Marine Proteins and Peptides

Biological Activities and Applications

Edited by Se-Kwon Kim

WILEY-BLACKWELL
Marine Proteins and Peptides
Marine Proteins and Peptides

Biological Activities and Applications

Se-Kwon Kim

Pukyong National University
Contents

List of Contributors xxiii

1 Marine-derived Peptides: Development and Health Prospects 1
Se-Kwon Kim and Isuru Wijesekara
1.1 Introduction 1
1.2 Development of Marine Peptides 1
1.3 Health Benefits of Marine Peptides 2
1.4 Conclusion 3
References 3

2 Bioactive Proteins and Peptides from Macroalgae, Fish, Shellfish and
Marine Processing Waste 5
Pádraigín A. Harnedy and Richard J. FitzGerald
2.1 Introduction 5
2.2 Macroalgal, Fish and Shellfish Proteins: Potential Sources of
Bioactive Hydrolysates and Peptides 5
2.2.1 Macroalgal Proteins 6
2.2.2 Fish and Shellfish Proteins 7
2.3 Enzymatic Hydrolysis of Macroalgal, Fish and Shellfish Processing
Waste Proteins: Bioactive Protein Hydrolysates and Peptides 8
2.3.1 In Vitro and In Vivo Cardioprotective Activity 10
2.3.2 Oxidative Stress 16
2.3.3 Other Biofunctionalities 18
2.4 Endogenous Bioactive Peptides from Macroalgae, Fish and Shellfish 22
2.5 Bioactive Proteins from Macroalgae, Fish and Shellfish 22
2.6 Commercial Products Containing Marine-Derived Bioactive Protein
Hydrolysates and Peptides 24
2.7 Conclusion 27
Acknowledgement 27
References 27

3 Lectins with Varying Specificity and Biological Activity from
Marine Bivalves 41
Bishnu Pada Chatterjee and Mausumi Adhya
3.1 Introduction 41
3.1.1 Bivalves 41
3.1.1.1 Mussels 41
3.1.1.2 Oysters 42
3.1.1.3 Clams 43
4 Digestive Enzymes from Marine Sources 69
Juan Antonio, Noriega Rodríguez, Ramiro Baeza Jiménez and Hugo Sergio García

4.1 Introduction 69
4.2 Biodiversity and Availability 70
4.3 Marine Biocatalysts 70
4.3.1 Salt and pH Tolerance 72
4.3.2 Barophilicity 73
4.3.3 Cold Adaptivity 73
4.4 Digestive Enzymes 73
4.4.1 Digestive Proteases 73
4.4.1.1 Acid/Aspartyl Proteases 74
4.4.1.2 Serine Proteases 75
4.4.1.3 Cysteine or Thiol Proteases 77
4.4.1.4 Metalloproteinases 78
4.5 Lipases 78
4.5.1 Phospholipases 79
4.5.2 Chitinolytic Enzymes 80
4.5.3 Transglutaminase 80
4.6 Industrial Applications 81
References 83

5 Kamaboko Proteins as a Potential Source of Bioactive Substances 91
Takeshi Nagai, Yasuhiro Tanoue, Norihsa Kai and Nobutaka Suzuki

5.1 Introduction 91
5.2 Creation of Healthier and Safer Foods 94
5.3 Enzymatic Modification of Food Proteins 95
5.4 Kamaboko 95
5.5 Chemical Properties of Kamaboko 98
5.6 Expression of Health the Function of Kamaboko Proteins 98
5.7 Antioxidative Activities of Kamaboko Proteins 100
5.8 Angiotensin I-Converting Enzyme-Inhibitory Activities of Kamaboko Proteins 104
6 Biological Activities of Fish-protein Hydrolysates

Irineu Batista

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>111</td>
</tr>
<tr>
<td>6.2 Angiotensin I-Converting Enzyme Inhibitors</td>
<td>111</td>
</tr>
<tr>
<td>6.3 Antioxidative Properties</td>
<td>116</td>
</tr>
<tr>
<td>6.4 Anticancer Activity</td>
<td>124</td>
</tr>
<tr>
<td>6.5 Antimicrobial and Antiviral Activity</td>
<td>125</td>
</tr>
<tr>
<td>6.6 Calcium-Binding Peptides</td>
<td>125</td>
</tr>
<tr>
<td>6.7 Appetite Suppression</td>
<td>125</td>
</tr>
<tr>
<td>6.8 Anticoagulant Activity</td>
<td>126</td>
</tr>
<tr>
<td>6.9 Immunostimulant Activity</td>
<td>126</td>
</tr>
<tr>
<td>6.10 Hypocholesterolemic Activity</td>
<td>126</td>
</tr>
<tr>
<td>6.11 Hormone-Regulating Properties</td>
<td>127</td>
</tr>
<tr>
<td>6.12 Other Biological Activities</td>
<td>127</td>
</tr>
<tr>
<td>References</td>
<td>127</td>
</tr>
</tbody>
</table>

7 Biological Activities of Proteins and Marine-derived Peptides from Byproducts and Seaweeds

Maria Hayes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>139</td>
</tr>
<tr>
<td>7.2 Bioactive Peptides</td>
<td>140</td>
</tr>
<tr>
<td>7.3 Marine-derived Bioactive Peptides</td>
<td>141</td>
</tr>
<tr>
<td>7.4 Isolation and Characterisation of Marine-derived Bioactive Peptides</td>
<td>141</td>
</tr>
<tr>
<td>7.4.1 Byproducts and Fish-protein Hydrolysates</td>
<td>141</td>
</tr>
<tr>
<td>7.4.2 Macroalgal Protein and Peptide Hydrolysates</td>
<td>143</td>
</tr>
<tr>
<td>7.5 Lectins</td>
<td>144</td>
</tr>
<tr>
<td>7.5.1 Isolation of Lectins</td>
<td>145</td>
</tr>
<tr>
<td>7.6 Phycobiliproteins</td>
<td>145</td>
</tr>
<tr>
<td>7.6.1 Isolation of Phycobiliproteins</td>
<td>146</td>
</tr>
<tr>
<td>7.7 Other Amino Acids and Peptides Present in and Derived from Macroalgae</td>
<td>146</td>
</tr>
<tr>
<td>7.8 Membrane Processing</td>
<td>147</td>
</tr>
<tr>
<td>7.9 Bioactivities of Marine-derived Peptides—inhibiting Proteases for Health</td>
<td>147</td>
</tr>
<tr>
<td>7.10 Heart-health Bioactive Peptides</td>
<td>148</td>
</tr>
<tr>
<td>7.10.1 ACE Inhibition</td>
<td>149</td>
</tr>
<tr>
<td>7.10.2 Renin Inhibition</td>
<td>152</td>
</tr>
<tr>
<td>7.10.3 PAF-AH Inhibition</td>
<td>152</td>
</tr>
<tr>
<td>7.10.4 PEP Inhibition</td>
<td>153</td>
</tr>
<tr>
<td>7.10.5 Factor Xa</td>
<td>154</td>
</tr>
<tr>
<td>7.10.6 Antioxidant Peptides</td>
<td>154</td>
</tr>
<tr>
<td>7.11 Commercially Available Bioactive Peptides</td>
<td>156</td>
</tr>
<tr>
<td>7.12 Conclusion</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td>159</td>
</tr>
</tbody>
</table>
Contents

8 Ability of Diverse Marine Invertebrate Lectins to Regulate Cell Functions

Yasuhiro Ozeki, Sarkar M. A. Kawsar, Yuki Fujii, Yukiko Ogawa, Shigeki Sugawara, Imtiaj Hasan, Yasuhiro Koide, Hidetaro Yasumitsu and Robert A. Kanaly

8.1 Introduction

8.2 Does a Feather Star Lectin have a Role in Regenerative Biology?

8.2.1 The First Evidence of Lectin in the Feather Star (Phylum Echinodermata, Class Crinoidea)

8.2.2 Type-2 N-Acetyllactosamine Recognition of Oxyl Identified by Frontal-affinity Chromatography Technology

8.2.3 Biomedical Aspects of OXYL for Regenerative Biology

8.3 A Novel Lectin from the Mediterranean Mussel Induces Apoptosis and Glycosphingolipid Interaction

8.3.1 Progress in Mussel Genome Databases

8.3.2 Shorter Carbohydrate-binding Motif Candidate Found in α-Galactose-binding Lectin in Mussel

8.3.3 Globotriaosyl Ceramide (Gb3)-dependent Cytotoxicity of the Mussel Lectin

8.4 Downregulation of the Gene Expression of an ABC Transporter by a Novel Lectin-glycosphingolipid Pathway Involving a Suel-type Lectin Domain

8.4.1 The D-galactoside/L-rhamnose-binding SUEL-type Lectin Family

8.4.2 Novel Downregulation of Gene Expression of an ABC Transporter by the Lectin—Glycosphingolipid Pathway

8.5 Perspectives on Studies of Invertebrate Lectins and Their Diverse Properties

References

9 Routes in Innate Immunity Evolution: Galectins and Rhamnose-binding Lectins in Ascidians

Loriano Ballarin, Matteo Cammarata, Nicola Franchi and Nicolò Parrinello

9.1 Animal Lectins

9.2 Ascidians

9.2.1 Inflammatory Responses of the Solitary Ascidian *C. intestinalis*

9.2.2 *B. schlosseri* Immune Responses

9.2.3 Ascidian Lectins

9.3 Galectins

9.3.1 Molecular Features, Structure and Evolution of *C. intestinalis* Galectins

9.3.2 Involvement of Galectins in *C. intestinalis* Inflammatory Response

9.4 Rhamnose-binding Lectins

9.4.1 RBLs in *B. schlosseri*: Biochemical and Molecular Features
9.4.2 RBLs in B. schlosseri: Synthesis and Immune Roles 196
9.4.3 BsRBL as a Multifuntional Molecule 198
9.5 Conclusion 198
Acknowledgement 200
References 200

10 Production of Lactobacilli Proteinases for the Manufacture of Bioactive Peptides: Part I—Upstream Processes 207
Dominic Agyei, Ravichandra Potumarthi and Michael K. Danquah

10.1 Introduction: Bioactive Peptides—Production and Functionalities 207
10.2 Lactobacilli Metabolism 209
10.3 The Proteolytic System of The Lactobacilli 209
10.4 Sources of Proteases and Advantages of Microbial Proteases 211
10.5 Marine Lactobacilli 212
10.6 Proteinase Production Requirements 212
10.6.1 Cell-Line Acquisition 212
10.6.2 Production (Growth) Media Selection 214
10.6.2.1 Carbon Sources 214
10.6.2.2 Nitrogen Sources 215
10.6.2.3 Carbon/Nitrogen Ratio 216
10.6.2.4 Metal-ion Requirement 216
10.6.3 Process Optimisation for Growth and Proteinase Production 217
10.6.3.1 Culture pH 217
10.6.3.2 Incubation Temperature 217
10.6.3.3 Gaseous Regime (Aeration) 218
10.6.3.4 Agitation Speed 219
10.6.3.5 Inoculum Conditions 220
10.6.3.6 Time Course for Proteinase Production 220
10.7 Effect of Fermentation Modes on Cell Growth and Proteinase Production 220
10.8 Cell Systems for Proteinase Production 222
10.9 Statistical Methods and Mathematical Models 222
10.10 Conclusion 223
Acknowledgement 223
References 223

11 Production of Lactobacilli Proteinases for the Manufacture of Bioactive Peptides: Part II—Downstream Processes 231
Dominic Agyei, Ravichandra Potumarthi and Michael K. Danquah

11.1 Introduction: Cell Recovery 231
11.2 Isolation: Proteinase-extraction Methodologies 231
11.2.1 Ca$^{2+}$-Free Buffers 232
11.2.2 Chaotropic Agents 234
11.2.2.1 Urea 234
11.2.2.2 Lithium Chloride 234
11.2.2.3 Guanidine Hydrochloride 235
11.2.4 Glycine 235
11.2.3 Low-Concentration Detergent 235
11.2.3.1 Sodium Dodecyl Sulfate 235
11.2.3.2 Triton X-100, CHAPS and DTT 235
11.2.4 Use of Enzymes (Muramidases) 236
11.2.5 Use of a Cocktail of Extractant 236
11.2.6 Factors Affecting Enzyme Extraction 236
11.2.6.1 Cell Lyses 236
11.2.6.2 Incubation Time, Temperature and pH 236
11.3 Purification of Enzymes 237
11.3.1 High-Performance Tangential Flow Filtration 239
11.3.2 High-Performance Liquid Chromatography 240
11.3.3 Ion-exchange Chromatography 240
11.3.4 Size-exclusion Chromatography 241
11.3.5 Hydrophobic-interaction Chromatography 241
11.3.6 Reversed-phase (rHPLC) 241
11.3.7 Affinity Chromatography (AC) 242
11.3.8 Methacrylate Monoliths as Stationary Phase in Chromatography 243
11.3.9 Expanded-bed Adsorption 243
11.4 Enzyme Concentration and Storage 244
11.5 Characterisation of Proteinase 244
11.5.1 Enzyme-activity Determination 244
11.5.1.1 Use of Casein in the Estimation of Proteinase Activity 244
11.5.2 Proteinase Kinetic Parameters 245
11.5.3 Optimum Conditions for Proteinase Activity 245
11.5.4 Molecular-mass Estimation, Metal-ion Inducers and Inhibitors 246
11.5.5 Substrate Specificity 246
11.6 Solvent and Enzyme Engineering for Enhanced Stability and Specificity 247
11.7 Conclusion 247
References 247

12 Recovery of Proteins and their Biofunctionalities from Marine Algae 253
You-Jin Jeon and Kalpa Samarakoon
12.1 Introduction 253
12.2 Importance of Proteolytic Enzyme-assisted Extractions 254
12.3 Marine-algal Functional Proteins and Peptides with Bioactivity 255
12.3.1 Antioxidant Proteins and Peptides 255
12.3.2 Antiproliferative Proteins and Peptides 257
12.3.3 Antihypertensive Proteins and Peptides 259
12.4 Marine-algal Proteins: Potential Sources for Future Applications 261
12.4.1 Nutraceutical Value 261
12.4.2 Pharmaceutical Value 262
12.4.3 Cosmetic Value 264
13 Fish Gelatin: A Versatile Ingredient for the Food and Pharmaceutical Industries

Venkateshwarlu Gudipati

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>271</td>
</tr>
<tr>
<td>13.2 Structural Features of Fish Gelatin</td>
<td>272</td>
</tr>
<tr>
<td>13.3 Improvement of Functional Properties</td>
<td>273</td>
</tr>
<tr>
<td>13.4 Applications in the Food Industry</td>
<td>274</td>
</tr>
<tr>
<td>13.4.1 Gelatin Gels</td>
<td>277</td>
</tr>
<tr>
<td>13.4.2 Food Emulsions</td>
<td>279</td>
</tr>
<tr>
<td>13.4.2.1 Oxidatively Stable Emulsions</td>
<td>279</td>
</tr>
<tr>
<td>13.4.3 Nutritional Supplements</td>
<td>280</td>
</tr>
<tr>
<td>13.4.4 Biodegradable Edible Films for Food Packaging</td>
<td>280</td>
</tr>
<tr>
<td>13.4.4.1 Biocomposite and Nanocomposite Films</td>
<td>281</td>
</tr>
<tr>
<td>13.4.4.2 Active Films for Food Preservation</td>
<td>283</td>
</tr>
<tr>
<td>13.5 Applications in the Pharmaceutical Industry</td>
<td>284</td>
</tr>
<tr>
<td>13.5.1 Fish Gelatin-based Hard and Soft Capsules</td>
<td>285</td>
</tr>
<tr>
<td>13.5.2 Antioxidative Fish-gelatin Hydrolysates</td>
<td>286</td>
</tr>
<tr>
<td>13.5.3 Collagen Peptides</td>
<td>286</td>
</tr>
<tr>
<td>13.5.3.1 Fish-scale Collagen Peptides</td>
<td>286</td>
</tr>
<tr>
<td>13.5.4 Carriers in Controlled Drug Delivery</td>
<td>287</td>
</tr>
<tr>
<td>13.6 Conclusion</td>
<td>287</td>
</tr>
</tbody>
</table>

14 Health Effects of Antioxidative and Antihypertensive Peptides from Marine Resources

Ida-Johanne Jensen, Karl-Erik Eilertsen, Hanne K. Mæhre, Edel O. Elvevoll and Rune Larsen

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>297</td>
</tr>
<tr>
<td>14.1.1 Origin of Peptides</td>
<td>297</td>
</tr>
<tr>
<td>14.2 Antioxidative Peptides</td>
<td>298</td>
</tr>
<tr>
<td>14.2.1 Antioxidants and Health Effects</td>
<td>298</td>
</tr>
<tr>
<td>14.2.1.1 Cardiovascular Diseases</td>
<td>298</td>
</tr>
<tr>
<td>14.2.1.2 Diabetes Mellitus</td>
<td>299</td>
</tr>
<tr>
<td>14.2.1.3 Neurodegenerative Disorders</td>
<td>300</td>
</tr>
<tr>
<td>14.2.1.4 Cancer</td>
<td>300</td>
</tr>
<tr>
<td>14.2.2 Antioxidant Function</td>
<td>300</td>
</tr>
<tr>
<td>14.2.2.1 Antioxidative Effects of Proteins, Peptides and Amino Acids</td>
<td>301</td>
</tr>
<tr>
<td>14.2.3 Evaluation of Antioxidative Capacity</td>
<td>302</td>
</tr>
<tr>
<td>14.2.3.1 In Vitro Chemical Studies</td>
<td>302</td>
</tr>
<tr>
<td>14.2.3.2 In Vitro Biological Studies</td>
<td>305</td>
</tr>
<tr>
<td>14.2.3.3 Animal Studies</td>
<td>306</td>
</tr>
<tr>
<td>14.2.3.4 Human Clinical Trials</td>
<td>306</td>
</tr>
<tr>
<td>14.3 Antihypertensive Peptides</td>
<td>307</td>
</tr>
</tbody>
</table>
14.3.1 Antihypertensive Peptides and Health 307
14.3.2 Function of ACE Inhibitors 307
14.3.3 Evaluation of ACE-inhibitory Effect 308
 14.3.3.1 *In Vitro* Studies 311
 14.3.3.2 Animal Studies 312
 14.3.3.3 Human Clinical Trials 312
14.3.4 Comparison of the ACE-inhibitory Capacities of Nonmarine Peptides and Commercial Products 313
14.4 Conclusion 313
References 313

15 Potential Novel Therapeutics: Some Biological Aspects of Marine-derived Bioactive Peptides 323
Ruvini Liyanage, Barana C. Jayawardana and Suranga P. Kodithuwakku
15.1 Introduction 323
15.2 Marine-derived Proteins and Biopeptides with Antihypertensive Activity
 15.2.1 ‘Katsuobushi’ Peptides 326
 15.2.2 Sardine Peptides 326
 15.2.3 Salmon Peptides 329
 15.2.4 Mackeral Peptides 329
 15.2.5 Shrimp Peptides 330
 15.2.6 Alaska Pollock Peptides 330
 15.2.7 Yellow Fin Sole Peptides 331
 15.2.8 Oyster Peptides 331
 15.2.9 Tuna Peptides 331
 15.2.10 Shark Peptides 332
 15.2.11 Algae Peptides 332
 15.2.12 Other Marine Peptides with Potent Anti-ace Properties 332
15.3 Anticancer Effects of Marine-derived Bioactive Peptides
 15.3.1 Didemin B and Aplidine 333
 15.3.2 ω-Conotoxin MVIIA 335
 15.3.3 Hemiasterlin/HTI-286 335
 15.3.4 Dolastatins 335
 15.3.5 Kahalalide F 336
 15.3.6 Cryptophycins 336
 15.3.7 Neovastat/AE-941 336
 15.3.8 Vitilevuamide 337
 15.3.9 Thiocoraline 337
 15.3.10 Jasplakinolide 337
 15.3.11 Conclusion 337
15.4 Antiviral Bioactivities of Marine-derived Bioactive Peptides
 15.4.1 Papuamides 338
 15.4.2 Callipeltin A 339
 15.4.3 Neamphamide A 339
 15.4.4 Mirabamides 339
 15.4.5 Cyanovirin-N 339
15.4.6 Microspinosamide 339
15.4.7 Griffithsin 339
15.4.8 Conclusion 340
15.5 The Future of Marine Peptides as Therapeutics 340
References 341

16 Hormone-like Peptides Obtained by Marine-protein Hydrolysis and Their Bioactivities 351
Oscar Martínez-Alvarez
16.1 Introduction 351
16.2 Growth Hormone-Release Peptides 352
16.3 Opioid-Like Peptides 353
16.4 Immunomodulating Peptides 357
16.5 Glucose Uptake-Stimulating Peptides 358
16.6 Secretagogue and Calciotropic Activities 359
16.7 Limitations on the use of Hormone-like Peptides as Nutraceuticals 360
16.8 Further Development and Research Needs 361
References 362

17 Antimicrobial Activities of Marine Protein and Peptides 369
Mingyong Zeng, Zunying Liu, Yuanhui Zhao and Shiyuan Dong
17.1 Introduction 369
17.2 Preparation, Purification and Characterization 370
17.2.1 Preparation and Purification 370
17.2.2 Characterization 371
17.3 In Vitro Antimicrobial Studies 373
17.3.1 Antimicrobial Activity 373
17.3.2 The Effects of AMPs on Bacterial Cells 374
17.4 Antimicrobial Mechanisms 375
17.4.1 Membrane-disruptive Mechanism 375
17.4.1.1 ‘Barrel-stave’ Model 375
17.4.1.2 ‘Micellar-aggregate’ Model 375
17.4.1.3 ‘Carpet’ Model 376
17.4.2 Non-membrane-disruptive Mechanism 378
17.5 Applications and Prospects in Food Preservation 378
17.6 Conclusion 380
References 380

18 Production and Antioxidant Properties of Marine-derived Bioactive Peptides 385
Tao Wang, Qiancheng Zhao and Qiukuan Wang
18.1 Introduction 385
18.2 Production of Antioxidant Peptides 386
18.2.1 Microbial Fermentation 386
18.2.2 Enzymatic Hydrolysis 389
18.2.2.1 Enzymatic Hydrolysis by Commercial Enzymes 389
18.2.2 Enzymatic Hydrolysis by Autolysis or Self-prepared Enzymes 390
18.2.3 Purification and Identification of Antioxidant Peptides 390
18.3 Antioxidant Mechanism and Structure–activity Relationship 392
18.3.1 Antioxidant Mechanism of Bioactive Peptides 392
18.3.2 Structure–activity Relationship of Antioxidant Peptides 393
18.3.2.1 Molecular Weights of Peptides 393
18.3.2.2 Hydrophobicity 395
18.3.2.3 Amino Acid Composition and Sequence 396
18.3.2.4 Histidine-containing Peptides 397
18.3.2.5 Peptide Conformation and Amino Acid Configuration 399
18.4 Industrial Applications and Perspectives 400
References 400

19 Marine Peptides and Proteins with Cytotoxic and Antitumoral Properties 407
João Varela, Catarina Vizetto-Duarte, Luísa Custódio, Luísa Barreira and Fernando Albericio
19.1 Introduction 407
19.2 Current Pipeline of Oncological Drugs Based on Natural Products 407
19.3 Current Pipeline of Marine Peptides with Antitumoral Activity 408
19.4 Major Biological Sources of Marine Cytotoxic Peptides and Proteins 410
19.5 Structural Motifs in Cytotoxic Peptides 410
19.6 Cytotoxic Acyclic Peptides 416
19.7 Cytotoxic Cyclic Peptides 419
19.8 Cytotoxic (Poly)Peptides Obtained by Enzymatic Hydrolysis of Seafood 420
19.9 Cytotoxic Polypeptides 421
19.10 Conclusion 421
19.11 Acknowledgments 422
References 422

20 ACE-inhibitory Activities of Marine Proteins and Peptides 431
Mingyong Zeng, Yuanhui Zhao, Zunying Liu and Shiyuan Dong
20.1 Introduction 431
20.2 Determination of ACE-inhibitory Peptide Activity 432
20.2.1 In Vitro ACE-Inhibition Assay 432
20.2.2 Antihypertensive-Activity Assay In Vivo 433
20.3 ACE-inhibitory Peptides from Marine Sources 433
20.3.1 ACE-Inhibitory Peptides from Fish Sources 434
20.3.2 ACE-Inhibitory Peptides from Sea Cucumber 434
20.4 Types of ACE-Inhibitor Peptide 435
20.5 Structure–Activity Relationships of ACE-Inhibitory Peptides 435
20.6 Conclusion 437
References 437
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Isolation and Biological Activities of Peptides from Marine Microalgae by Fermentation</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>BoMi Ryu and Se-Kwon Kim</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Introduction</td>
<td>441</td>
</tr>
<tr>
<td>21.2</td>
<td>Utilization of Fermentation to Hydrolyze Protein</td>
<td>442</td>
</tr>
<tr>
<td>21.3</td>
<td>Microalgae As a Source of Protein</td>
<td>442</td>
</tr>
<tr>
<td>21.4</td>
<td>Metabolites of Proteolytic Hydrolysis by Fermentation</td>
<td>443</td>
</tr>
<tr>
<td>21.5</td>
<td>Hydrolyzed Microalgal Peptide Application</td>
<td>444</td>
</tr>
<tr>
<td>21.6</td>
<td>Conclusion</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>446</td>
</tr>
<tr>
<td>22</td>
<td>Antioxidant Activities of Marine Peptides from Fish and Shrimp</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>Mingyong Zeng, Shiyuan Dong, Yuanhui Zhao and Zunying Liu</td>
<td></td>
</tr>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>449</td>
</tr>
<tr>
<td>22.2</td>
<td>Production, Isolation, and Purification of Antioxidant Peptides</td>
<td>450</td>
</tr>
<tr>
<td>22.3</td>
<td>Methods Used to Measure Antioxidant Activity</td>
<td>453</td>
</tr>
<tr>
<td>22.3.1</td>
<td>In Vitro Chemical Assays</td>
<td>454</td>
</tr>
<tr>
<td>22.3.2</td>
<td>In Vitro Biological Assays and In Vivo Assays</td>
<td>456</td>
</tr>
<tr>
<td>22.4</td>
<td>Antioxidant Activity of Peptides</td>
<td>456</td>
</tr>
<tr>
<td>22.4.1</td>
<td>Antioxidant Peptides from Fish Sources</td>
<td>456</td>
</tr>
<tr>
<td>22.4.2</td>
<td>Antioxidant Peptide from Shrimp Sources</td>
<td>460</td>
</tr>
<tr>
<td>22.5</td>
<td>Antioxidant Mechanisms of Peptides</td>
<td>461</td>
</tr>
<tr>
<td>22.6</td>
<td>Applications and Prospects</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>464</td>
</tr>
<tr>
<td>23</td>
<td>Fish-elastin Hydrolysate: Development and Impact on the Skin and Blood Vessels</td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>Eri Shiratsuchi, Misako Nakaba, Yasutaka Shigemura, Michio Yamada and Kenji Sato</td>
<td></td>
</tr>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td>467</td>
</tr>
<tr>
<td>23.2</td>
<td>Starter Materials for Fish-elastin Hydrolysate</td>
<td>468</td>
</tr>
<tr>
<td>23.3</td>
<td>Preparation of Skipjack-elastin Hydrolysate</td>
<td>470</td>
</tr>
<tr>
<td>23.4</td>
<td>Impact of Ingestion of Skipjack-elastin Hydrolysate on Skin Conditions</td>
<td>471</td>
</tr>
<tr>
<td>23.5</td>
<td>Impact of Skipjack-elastin Hydrolysate on Blood Vessels</td>
<td>477</td>
</tr>
<tr>
<td>23.6</td>
<td>Safety of Skipjack-elastin Hydrolysate</td>
<td>479</td>
</tr>
<tr>
<td>23.7</td>
<td>Identification of Food-derived Elastin Peptide in Human Blood</td>
<td>480</td>
</tr>
<tr>
<td>23.8</td>
<td>Effect of Food-derived Elastin-peptide Pro-gly on Cells</td>
<td>482</td>
</tr>
<tr>
<td>23.9</td>
<td>Conclusion</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>484</td>
</tr>
<tr>
<td>24</td>
<td>Free Radical-scavenging Activity of Marine Proteins and Peptides</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>Dai-Nghiep Ngo</td>
<td></td>
</tr>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>487</td>
</tr>
</tbody>
</table>
Contents

24.2 Formation of Free Radicals and Methods of Assaying Antioxidant Activity 487
24.2.1 Formation of Free Radicals 487
24.2.2 Methods of Assaying Antioxidant Activity 488
 24.2.2.1 Antioxidant Activities Using Chemical Tests 488
 24.2.2.2 Antioxidant Activities Using ESR Assay 490
24.3 Free Radical-scavenging Activity of Marine Proteins and Peptides 491
24.4 Conclusion 494
References 494

25 Marine-derived Bioactive Peptides: Their Cardioprotective Activities and Potential Applications 499
M. Vijayakumar, A. Noorlidah, Abdul Bakrudeen Ali Ahmed, K. Priya and M. T. Rosna
25.1 Introduction 499
25.2 Cardiovascular Diseases and Nutraceuticals 500
25.3 Sources of Marine Peptides 500
25.4 Development of Marine Bioactive Peptides 502
25.5 Oxidative Stress 502
25.6 Antihypertensive Activity 503
25.7 Anticoagulant Activity 504
25.8 Conclusion 505
References 506

26 Biological Activities of Marine Bioactive Peptides 509
Dai-Hung Ngo, Thanh-Sang Vo and Se-Kwon Kim
26.1 Introduction 509
26.2 Physiological Properties of Marine Bioactive Peptides 510
 26.2.1 Antioxidant Activity 510
 26.2.2 Antihypertensive Activity 511
 26.2.3 Anti-human Immunodeficiency Virus Activity 513
 26.2.4 Anticoagulant Activity 515
 26.2.5 Other Biological Activities 516
26.3 Conclusion 517
Acknowledgement 517
References 518

27 Shark Fin Cartilage: Uses, Extraction and Composition Analysis 523
Chamila Jayasinghe
27.1 Introduction 523
27.2 History 523
27.3 Uses 524
 27.3.1 Shark-fin Rays or Elastoidin 524
 27.3.2 Chondroitin Sulfate 524
27.4 Shark-fin Processing 525
27.5 Extraction of Elastoidin and Chondroitin Sulfate 526
28 Marine Bioactive Peptide Sources: Critical Points and the Potential for New Therapeutics 533
Ratih Pangestuti and Se-Kwon Kim

28.1 Introduction 533
28.2 Marine Bioactive Peptide Sources 534
 28.2.1 Seaweeds 534
 28.2.2 Seahorses 535
 28.2.3 Seaweed Pipefish 536
 28.2.4 Sea Cucumber 538
 28.2.5 Sponges 539
 28.2.6 Shellfish 539
 28.2.7 Marine Byproducts 540
28.3 Critical Points and the Potential for New Therapeutics 541
28.4 Conclusion 541
References 542

29 Applications of Marine-derived Peptides and Proteins in the Food Industry 545
D. M. Dilan Rasika, C. Senaka Ranadheera and Janak K. Vidanarachchi

29.1 Introduction 545
29.2 Marine-derived Proteins and Peptides Used in the Food Industry 546
 29.2.1 Antioxidants 546
 29.2.2 Antifreeze Proteins 547
 29.2.3 Antimicrobials 549
 29.2.4 Bioactive Peptides 550
 29.2.5 Enzymes 552
 29.2.6 Proteases/Proteinases/Protein-degrading Enzymes 552
 29.2.7 Lipid-degrading Enzymes 552
 29.2.8 Carbohydrate-transforming Enzymes 554
 29.2.9 Miscellaneous-type enzymes 554
29.3 Collagen and Gelatin 554
29.4 Extraction and Isolation of Marine-derived Proteins and Peptides 556
 29.4.1 Extraction of Antioxidants 556
 29.4.2 Extraction of Antifreeze Proteins 557
 29.4.3 Extraction of Antimicrobials 558
 29.4.4 Extraction and Isolation of Bioactive Peptides 558
 29.4.5 Extraction of Enzymes 559
 29.4.6 Extraction of Collagen and Gelatin 559
29.5 Food-related Applications of Marine-derived Proteins and Peptides 560
 29.5.1 Food Applications of Antioxidants 560
 29.5.2 Food Applications of AFPS 562
 29.5.2.1 Use of AFPs in the Cryopreservation of Fruits and Vegetables 562
Contents

29.5.2.2 Use of AFPs in the Meat Industry 563
29.5.2.3 Use of AFPs in Surimi Production 563
29.5.2.4 Use of AFPs in Ice-cream Manufacture 564
29.5.2.5 Use of AFPs in Aquaculture 564

29.5.3 Food Applications of Antimicrobials 565

29.5.4 Food Applications of BAPS 565
29.5.4.1 BAPs with Antihypertensive Effects 565
29.5.4.2 Bioactive Peptides with Beneficial Effects on the Gastrointestinal Tract 566
29.5.4.3 Bioactive Peptides with Anti-anxiety Effects 566

29.5.5 Food Applications of Marine-derived Enzymes 567
29.5.5.1 Use of Marine-derived Enzymes for the Extraction of Collagen from Fish-processing Byproducts 567
29.5.5.2 Use of Marine-derived Enzymes as Rennet Substitutes in Cheese Manufacture 567
29.5.5.3 Use of Marine-derived Enzymes for the Removal of the Oxidized Flavor of Milk 568
29.5.5.4 Use of Marine-derived Enzymes for the Production of Ripened Fish and Fish Sauce 568
29.5.5.5 Use of Marine-derived Enzymes for the Production of Fish-protein Hydrolysate 569
29.5.5.6 Use of Marine-derived Enzymes to Improve the Thickness and Gelling Ability of Surimi 570
29.5.5.7 Use of Marine-derived Enzymes for the Enrichment of PUFAs in Fish Oil 571
29.5.5.8 Use of Marine-derived Enzymes for the Deskinning and Descaling of Fish and Squid 572
29.5.5.9 Potential Food Applications of Marine-derived Lipases 572

29.5.6 Food Applications of Marine-derived Collagen and Gelatin 572
29.5.6.1 Edible Films and Coatings from Marine-derived Gelatin 573
29.5.6.2 Marine-derived Gelatin as a Gelling Agent in Food Products 575

29.6 Conclusion 576
References 576

30 Processing and Industrial Aspects of Fish-scale Collagen: A Biomaterials Perspective 589
Santanu Dhara, Pallab Datta, Pallabi Pal and Soumi Dey Sarkar

30.1 Introduction 589
30.2 Structure and Composition of Collagen 589
30.3 Synthesis of Collagen 590
30.4 Type-I Collagen 591
30.4.1 Sources 591
30.4.2 Advantages and Disadvantages 592
 30.4.2.1 Advantages 592
 30.4.2.2 Disadvantages 592
30.4.3 Biomedical Applications 592
30.5 Recombinant Collagen 593
30.6 Fish’s Potential as an Alternative Source of Collagen 594
 30.6.1 Isolation of Collagen From Various Parts of the Fish 594
 30.6.1.1 Scale 594
 30.6.1.2 Skin and Muscle 596
 30.6.1.3 Bone 597
 30.6.1.4 Fin 597
 30.6.1.5 Swim Bladder 597
 30.6.1.6 Stomach 597
 30.6.1.7 Variations from Usual Processes in the Isolation of Fish Collagen 598
 30.6.2 Comparative Characteristics of Fish Scale-derived Collagen 600
 30.6.2.1 Yield 600
 30.6.2.2 Amino Acid Analysis 600
 30.6.2.3 SDS-PAGE Analysis 607
 30.6.2.4 Subunit Composition 608
 30.6.2.5 Circular Dichroism 609
 30.6.2.6 Thermal Stability 610
 30.6.2.7 FTIR Spectroscopic Study 612
30.7 Emerging Applications of Type-I Collagen 613
 30.7.1 Type-I Collagen for Wound Healing and Skin Tissue Engineering 613
 30.7.2 Commercially Available Collagen-based Wound Dressings/Skin Substitutes 614
30.8 Conclusion 621
Acknowledgement 622
References 622

31 Properties, Biological Advantages and Industrial Significance of Marine Peptides 631
31.1 Introduction 631
 31.1.1 Marine Resources used for Peptide Synthesis 631
 31.1.2 Industrial Significance of Marine Peptides 632
31.2 Marine-peptide Properties 633
31.3 Industrial Development of Marine Bioactive Peptides 634
 31.3.1 Enzymatic Methods in Peptide Synthesis 634
 31.3.2 Chemical Methods in Peptide Synthesis 635
 31.3.3 Chromatography Methods in Peptide Synthesis 636
31.4 Biological Applications of Marine Peptides 636
32 Muscle Proteins of Fish and Their Functions

Byul-Nim Ahn and Se-Kwon Kim

32.1 Introduction

32.2 Fish Muscles

32.2.1 Skeletal Muscle

32.3 Myoglobin and Myofibrillar Proteins of Fish Muscle

32.4 Sarcoplasmic Protein

32.5 Antifreeze Proteins

32.5.1 Types of AFP

References

33 Marine-derived Collagen: Biological Activity and Application

W. M. Niluni Methsala Wijesundara and Buddika O. Malaweera

33.1 Introduction

33.1.1 Molecular Structure of Collagen

33.1.2 Different Types of Collagen and Their Distribution

33.1.3 Degradation of Collagen

33.1.4 Functions of Collagen

33.2 Sources of Marine Collagen

33.2.1 Fish

33.2.2 Crustaceans

33.2.3 Mollusks

33.2.4 Sponges

33.3 Applications of Marine Collagen

33.3.1 Cosmeceutical Applications

33.3.1.1 Use of Marine Collagen in Anti-aging/Antiwrinkle Agents

33.3.1.2 Use of Marine Collagen to Prevent Environmental Damage to Skin

33.3.1.3 Use of Marine Collagen in Moisturizing Products

33.3.2 Biomedical Applications

33.3.2.1 Use of Marine Collagen as a Drug-delivery System

33.3.2.2 Use of Marine Collagen in Bioengineering

33.3.3 Food and Nutraceutical Applications

33.3.3.1 Use of Marine Collagen to Improve the Textural Properties of Meat Products

33.3.3.2 Use of Marine Collagen and Gelatin to Improve the Sensory Properties of Meat Products

33.3.3.3 Use of Marine Collagen in Packaging Materials and Muscle Products
33.3.3.4 Use of Marine Collagen in Functional Foods 659
References 660

34 Marine Antifreeze Proteins: Types, Functions and Applications 667
Sung Gu Lee, Jun Hyuck Lee, Sung-Ho Kang and Hak Jun Kim

34.1 Introduction 667
34.2 Types of Marine AFP 670
34.2.1 AFGPS 670
34.2.2 Type-I AFP 672
34.2.3 Type-II AFP 675
34.2.4 Type-III AFP 675
34.2.5 Type-IV AFP 676
34.2.6 Other Marine AFPS 676
34.3 Preparation of Fish AFPS 677
34.3.1 Preparation of AFPS from Natural Sources 677
34.3.2 AFP-expression Systems 677
34.3.3 Chemical Synthesis of AFGP 679
34.4 AFP Applications 679
34.4.1 Cryopreservation 679
34.4.1.1 Red Blood Cells 681
34.4.1.2 Tissues and Organs 681
34.4.2 Cryosurgery 682
34.4.3 Food Preservation 682
34.4.4 Transgenic Studies 683
34.5 Conclusion 684
References 685

35 Antimicrobial Peptides in Marine Mollusks and their Potential Applications 695
Mahanama De Zoysa

35.1 Introduction 695
35.2 Characteristics of AMPS 696
35.3 Diversity of AMPS in Marine Mollusks 696
35.3.1 AMPS in Mussels 697
35.3.2 AMPS in Oysters 700
35.3.3 AMPS in Abalones 701
35.3.4 AMPS in Clams 702
35.3.5 AMPS in Other Mollusks 703
35.4 Applications of Mollusk-derived AMPS 703
References 704

36 Protein Hydrolysates and Bioactive Peptides from Seafood and Crustacean Waste: Their Extraction, Bioactive Properties and Industrial Perspectives 709
Anil Kumar Anal, Athapol Noomhorm and Punchira Vongsawasdi

36.1 Introduction 709
36.2	Overall Chemical Composition of Seafood and Crustaceans	710
36.3	Extraction of Protein Hydrolysates and Bioactive Peptides from Seafood and Crustacean Waste	713
36.3.1	Acid–alkaline Hydrolysis of Protein Hydrolysates and Peptide Extraction	716
36.3.2	Biological Methods of Extraction	717
36.3.2.1	Fermentation	717
36.3.2.2	Enzymatic Hydrolysis	717
36.3.2.3	Autolysis	719
36.3.3	Physical Methods of Extraction	720
36.4	Characterization of Fish-protein Hydrolysates and Bioactive Peptides	722
36.5	Functional and Bioactive Properties of Proteins and Peptides from Seafood and Crustacean Waste	724
36.5.1	ACE-inhibitory Activity	725
36.5.2	Antioxidative Functions	726
36.5.3	Antimicrobial Activities	727
36.5.4	Emulsification Properties	728
36.6	Conclusion	729

References 730

37 Production and Health Effects of Peptides from Fish Proteins 737
Mahinda Senevirathne and Se-Kwon Kim

37.1	Introduction	737
37.2	Sources of Fish Peptides	738
37.2.1	Muscle-protein Peptides	738
37.2.2	Peptides from Fish-skin Collagen and Gelatin	738
37.2.3	Fish Bone as a Potential Peptide Source	738
37.2.4	Peptides from Other Body Parts	738
37.3	Production of Fish Peptides	739
37.4	Health-promoting ability of fish peptides	740
37.4.1	Antioxidant Activity	740
37.4.2	Antihypertensive Activity	743
37.4.3	Antimicrobial Activity	744
37.4.4	Anticoagulant Effect	745
37.4.5	Anticancer Effect	745
37.4.6	Ca-absorbing and Bone-mineralization Ability	745
37.4.7	Others Activities	746
37.5	Future Trends of Peptides from Fish Proteins	746
37.6	Conclusion	746

References 747

Index 753
List of Contributors

N. Abdullah
Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Mausumi Adhya
NSHM Faculty of Engineering and Technology, NSHM Knowledge Campus, Durgapur, West Bengal, India

Abdul Bakrudeen Ali Ahmed
Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Byul-Nim Ahn
Department of Chemistry, Pukyong National University, Nam-Gu, Busan, Republic of Korea

Dominic Agyei
Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia

Fernando Albericio
Institute for Research in Biomedicine, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain; University of Barcelona, Department of Organic Chemistry, Barcelona, Spain

Anil Kumar Anal
Food Engineering and Bioprocess Technology, Asian Institute of Technology, Klongluang, Thailand

Loriano Ballarin
Department of Biology, University of Padova, Padova, Italy

Luísa Barreira
Centre of Marine Sciences, University of Algarve, Faro, Portugal

Irineu Batista
Instituto Nacional dos Recursos Biológicos, I.P./IPIMAR, Portugal
Matteo Cammarata
Department of Environmental Biology and Biodiversity, University of Palermo, Palermo, Italy

Bishnu Pada Chatterjee
Department of Natural Science, West Bengal University of Technology, Kolkata, India

Luísa Custódio
Centre of Marine Sciences, University of Algarve, Faro, Portugal

Michael K. Danquah
Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia

Pallab Datta
Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India

Mahanama De Zoysa
College of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea

Santanu Dhara
Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India

Shiyuan Dong
College of Food Science and Engineering, Ocean University of China, China

Karl-Erik Eilertsen
Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Breivika, Norway

Edel O. Elvevoll
Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Breivika, Norway

Richard J. FitzGerald
Department of Life Sciences, University of Limerick, Limerick, Ireland

Nicola Franchi
Department of Biology, University of Padova, Padova, Italy

Yuki Fujii
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan; Division of Functional Morphology, Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki, Japan
Hugo Sergio García
Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Veracruz, Mexico

Venkateshwarlu Gudipati
Fishery Resources, Harvest and Post Harvest Management Division, Central Institute of Fisheries Education, Versova, Mumbai, India

Pádraigín A. Harnedy
Department of Life Sciences, University of Limerick, Limerick, Ireland

Imtiaj Hasan
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan; Department of Biochemistry and Molecular Biology, Faculty of Science, Rajshahi University, Rajshahi, Bangladesh

Maria Hayes
Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland

Chamila Jayasinghe
Department of Food Science and Technology, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawilla, Sri Lanka

Barana C. Jayawardana
Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka

Ida-Johanne Jensen
Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Breivika, Norway

You-Jin Jeon
School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea

Ramiro Baeza Jiménez
Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Madrid, Spain

Norihisa Kai
National Fisheries University, Yamaguchi, Japan

Robert A. Kanaly
Laboratory of Environmental Microbiology and Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan
Sung-Ho Kang
Division of Polar Life Sciences, Korea Polar Research Institute and Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea

Sarkar M. A. Kawsar
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan; Laboratory of Carbohydrate and Protein Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh

Hak Jun Kim
Division of Polar Life Sciences, Korea Polar Research Institute and Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea

Se-Kwon Kim
Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea; Department of Chemistry, Pukyoung National University, Nam-Gu, Busan, Republic of Korea

Suranga P. Kodithuwakku
Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka

Yasuhiro Koide
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan

Rune Larsen
Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Breivika, Norway

Jun Hyuck Lee
Division of Polar Life Sciences, Korea Polar Research Institute and Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea

Sung Gu Lee
Division of Polar Life Sciences, Korea Polar Research Institute and Department of Polar Sciences, University of Science and Technology, Incheon, Republic of Korea

Zunying Liu
College of Food Science and Engineering, Ocean University of China, China

Ruvini Liyanage
Institute of Fundamental Studies, Kandy, Sri Lanka

Hanne K. Mæhre
Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Breivika, Norway
Buddika O. Malaweera
Faculty of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea

Oscar Martínez-Alvarez
Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain

Takeshi Nagai
Graduate School of Agricultural Sciences, Yamagata University, Yamagata, Japan; The United Graduate School of Agricultural Sciences, Iwate University, Iwate, Japan; Graduate School, Prince of Songkla University, Songkhla, Thailand

Misako Nakaba
Hayashikane Sangyo Co. Ltd., Yamaguchi, Japan

Dai-Hung Ngo
Department of Chemistry, Pukyong National University, Busan, Republic of Korea

Dai-Nghiep Ngo
Department of Biochemistry, Faculty of Biology, University of Science, VNU-HCM Ho Chi Minh City, Vietnam

Athapol Noomhorm
Food Engineering and Bioprocess Technology, Asian Institute of Technology, Klongluang, Thailand

A. Noorlidah
Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

Yukiko Ogawa
Division of Microbiology, Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki, Japan

Yasuhiro Ozeki
Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, Yokohama, Japan

Pallabi Pal
Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India

R. Pallela
DBT-ICGEB Center for Advanced Bioenergy Research, ICGEB, New Delhi, India
List of Contributors

Ratih Pangestuti
Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea; Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan, Republic of Korea

Nicolò Parrinello
Department of Environmental Biology and Biodiversity, University of Palermo, Palermo, Italy

Ravichandra Potumarthi
Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia

K. Priya
PSG College of Arts and Science, Coimbatore, Tamilnadu, India

C. Senaka Ranadheera
Department of Agricultural Systems, Faculty of Agriculture, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka

D. M. Dilan Rasika
Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka

Juan Antonio Noriega Rodríguez
Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Sonora, Mexico

M. T. Rosna
Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia

BoMi Ryu
Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea

Kalpa Samarakoon
School of Marine Biomedical Sciences, Jeju National University, Jeju, Republic of Korea

Soumi Dey Sarkar
Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India

Kenji Sato
Division of Applied Life Sciences, Graduate School of Life and Environment Sciences, Kyoto Prefectural University, Kyoto, Japan