Process Parameters 355
 9.6.4 Sub-100 nm Particle Cleaning 357

9.7 Summary 360
References 360

10 Wiper-Based Cleaning of Particles from Surfaces 365
 Brad Lyon and Jay Postlewaite
 10.1 Introduction 366
 10.1.1 Why Wipe? 366
 10.1.2 Particle Cleanliness 367
 10.2 Basic Mechanism of Wiping for Cleaning of Particles and Other Contaminants 371
 10.2.1 Why Wiping Works 371
 10.2.2 Wiping Mechanisms for Particle Removal 373
 10.2.3 Contamination Types 378
 10.3 Various Types of Wipers 379
 10.3.1 Fabric Construction 381
 10.3.2 Edge Type 385
 10.3.3 Selecting a Cleanroom Wiper 388
 10.4 Proper Ways to Carry Out Wiping or How to Use Wipers Properly 390
 10.4.1 The Purpose of Wiping 390
 10.4.2 Wiping Methods 393
 10.4.3 Introductory Training Example for Wiper-Based Particle Cleaning 395
 10.5 Characterization of Wipers 396
 10.5.1 Methods to Assess Wiper Particle and Fiber Contamination Levels 396
 10.6 Results Obtained Using Wiping 398
 10.6.1 Test Method 399
 10.6.2 Experimental Setup 400
 10.6.3 Data Collection 401
 10.6.4 Results 401
 10.6.5 Comments 405
11 Application of Strippable Coatings for Removal of Particulate Contaminants

Rajiv Kohli

11.1 Introduction 411
11.2 Coating Description 412
 11.2.1 Coating Properties 412
11.3 Types of Strippable Coatings 413
 11.3.1 Solvent-Based Coatings 413
 11.3.2 Water-Based Coatings 415
 11.3.3 Coatings for Removal of Radioactive Contamination 418
 11.3.4 Hazardous Materials Cleaning 422
 11.3.5 UV Curable Coatings 422
11.4 Issues with Strippable Coatings 426
11.5 Precision Cleaning Applications 427
 11.5.1 Optical Surfaces 427
 11.5.2 Other Applications 435
 11.5.3 Non-Optical Cleaning Applications 436
11.6 Summary 443
Disclaimer 443
References 443

12 Cryoaerosol Cleaning of Particles from Surfaces

Souvik Banerjee

12.1 Introduction 453
12.2 History of Cryoaerosol Cleaning 455
12.3 Thermodynamics of Cryoaerosol Processes 456
 12.3.1 Thermodynamics of CO₂ Aerosol Process 457
 12.3.2 Thermodynamics of Ar/N₂ Cryogenic Aerosol System 460
12.4 Cleaning Mechanism 461
12.5 Factors Affecting Cleaning Performance 462
 12.5.1 Moisture Control 463
 12.5.2 Control of Electrostatic Charging 463
13 Supercritical Carbon Dioxide Cleaning: Relevance to Particle Removal

Rajiv Kohli

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>477</td>
</tr>
<tr>
<td>13.2 Surface Cleanliness Levels</td>
<td>478</td>
</tr>
<tr>
<td>13.3 Dense Phase Fluids</td>
<td>479</td>
</tr>
<tr>
<td>13.3.1 Supercritical Carbon Dioxide</td>
<td>482</td>
</tr>
<tr>
<td>13.4 Principles of Supercritical CO\textsubscript{2} Cleaning</td>
<td>489</td>
</tr>
<tr>
<td>13.4.1 Cleaning Systems</td>
<td>490</td>
</tr>
<tr>
<td>13.4.2 Costs</td>
<td>491</td>
</tr>
<tr>
<td>13.5 Advantages and Disadvantages of Supercritical CO\textsubscript{2} Cleaning</td>
<td>493</td>
</tr>
<tr>
<td>13.5.1 Advantages</td>
<td>493</td>
</tr>
<tr>
<td>13.5.2 Disadvantages</td>
<td>495</td>
</tr>
<tr>
<td>13.6 Applications</td>
<td>496</td>
</tr>
<tr>
<td>13.6.1 Cleaning Spacecraft Components and Planetary Protection</td>
<td>497</td>
</tr>
<tr>
<td>13.6.2 Cleaning of Printing Rollers</td>
<td>498</td>
</tr>
<tr>
<td>13.6.3 Carbon Nanotubes</td>
<td>498</td>
</tr>
<tr>
<td>13.6.4 Soil Cleaning with Ionic Liquids and SCCO\textsubscript{2}</td>
<td>499</td>
</tr>
<tr>
<td>13.6.5 Conservation of Historical Art Objects and Structures</td>
<td>499</td>
</tr>
<tr>
<td>13.6.6 Sterilization</td>
<td>500</td>
</tr>
<tr>
<td>13.6.7 Monitoring of SCCO\textsubscript{2} Precision Cleaning Processes with the Quartz Crystal Microbalance</td>
<td>502</td>
</tr>
<tr>
<td>13.7 Summary and Conclusions</td>
<td>502</td>
</tr>
</tbody>
</table>

Acknowledgement

Disclaimer

References
14 The Use of Surfactants to Enhance Particle Removal from Surfaces

Brian Grady

14.1 Introduction 519
14.2 Solid-Solid Interactions 520
14.3 Introduction to Surfactants 524
14.4 Surfactant Adsorption at Solid Surfaces 529
14.5 Surfactants and Particulate Removal 535
14.6 Prospects 539
14.7 Summary 540
Acknowledgements 540
References 540
Index 543
Preface

The importance of particle adhesion and removal is quite manifest in many areas of human endeavor (ranging from microelectronics to optics, and space to biomedical). A complete catalog of modern precision and sophisticated technologies where removal of particles from surfaces is of cardinal importance will be prohibitively long, but the following eclectic examples should suffice to underscore the concern about particles on a variety of surfaces where particulate contamination is a bête noire. In the semiconductor world of ever-shrinking dimensions, particles which, just a few years ago, were cosmetically undesirable but functionally innocuous, are now “killer” defects. As device sizes get smaller, there will be more and more concern about smaller and smaller particles. In the information storage technology, the gap between the head and the disk is very narrow, and if a particle is trapped in the gap this can have very grave consequences. The implications of particulate contamination on sensitive optical surfaces are all too manifest. So the particulate contamination on surfaces is an anathema from functional, yield, and reliability points of view. With the burgeoning interest in nanotechnologies, the need to remove nano and sub-nano particles will be more and more intense. Apropos, it should be mentioned that in some situations, particle adhesion is a desideratum. For example, in photocopying the toner particles must adhere well to obtain photocopies, but these should not adhere to wrong places otherwise the result will be a dirty photocopy. Here also one can see the importance of particle removal.

One of us (KLM) has edited a series of books called “Particles on Surfaces: Detection, Adhesion and Removal” but the last volume (Volume 9) was published in 2006. Since 2006 there has been an enormous level of research activity, particularly in removing nanosize particles, and thus it was obvious that recent developments needed consolidation and this provided the vindication for the present book. This book was conceived with the core purpose of providing a comprehensive and easily accessible
reference source covering important aspects/ramifications of particle adhesion and removal, with emphasis on recent developments in understanding nanoparticle adhesion mechanism(s) and their removal. All signals indicate that R&D activity in the arena of removal of nanometer size particles will continue unabated.

Now coming to this book (containing 14 chapters), it is divided into two parts: Part 1: Particle Adhesion: Fundamentals, and Part 2: Particle Removal Techniques. The topics covered include: Fundamental forces in particle adhesion; mechanics of particle adhesion and removal; microscopic particle adhesion models and surface modified particles; characterization of single particle adhesion; high intensity ultrasonic removal of particles; megasonic cleaning for particle removal; high speed air jet removal of particles; droplet spray technique for particle removal; laser-induced high-pressure micro-spray technique for particle removal; wiper-based cleaning of particles; application of strippable coatings for removal of particulate contaminants; cryogenic cleaning of particles; supercritical carbon dioxide cleaning: relevance to particle removal; and use of surfactants to enhance particle removal.

This book represents the cumulative contribution of many internationally renowned subject matter experts in the domain of particle adhesion and removal. The book reflects the state-of-the-art with special attention to recent and novel developments.

The book containing bountiful information on the fundamental and applied aspects of particle adhesion and removal provides a unified and comprehensive source. It should serve as a portal for the neophyte and a commentary on the recent developments for the veteran. The book should be of interest to researchers in academia and R&D, manufacturing, and quality control personnel in microelectronics, aerospace, automotive, optics, solar panels, pharmaceutical, biomedical, equipment cleaning and wafer reclaiming industries. Essentially, anyone involved in or concerned with removal of particles should find this book of immense value. Also, we hope that this book will serve as a fountainhead for new ideas pertaining to particle removal.

Acknowledgements

Now comes the pleasant task of thanking those who made this book possible. First and foremost, we are deeply thankful to the authors for their interest, enthusiasm, cooperation and contribution without which this
book would not have seen the light of day. Also we are much appreciative of Martin Scrivener (Scrivener Publishing) for his steadfast interest in and continued support for this book project.

K.L. Mittal
Hopewell Junction, NY, USA
E-mail: ushaRittal@gmail.com

Ravi Jaiswal
Varanasi, UP, India
E-mail: ravi.jaiswal@gmail.com

October 25, 2014
Part 1

PARTICLE ADHESION: FUNDAMENTALS
1

Fundamental Forces in Particle Adhesion

Stephen Beaudoin¹, Priyanka Jaiswal², Aaron Harrison¹, Jennifer Laster¹, Kathryn Smith¹, Melissa Sweat¹, and Myles Thomas¹

¹School of Chemical Engineering, Purdue University, W. Lafayette, IN, USA, ²Department of Applied Chemistry & Polymer Technology, Delhi Technological University (formerly Delhi College of Engineering), New Delhi, India

Abstract
van der Waals, capillary, and electrostatic forces acting at the interface between a particle and a surface drive the adhesion behavior of the particles. If one can describe the nature and the strength of these forces as a function of the properties of the two interacting solids and the intervening medium, it is possible to predict and, in many cases, to control particle adhesion. This chapter focuses on the factors that influence the nature and strength of the forces, the fundamental theories that describe them, and the relevant mathematical expressions required to quantify them, with a caveat that the analysis presented is limited to systems with ideal geometry. Specifically, more advanced analysis, which may account for aspects such as roughness, non-uniform shape, deformation, and other complicating aspects, is not treated.

Keywords: Particle adhesion, van der Waals force, Hamaker constant, electrostatic force, double layer, capillary force, surface tension, surface energy.

1.1 Introduction

Particle adhesion influences many areas of science and engineering, including semiconductor fabrication, pharmaceuticals, cosmetics, mining, separations, petroleum production, surface coating, and food processing, to name a few. In the context of this chapter, adhesion is an interfacial...
phenomenon which appears when two solid bodies, one of which is of colloidal dimensions, approach each other closely. As the two surfaces approach, a complex interplay of van der Waals, electrostatic, and capillary forces drives the resulting behavior. Thorough knowledge of these surface forces is essential to understanding particle adhesion.

1.2 Various Forces in Particle Adhesion

In most applications of practical interest, the forces that control the adhesion between solid particles and solid surfaces are van der Waals (dipole) forces, electrostatic forces, and forces resulting from any liquid bridges due to capillaries or adsorbed molecular water between the two solids. Depending on the composition of the particle, the solid, and the ambient medium (air of varying relative humidity or aqueous solution are of interest here), the relative importance of these may change. This chapter provides an overview of these varying forces.

1.2.1 Capillary Forces

When a solid particle of characteristic dimension on the order of 100 micrometers or smaller is in contact with a solid surface in a gaseous medium (air), the relative humidity (RH) of the air is a critical factor in the relative importance of the forces that will influence the adhesion between the particle and surface [1, 2]. Specifically, water molecules in humid air will minimize their free energy by adsorbing on surfaces at low humidity and by condensing onto surfaces at higher humidity, if the surfaces of interest are sufficiently hydrophilic [3–8]. If condensed moisture forms liquid bridges between a particle and a surface, the capillary forces resulting from these liquid bridges will generally be the controlling forces in the particle adhesion [9]. The behavior of adsorbed water molecules has been studied using gravimetric methods, ellipsometry, nuclear magnetic resonance (NMR), atomic force microscopy (AFM) and the surface force apparatus (SFA), among others [3–8, 10–19].

1.2.1.1 Forces Across a Curved Liquid Interface

When a solid surface comes in contact with a liquid medium, the difference in the magnitude of the net cohesive forces between the liquid molecules \((i.e., F_{l-l}) \), and the net adhesion force between the liquid and the solid molecules \((i.e., F_{s-l}) \) initiates the formation of a liquid meniscus at the solid/liquid interface. The nature of the curvature of the liquid meniscus
(concave or convex) depends on which force, F_{s-l} (concave) or F_{l-l} (convex) is dominant. This leads to the phenomenon of wetting or de-wetting of the surface. Figure 1.1 shows an example of a liquid climbing on a solid plate. In this case, $F_{s-l} > F_{l-l}$. Solid surfaces which have $F_{s-l} > F_{l-l}$ are known as high energy surfaces. If the liquid is an aqueous solution, these are known as hydrophilic surfaces. If the liquid is non-aqueous, they are known as lyophilic surfaces. Such surfaces facilitate wetting. Mica, silicon dioxide, metals, and oxidized surfaces in general are typically hydrophilic. Solid surfaces in which $F_{s-l} < F_{l-l}$ are known as low energy surfaces. If the liquid is an aqueous solution, these are the hydrophobic surfaces. If the liquid is non-aqueous, they are the lyophobic surfaces. They facilitate de-wetting. Most organic surfaces, including most polymers, are hydrophobic. The surface energy of such materials can be increased by surface modifications (e.g., surface oxidation achieved via ultraviolet radiation, plasma discharge, laser irradiation, etc.) to enhance their hydrophilicity [20].

1.2.1.1.1 Surface Tension Force Acting at a Solid/Liquid Interface

The origin of surface tension is the unbalanced intermolecular force acting on the liquid molecules at the surface. The molecules present in the bulk of the liquid experience no net intermolecular force as they are surrounded by molecules of similar properties and hence are in a low energy state. However, the liquid molecules present at a liquid/solid or liquid/air interface are in an unbalanced or high energy state as they experience a net intermolecular force resulting from the difference in properties of the molecules in the different media. This leads to the development of the surface tension force. The surface tension (γ) is quantified as the net surface tension force acting on a unit length of the liquid/solid or liquid/air interface. Figure 1.2 is a schematic of a spherical particle in contact with a solid
surface through a liquid medium. The surface tension force, \(F_{st} \), acting on the solid/liquid boundary (the dotted line) can be obtained as

\[
F_{st} = \int \gamma dl = \gamma (\cos(\alpha)) l_{wetted}
\]

(1.1)

where \(\alpha \) is the angle of inclination of the liquid meniscus from the vertical, and \(l_{wetted} \) is the perimeter of the meniscus boundary on the solid surface.

1.2.1.1.2 Capillary Pressure Force Acting Across a Curved Liquid Interface

The micro-/nano-contacts between two solid surfaces act as active sites for condensation in a humid environment if the RH is above a critical value. When condensed moisture comes in contact with the solid surfaces, a liquid meniscus is formed in the contact region bridging the two solid surfaces, as shown in Figure 1.3.

Menisci form through two methods on solid surfaces: the spontaneous condensation of a vapor in a confined space (otherwise known as capillary condensation) and, for non-volatile liquids, the combination of adsorbed layers (on the two adhering surfaces) merged into a meniscus. A meniscus induces a pressure difference across the liquid-vapor interface, as shown in Figure 1.4, where the pressure on the liquid side of the meniscus is lower than that in the surrounding vapor. This pressure difference is described by the Young-Laplace equation

\[
\Delta P = \gamma_l \left(\frac{1}{r_n} + \frac{1}{r_p} \right)
\]

(1.2)

where \(\Delta P \) is the pressure difference across the meniscus (the Laplace pressure), \(\gamma_l \) is the surface tension of the liquid condensate, and \(r_n \) and \(r_p \) are the two principal radii of curvature (ROC) of the liquid bridge between the surfaces [21]. The Laplace pressure acts over an area, \(A \), and induces a force that pulls the two surfaces together increasing the total adhesion.
The normal surface tension force around the circumference of the meniscus (Equation 1.1) also contributes to the force, but it is usually small compared to the pressure-induced force and is often not considered for micro-scale particles [9].

The following relations can be obtained for the geometry shown:

\[
D + d = r_p (\cos(\varphi + \theta_1) + \cos(\theta_2)) \quad (1.3)
\]

\[
r_p = \frac{D + d}{\cos(\varphi + \theta_1) + \cos(\theta_2)} \quad (1.4)
\]

where \(d\) is the height of the particle inside the liquid bridge, and \(D\) is the separation distance, as shown in Figure 1.4, \(\theta_1\) and \(\theta_2\) are the contact angles of the liquid with the sphere (1) and the flat substrate (2), and \(\varphi\) is the half angle subtended at the center of the sphere by the wetted area of the sphere (this is also known as the ‘embracing’ or ‘filling’ angle).

The ROC, \(r_n\), can also be obtained from the geometry shown in Figure 1.4:
\[r_n = R \sin(\varphi) - \left(r_p - r_p \sin(\varphi + \theta_1) \right) \]
\[= R \left(\sin(\varphi) - \left(\frac{D + d}{R} \right) \left(\frac{1 - \sin(\varphi + \theta_1)}{\cos(\varphi + \theta_1) + \cos(\theta_2)} \right) \right) \] \hspace{1cm} (1.5)

where \(R \) is the particle radius. The equilibrium capillary pressure force, \(F_{cp} \), is found by multiplying the Laplace pressure by the interaction area using the Young-Laplace equation \[22\]
\[F_{cp} = A_{xy} \gamma_l \left(\frac{1}{r_p} + \frac{1}{r_n} \right) = \pi r_c^2 \gamma_l \left(\frac{\cos(\varphi + \theta_1) + \cos(\theta_2)}{D + d} + \frac{1}{r_n} \right) \] \hspace{1cm} (1.6)

where \(r_c \) is the radius of the contact circle at the solid particle/liquid/air interface, and is given by:
\[r_c = R \sin(\varphi) \] \hspace{1cm} (1.7)

For a large sphere \((R \gg D \text{ and } R \gg d)\), the following approximations can be made:

I. The embracing angle, \(\varphi \), will be very small in comparison to the contact angle, \(\theta_1 \)

II. \[\varphi = \cos^{-1}\left(\frac{R - d}{R} \right) = \cos^{-1}\left(1 - \frac{d}{R} \right) \] will be very small,

hence \(\varphi + \theta_1 \approx \theta_1 \)

III. \(r_c \) can be obtained using the geometry shown in Figure 1.4,
\[r_c = R \sin(\varphi) = \sqrt{R^2 - (R - d)^2} \approx \sqrt{2Rd} \] \hspace{1cm} (1.8)

IV. \(r_n \gg r_p \) from Equations 1.4 and 1.5, therefore \(1/r_n \) in Equation 1.6 can be neglected.

The final expression for the capillary pressure force between a large spherical particle and a planar surface, using the above approximations, can be obtained as:
\[F_{cp}^{R \gg D, R \gg d} = 2\pi R \gamma_l \left(\frac{\cos(\theta_1) + \cos(\theta_2)}{1 + \frac{D}{d}} \right) \] \hspace{1cm} (1.9)
When the spherical particle and the substrate are in contact \((D = 0)\), the capillary force will attain a maximum:

\[
F_{R \gg D, R \gg d}^{\max} = 2\pi R\gamma_i \left(\cos(\theta_1) + \cos(\theta_2)\right) = 4\pi R\gamma_i \cos(\theta)
\]

\[(\text{if } \theta_1 = \theta_2 = \theta) \tag{1.10} \]

It is apparent from Equation 1.10 that the capillary force for the case of a large spherical particle in contact with a flat substrate is humidity independent (as \(d\), a humidity-dependent parameter which quantifies the height of the liquid bridge, gets canceled out); and hence the capillary force in this case is a function of only the particle size and the surface tension. This has also been shown experimentally [22]. However, the capillary forces for small particles have strong humidity dependence [6, 23].

Most parameters, except \(d\), in Equation 1.9 are usually available to calculate the capillary force between a sphere and a flat plate. The estimation of \(d\) requires knowledge of the embracing angle \((\varphi)\) or the volume of the liquid bridge \((V)\).

\(d\) and \(\varphi\)

It is apparent from the geometry shown in Figure 1.4 that

\[
d = R \left(1 - \cos(\varphi)\right) = 2R\sin^2 \left(\frac{\varphi}{2}\right) \approx \frac{R\varphi^2}{2} \text{ for small } \varphi \tag{1.11} \]

The embracing angle \(\varphi\) will be very small for large spheres or for small liquid bridge volume.

\(d\) and \(V\)

The following relation exists between \(d\) and the liquid bridge volume \(V\)[24]

\[
d = \sqrt{D^2 + \frac{V}{\pi R}} - D \tag{1.12} \]

For the case of small separation distance \(D\), \(d \approx \sqrt{V / (\pi R)}\).

For the case of large separation distance \(D\),

\[
d = D \left[1 + \frac{V}{\pi RD^2}\right]^{1/2} - 1 \approx \frac{V}{2\pi RD} \]

The total capillary force acting between a sphere and a flat plate can be determined by combining the capillary pressure force (Equation 1.9) with the surface tension force (Equation 1.1) [25]

\[
F_{st} = 2\pi c_\gamma \cos(\alpha) = 2\pi R\gamma_i \sin(\varphi)\sin(\varphi + \theta) \tag{1.13} \]
where \(\alpha = \frac{\pi}{2} - (\phi + \theta_1) \) is the angle of the liquid meniscus (at the particle/liquid/air interface) from the vertical as shown in Figure 1.4. Finally,

\[
F_{\text{tot}}^{\text{sphere-plate}} = 2\pi R \gamma_1 \left(\cos(\theta_1) + \cos(\theta_2) \right) \frac{D}{1 + \frac{D}{d}} + 2\pi R \gamma_1 \sin(\phi) \sin(\phi + \theta_1)
\]

(1.14)

The filling angle \(\phi \) is still unknown, but can be estimated by the Kelvin equation, which relates the equilibrium ROC of the meniscus to the ambient relative humidity (RH) \([26, 27]\)

\[
\left(\frac{1}{r_n} + \frac{1}{r_p} \right) = \frac{R g T \ln(\text{RH})}{\gamma_1 V_m} \quad \text{or} \quad \left(\frac{1}{r_n} + \frac{1}{r_p} \right)^{-1} = r_k = \frac{\gamma_1 V_m}{R g T \ln(\text{RH})}
\]

(1.15)

where \(r_k \) is the so-called ‘Kelvin radius’. Specifically, by substituting Equations 1.4 and 1.5 into Equation 1.15, one may determine \(\phi \) numerically based on Equation 1.16, and then solve Equations 1.6 and 1.14 to determine \(F_{cp} \) and \(F_{tot} \)

\[
\frac{R g T \ln(p / p_0)}{\gamma_1 V} = \frac{\cos(\theta_1 + \alpha) + \cos(\theta_2)}{D + R(1 - \cos(\alpha))} - \frac{1}{R \sin(\alpha)}
\]

(1.16)

where \(p \) = the partial pressure of water at the system conditions and \(p_0 \) = the vapor pressure of water at these conditions The magnitude of \(2r_k \) gives the maximum separation distance between two adhering bodies over which capillary condensation can take place (i.e., the range of the capillary forces). For instance, the value of \(2r_k \) for water (\(\gamma_1 = 74 \text{mN/m} \)) at room temperature (\(T = 298\text{K} \)) is \([1.08/\ln(\text{RH})]\) nm. Figure 1.5 shows the maximum separation distance for capillary condensation as a function of RH at this temperature. If the RH is below 50%, the maximum separation distance (\(2r_k \)) for capillary condensation is roughly \(\sim 2 \text{ nm} \). Virtually all substrates generally have root-mean-squared (RMS) surface roughness greater than 2 nm. For this reason, unless there is substantial complementarity between the roughness on the particle and surface such that the peaks on one surface fit into the valleys on the opposing surface, capillary condensation (and correspondingly capillary forces) between particles and solid surfaces are generally negligible when the RH is below 50%.