The Human Impact on the Natural Environment
past, present and future
Andrew Goudie
The Human Impact

ON THE NATURAL ENVIRONMENT
CONTENTS

PREFACE TO THE SEVENTH EDITION xi
ABOUT THE COMPANION WEBSITE xii

PART I: THE PAST AND PRESENT 1

1 INTRODUCTION 3
 Chapter Overview 3
 The development of ideas 3
 The development of human population and stages of cultural development 7
 Hunting and gathering 11
 Humans as cultivators, keepers and metal workers 13
 Modern industrial and urban civilizations 20
 Points for review 25
 Guide to reading 25

2 THE HUMAN IMPACT ON VEGETATION 26
 Chapter Overview 26
 Introduction 26
 The use of fire 27
 Fires: natural and anthropogenic 29
 Some consequences of fire suppression 30
 Some effects of fire on vegetation 32
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The role of grazing</td>
<td>32</td>
</tr>
<tr>
<td>Deforestation</td>
<td>34</td>
</tr>
<tr>
<td>Secondary rain forest</td>
<td>42</td>
</tr>
<tr>
<td>The human role in the creation and maintenance of savanna</td>
<td>43</td>
</tr>
<tr>
<td>The spread of desert vegetation on desert margins</td>
<td>46</td>
</tr>
<tr>
<td>The maquis of the mediterranean lands</td>
<td>51</td>
</tr>
<tr>
<td>The prairies and other mid-latitude and high-altitude grasslands</td>
<td>51</td>
</tr>
<tr>
<td>Post-glacial vegetational change in Britain and Europe</td>
<td>53</td>
</tr>
<tr>
<td>Lowland heaths</td>
<td>55</td>
</tr>
<tr>
<td>Introduction, invasion and explosion</td>
<td>56</td>
</tr>
<tr>
<td>Air pollution and its effects on plants</td>
<td>61</td>
</tr>
<tr>
<td>Forest decline</td>
<td>63</td>
</tr>
<tr>
<td>Miscellaneous causes of plant decline</td>
<td>65</td>
</tr>
<tr>
<td>The change in genetic and species diversity</td>
<td>66</td>
</tr>
<tr>
<td>Conclusion: threats to plant life</td>
<td>67</td>
</tr>
<tr>
<td>Points for review</td>
<td>68</td>
</tr>
<tr>
<td>Guide to reading</td>
<td>69</td>
</tr>
</tbody>
</table>

3 HUMAN INFLUENCE ON ANIMALS	70
Chapter Overview	70
Domestication of animals	71
Dispersal and invasions of animals	71
Human influence on the expansion of animal populations	76
Causes of animal contractions and decline: pollution	80
Habitat change and animal decline	83
Other causes of animal decline	86
Animal extinctions in prehistoric times	90
Modern-day extinctions	94
Points for review	101
Guide to reading	102

4 THE HUMAN IMPACT ON THE SOIL	103
Chapter Overview	103
Introduction	103
Salinity: natural sources	104
Human agency and increased salinity	105
Irrigation salinity	105
Dryland salinity	107
Urban salinity	108
Interbasin water transfers	108
Coastal zone salinity	109
Consequences of salinity	110
Reclamation of salt-affected lands	113
Lateritization	113
Accelerated podzolization and acidification	114
Some anthrosols resulting from agriculture and urbanization	115
Soil carbon	116
Soil structure alteration	116
CONTENTS

- Soil drainage and its impact
- Soil fertilization
- Fires and soil quality
- Soil erosion: general considerations
- Soil erosion associated with deforestation and agriculture
- Accelerated wind erosion
- Soil erosion produced by fire
- Soil erosion associated with construction and urbanization
- Soil conservation
- Points for review
- Guide to reading

5 THE HUMAN IMPACT ON THE WATERS

- Chapter Overview
- Introduction
- Deliberate modification of rivers
- Urbanization and its effects on river flow
- Vegetation modification and its effect on river flow
- The human impact on lake levels
- Changes in groundwater conditions
- Water pollution
- Chemical pollution by agriculture and other activities
- Deforestation and its effects on water quality
- Thermal pollution
- Pollution with suspended sediments
- Marine pollution
- Points for review
- Guide to reading

6 HUMAN AGENCY IN GEOMORPHOLOGY

- Chapter Overview
- Introduction
- Landforms produced by excavation
- Landforms produced by construction and dumping
- Sediment transport by rivers
- Accelerated sedimentation
- Ground subsidence
- Arroyo trenching, gullies and peat haggs
- Accelerated weathering and the tufa decline
- Accelerated mass movements
- Deliberate modification of channels
- Non-deliberate river-channel changes
- Reactivation and stabilization of sand dunes
- Accelerated coastal erosion
- Changing rates of salt marsh accretion
- The human impact on seismicity and volcanoes
- Points for review
- Guide to reading
7 THE HUMAN IMPACT ON CLIMATE AND THE ATMOSPHERE 213
 Chapter Overview 213
 World climates 213
 The greenhouse gases – carbon dioxide 214
 Other gases 216
 Ozone depletion and climate change 220
 Aerosols 220
 Global dimming and global brightening 222
 Vegetation and albedo change 222
 Forests, irrigation and climate 224
 The possible effects of water diversion schemes 225
 Lakes 226
 Urban climates 226
 Deliberate climatic modification 232
 Geoengineering 234
 Urban air pollution 234
 Air pollution: some further effects 238
 Stratospheric ozone depletion 243
 Conclusions 247
 Points for review 248
 Guide to reading 248

PART II: THE FUTURE 249

8 THE FUTURE: INTRODUCTION 251
 Chapter Overview 251
 Introduction 251
 Changes in the biosphere 255
 Climate and geomorphology 261
 Points for review 265
 Guide to reading 265

9 THE FUTURE: COASTAL ENVIRONMENTS 266
 Chapter Overview 266
 Introduction 266
 The steric effect 268
 Anthropogenic contribution to sea-level change 268
 Reduction in lake-water volumes 268
 Water impoundment in reservoirs 268
 Groundwater mining 269
 Urbanization and runoff 269
 Deforestation and runoff 269
 Wetland losses 269
 Irrigation 269
 Synthesis 269
 Permafrost degradation 270
 Melting of glaciers and sea-level rise 270
Ice sheets and sea-level rise 270
How fast are sea levels rising? 271
The amount of sea-level rise by 2100 271
Land subsidence 271
Coral reefs 272
Salt marshes and mangrove swamps 275
River deltas 277
Estuaries 278
Cliffed coasts 279
Sandy beaches 280
The role of sediment starvation 282
Conclusions 282
Points for review 282
Guide to reading 282

10 THE FUTURE: HYDROLOGICAL AND GEOMORPHOLOGICAL IMPACTS 284
Chapter Overview 284
Introduction 284
Rainfall intensity 285
Changes in tropical cyclones 286
Runoff response 287
Cold regions 289
Changes in runoff in the UK 290
Europe 291
Other examples 291
Geomorphological consequences of hydrological and other changes 293
Weathering 295
Points for review 296
Guide to reading 296

11 THE FUTURE: THE CRYOSPHERE 297
Chapter Overview 297
The nature of the cryosphere 297
The polar ice sheets and ice caps 298
Valley glaciers and small ice caps 300
Predicted rates of glacier retreat and some environmental consequences 304
Sea ice in the Arctic and Antarctic 305
Permafrost regions 306
Points for review 310
Guide to reading 310

12 THE FUTURE: DRYLANDS 312
Chapter Overview 312
Introduction 312
Climate changes in the past 314
Future changes in climate in drylands 315
Wind erosivity and erodibility 317
Future dust storm activity 317
Sand dunes 318
It is now three decades since the first edition of this book appeared. This period has seen a remarkable transformation in interest in the impact that humans are having on the environment, together with an explosion of knowledge. In this edition, I have made substantial changes to the text, figures, tables and references, and have tried to provide updated statistical information.

A.S.G.
ABOUT THE COMPANION WEBSITE

This book is accompanied by a companion website:

www.wiley.com/go/goudiehumanimpact

The website includes:
• Powerpoints of all figures from the book for downloading
• PDFs of tables from the book
Part I

The Past and Present
INTRODUCTION

The development of ideas

To what extent have humans transformed their natural environment? This is a crucial question which became very important in the seventeenth and eighteenth centuries (Grove and Damodaran, 2006) as western Europeans became aware of the ravages inflicted in the tropics by European overseas expansion. It was a theme that intrigued the eighteenth-century French natural historian, Count Buffon. He can be regarded as the first Western scientist to be concerned directly and intimately with the human impact on the natural environment (Glacken, 1967). He contrasted the appearance of inhabited and uninhabited lands: the anciently...
inhabited countries have few woods, lakes or marshes, many heaths and scrub, bare mountains, soils that are less fertile because they lack the organic matter which woods, felled in inhabited countries, supply, and the herbs are browsed. Buffon was also much interested in the domestication of plants and animals – one of the major transformations in nature brought about by human actions.

Studies of the torrents of the European Alps, undertaken in the late eighteenth and early nineteenth centuries, deepened immeasurably the realization of human capacity to change the environment. Fabre and Surell studied the flooding, siltation, erosion and division of watercourses brought about by deforestation in these mountains. Similarly, Horace-Bénédict de Saussure showed that Alpine lakes had suffered a lowering of water levels in recent times because of deforestation. In Venezuela, Alexander von Humboldt concluded that the lake level of Lake Valencia in 1800 (the year of his visit) was lower than it had been in previous times and that deforestation, the clearing of plains, irrigation and the cultivation of indigo, were among the causes of the gradual drying up of the basin (Cushman, 2011). Comparable observations were made by the French rural economist, Jean-Baptiste Boussingault (1845). He returned to Lake Valencia some 25 years after Humboldt and noted that the lake was actually rising. He described this reversal to political and social upheavals following the granting of independence to the colonies of the erstwhile Spanish Empire. The freeing of slaves had led to a decline in agriculture, a reduction in the application of irrigation water and the re-establishment of forest.

Boussingault also reported some pertinent hydrological observations that had been made on Ascension Island in the South Atlantic:

In the Island of Ascension there was an excellent spring situated at the foot of a mountain originally covered with wood; the spring became scanty and dried up after the trees which covered the mountain had been felled. The loss of the spring was rightly ascribed to the cutting down of the timber. The mountain was therefore planted anew. A few years afterwards the spring reappeared by degrees, and by and by followed with its former abundance. (Boussingault, 1845: 685)

Charles Lyell, in his Principles of Geology, one of the most influential of all scientific works, referred to the human impact and recognized that tree felling and drainage of lakes and marshes tended ‘greatly to vary the state of the habitable surface’. Overall, however, he believed that the forces exerted by people were insignificant in comparison with those exerted by nature:

If all the nations of the earth should attempt to quarry away the lava which flowed from one eruption of the Icelandic volcanoes in 1783, and the two following years, and should attempt to consign it to the deepest abysses of the ocean they might toil for thousands of years before their task was accomplished. Yet the matter borne down by the Ganges and Burrampooter, in a single year, probably very much exceeds, in weight and volume, the mass of Icelandic lava produced by that great eruption. (Lyell, 1835: 197)

Lyell somewhat modified his views in later editions of the Principles (see e.g. Lyell, 1835), largely as a result of his experiences in the USA, where recent deforestation in Georgia and Alabama had produced numerous ravines of impressive size.

One of the most important physical geographers to show concern with our theme was Mary Somerville (1858) (who clearly appreciated the unexpected results that occurred as man ‘dextrously avails himself of the powers of nature to subdue nature’):

Man’s necessities and enjoyments have been the cause of great changes in the animal creation, and his destructive propensity of still greater. Animals are intended for our use, and field-sports are advantageous by encouraging a daring and active spirit in young men; but the utter destruction of some races in order to protect those destined for his pleasure, is too selfish, and cruelty is unpardonable: but the ignorant are often cruel. A farmer sees the rook pecking a little of his grain, or digging at the roots of the springing corn, and poisons all his neighbourhood. A few years after he is surprised to find his crop destroyed by grubs. The works of the Creator are nicely balanced, and man cannot infringe his Laws with impunity. (Somerville, 1858: 493)

This is in effect a statement of one of the basic laws of ecology: that everything is connected to everything else and that one cannot change just one thing in nature.

Considerable interest in conservation, climatic change and extinctions arose amongst European colonialists who witnessed some of the consequences of western-style economic development in tropical lands (Grove, 1997). However, the extent of human influence on the environment was not explored in detail and on the
basis of sound data until George Perkins Marsh published *Man and Nature* (1864), in which he dealt with human influence on the woods, the waters and the sands. The following extract illustrates the breadth of his interests and the ramifying connections he identified between human actions and environmental changes:

Vast forests have disappeared from mountain spurs and ridges; the vegetable earth accumulated beneath the trees by the decay of leaves and fallen trunks, the soil of the alpine pastures which skirted and indented the woods, and the mould of the upland fields, are washed away; meadows, once fertilized by irrigation, are waste and unproductive, because the cisterns and reservoirs that supplied the ancient canals are broken, or the springs that fed them dried up; rivers famous in history and song have shrunk to humble brooklets; the willows that ornamented and protected the banks of lesser watercourses are gone, and the rivulets have ceased to exist as perennial currents, because the little water that finds its way into their old channels is evaporated by the droughts of summer, or absorbed by the parched earth, before it reaches the lowlands; the beds of the brooks have widened into broad expanses of pebbles and gravel, over which, though in the hot season passed dryshod, in winter sealike torrents thunder, the entrances of navigable streams are obstructed by sandbars, and harbours, once marts of an extensive commerce, are shoaled by the deposits of the rivers at whose mouths they lie; the elevation of the beds of estuaries, and the consequently diminished velocity of the streams which flow into them, have converted thousands of leagues of shallow sea and fertile lowland into unproductive and miasmatic morasses. (Marsh, 1965: 9)

More than a third of the book is concerned with ‘the woods’; Marsh does not touch upon important themes like the modifications of mid-latitude grasslands, and he is much concerned with Western civilization. Nevertheless, employing an eloquent style and copious footnotes, Marsh, the versatile Vermonter, stands as a landmark in the study of environment (Thomas, 1956; Lowenthal, 2000).

Marsh, however, was not totally pessimistic about the future role of humankind or entirely unimpressed by positive human achievements (1965: 43–44):

New forests have been planted; inundations of flowing streams restrained by heavy walls of masonry and other constructions; torrents compelled to aid, by depositing the slime with which they are charged, in filling up lowlands, and raising the level of morasses which their own overflows had created; ground submerged by the encroachment of the ocean, or exposed to be covered by its tides, has been rescued from its dominion by diking; swamps and even lakes have been drained, and their beds brought within the domain of agricultural industry; drifting coast dunes have been checked and made productive by plantation; sea and inland waters have been repeopled with fish, and even the sands of the Sahara have been fertilized by artesian fountains. These achievements are far more glorious than the proudest triumphs of war...
theme. Nathaniel Shaler of Harvard (Man and the Earth, 1912) was very much concerned with the destruction of mineral resources (a topic largely neglected by Marsh).

Sauer led an effective campaign against destructive exploitation, reintroduced Marsh to a wide public, recognized the ecological virtues of some so-called primitive peoples, concerned himself with the great theme of domestication, concentrated on the landscape changes that resulted from human action, and gave clear and far-sighted warnings about the need for conservation (Sauer, 1938: 494):

We have accustomed ourselves to think of ever expanding productive capacity, of ever fresh spaces of the world to be filled with people, of ever new discoveries of kinds and sources of raw materials, of continuous technical progress operating indefinitely to solve problems of supply. We have lived so long in what we have regarded as an expanding world, that we reject in our contemporary theories of economics and of population the realities which contradict such views. Yet our modern expansion has been affected in large measure at the cost of an actual and permanent impoverishment of the world.

The theme of the human impact on the environment has, however, been central to some historical geographers studying the evolution of the cultural landscape. The clearing of woodland (Darby, 1956; Williams, 1989; Williams, 2003), the domestication process (Sauer, 1952), the draining of marshlands (Williams, 1970), the introduction of alien plants and animals (McKnight, 1959), and the transformation of the landscape of North America (Whitney, 1994) are among some of the recurrent themes of a fine tradition of historical geography.

In 1956 some of these themes were explored in detail in a major symposium volume, Man’s Role in Changing the Face of the Earth (Thomas, 1956). Kates et al. (1990: 4) write of it:

Man’s role seems at least to have anticipated the ecological movement of the 1960s, although direct links between the two have not been demonstrated. Its dispassionate, academic approach was certainly foreign to the style of the movement Rather, Man’s Role appears to have exerted a much more subtle, and perhaps more lasting, influence as a reflective, broad-ranging and multidimensional work.

In the last four decades many geographers have contributed to, and have been affected by, the phenomenon which is often called the environmental revolution or the ecological movement. The subject of the human impact on the environment, dealing as it does with such matters as environmental degradation, pollution and desertification, has close links with these developments, and is once again a theme in many textbooks and research monographs in geography (see Turner et al., 1990; Bell and Walker, 1992; Meyer, 1996; Mannion, 1997, 2002; Middleton, 2008).

Concerns about the human impact have become central to many other disciplines and to the public, particularly since the early 1970s, and a range of major developments in literature, legislation and international debate have taken place (Table 1.1). The concepts of global change or global environmental change have developed. These phrases are much used, but seldom rigorously defined. Wide use of the term ‘global change’ seems to have emerged in the 1970s but in that period was used principally, though by no means invariably, to refer to changes in international social, economic and political systems (Price, 1989). It included such issues as proliferation of nuclear weapons, population growth, inflation and matters relating to international insecurity and decreases in the quality of life.

Since the early 1980s the concept of global change has taken on another meaning which is more geocentric in focus. This can be seen in the development of the International Geosphere–Biosphere Programme: A Study of Global Change (IBGP). This was established in 1986 by the International Council of Scientific Unions, ‘to describe and understand the interactive physical, chemical and biological processes that regulate the total Earth system, the unique environment that it provides for life, the changes that are occurring in this system, and the manner in which they are influenced by human activities’. The term ‘global environmental change’ has in many senses come to be used synonymously with the more geocentric use of ‘global change’.

In addition to the concept of global change, there is an increasing interest in the manner in which biogeochemical systems interact at a global scale and an increasing appreciation of the fact that the Earth is a single system. Earth System Science has emerged in response to this realization (see Steffen et al., 2004).

Recently, Crutzen and colleagues have introduced the term ‘Anthropocene’ (e.g. Crutzen, 2002; Steffen et al., 2007; Rockström et al., 2009), as a name for a new
Table 1.1 Some environmental milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1864</td>
<td>George Perkins Marsh, Man and Nature</td>
</tr>
<tr>
<td>1892</td>
<td>John Muir founds Sierra Club in the USA</td>
</tr>
<tr>
<td>1935</td>
<td>Establishment of Soil Conservation Service in the USA</td>
</tr>
<tr>
<td>1956</td>
<td>Man’s role in changing the face of the earth</td>
</tr>
<tr>
<td>1961</td>
<td>Establishment of World Wildlife Fund</td>
</tr>
<tr>
<td>1962</td>
<td>Rachel Carson’s Silent Spring</td>
</tr>
<tr>
<td>1969</td>
<td>Friends of the Earth established</td>
</tr>
<tr>
<td>1971</td>
<td>Greenpeace established</td>
</tr>
<tr>
<td>1971</td>
<td>Ramsar Treaty on International Wetlands</td>
</tr>
<tr>
<td>1972</td>
<td>United Nations Environmental Programme (UNEP) established</td>
</tr>
<tr>
<td>1972</td>
<td>Limits to Growth published by Club of Rome</td>
</tr>
<tr>
<td>1973</td>
<td>Convention on International Trade in Endangered Species (CITES)</td>
</tr>
<tr>
<td>1974</td>
<td>F.S. Rowland and M. Molina warn about CFCs and ozone hole</td>
</tr>
<tr>
<td>1975</td>
<td>Worldwatch Institute established</td>
</tr>
<tr>
<td>1979</td>
<td>Convention on Long-Range Transboundary Air Pollution</td>
</tr>
<tr>
<td>1980</td>
<td>IUCN’s World Conservation Strategy</td>
</tr>
<tr>
<td>1985</td>
<td>British Antarctic Survey finds ozone hole over Antarctic</td>
</tr>
<tr>
<td>1986</td>
<td>International Geosphere Biosphere Programme (IGBP)</td>
</tr>
<tr>
<td>1986</td>
<td>Chernobyl nuclear disaster</td>
</tr>
<tr>
<td>1987</td>
<td>World Commission on Environment and Development (Brundtland Commission). Our Common Future</td>
</tr>
<tr>
<td>1987</td>
<td>Montreal Protocol on substances that deplete the ozone layer</td>
</tr>
<tr>
<td>1988</td>
<td>Intergovernmental Panel on Climate Change (IPCC)</td>
</tr>
<tr>
<td>1989</td>
<td>Global Environmental Facility</td>
</tr>
<tr>
<td>1992</td>
<td>Earth Summit in Rio and Agenda 21</td>
</tr>
<tr>
<td>1993</td>
<td>United Nations Convention on Sustainable Development</td>
</tr>
<tr>
<td>1994</td>
<td>United Nations Convention to Combat Desertification</td>
</tr>
<tr>
<td>1996</td>
<td>International Human Dimensions Programme on Global Environmental Change</td>
</tr>
<tr>
<td>1997</td>
<td>Kyoto Protocol on greenhouse gas emissions</td>
</tr>
<tr>
<td>2001</td>
<td>Amsterdam Declaration</td>
</tr>
<tr>
<td>2002</td>
<td>Johannesburg Earth Summit</td>
</tr>
<tr>
<td>2007</td>
<td>United Nations Bali Climate Change Conference</td>
</tr>
<tr>
<td>2010</td>
<td>United Nations Copenhagen Climate Change Conference</td>
</tr>
<tr>
<td>2010</td>
<td>Nagoya Biodiversity Summit and International Year of Biodiversity</td>
</tr>
<tr>
<td>2012</td>
<td>Rio + 20 United Nations Conference on Sustainable Development</td>
</tr>
</tbody>
</table>

An epoch in Earth’s history – an epoch when human activities have ‘become so profound and pervasive that they rival, or exceed the great forces of Nature in influencing the functioning of the Earth System’ (Steffen, 2010). In the last 300 years, they suggest, we have moved from the Holocene into the Anthropocene. They identify three stages in the Anthropocene. Stage 1, which lasted from c. 1800 to 1945, they call ‘The Industrial Era’. Stage 2, which extends from 1945 to c. 2015, they call ‘The Great Acceleration’, and Stage 3, which may perhaps now be starting, is a stage when people have become aware of the extent of the human impact and may thus start stewardship of the Earth System. Reviews of various aspects of the Anthropocene appear in a special issue of the *Philosophical Transactions of the Royal Society, A*, 339 (2011). However, it can be argued that the Anthropocene started more than three centuries ago, not least because of the possible effects of land-use changes on global carbon dioxide and methane budgets and thus on global climate (Ruddiman et al., 2011).

The huge increase in interest in the study of the human impact on the environment and of global change has not been without its great debates and controversies, and some have argued that environmentalists have overplayed their hand (see e.g. Lomborg’s *The Skeptical Environmentalist*, 2001) and have exaggerated the amount of environmental harm that is being caused by human activities. In this book, I take a long-term perspective and seek to show the changes that mankind has caused to a wide spectrum of environmental phenomena. The current fixation with global warming should not blind us to the importance of other aspects of global change, including deforestation, desertification, salinization, pollution and the like (Slaymaker et al., 2009).

The development of human population and stages of cultural development

Some 6 or so million years ago, primitive human precursors or hominids appear in the fossil record (Wood, 2002). The earliest remains of a small, bipedal *Homo sapiens*, *Sahelanthropus tchadensis*, has been found in Chad (Brunet et al., 2002). However, the first recognizable human, *Homo habilis*, evolved about 2.5 million years ago, more or less at the time that the Pleistocene ice ages were developing in mid-latitudes. The oldest remains have been found either in sediments from the rift valleys of East Africa or in cave deposits in South Africa. Since that time the human population has spread over virtually the entire land surface of the planet (Oppenheimer, 2003) (Figure 1.1). *Homo* may have reached Asia by around 2 million years ago (Larick and Ciochon, 1996; Zhu et al., 2008) and Europe not much later (Moncel, 2010). In southern Europe
there are stone tools in Italy associated with Homo that date back to 1.3–1.7 Ma (Arzarello et al., 2007) and also in Spain (Carbonell et al., 2008). In northwest Europe and Britain the earliest dates for human occupation are >0.78 Ma (Parfitt et al., 2010). Modern humans, Homo sapiens, appeared in Africa around 160,000 years ago (Stringer, 2003; White et al., 2003) and then spread ‘out of Africa’ to other parts of the world.

Table 1.2 gives data on recent views of the dates for the arrival of humans in selected areas. Some of these dates are controversial, and this is especially true of Australia, where they range from c. 40,000 years to as much as 150,000 years (Kirkpatrick, 1994: 28–30), but with a date of c. 50,000 years ago being widely accepted (Balme, 2011). There is also considerable uncertainty about the dates for humans arriving in the Americas (Goebel et al., 2008). Many authorities have argued that the first colonizers of North America, equipped with so-called Clovis spears, arrived via the Bering land bridge from Asia around 12,000 years ago. However, some earlier dates exist for the Yukon (Yesner, 2001) and for South America, and these perhaps imply an earlier phase of colonization (Dillehay, 2003). The settlement of Oceania occurred relatively late, with colonization of the western archipelagos of Micronesia and eastern Melanesia taking place at c. 3500–2800 BP, of central and eastern Micronesia at 2200–2000 BP, and of eastern and southern Polynesia at 1100–700 BP (Anderson, 2009).

Table 1.2 Dates of human arrivals

<table>
<thead>
<tr>
<th>Area</th>
<th>Source</th>
<th>Date (years BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>Klein (1983)</td>
<td>2,700,000–2,900,000</td>
</tr>
<tr>
<td>China</td>
<td>Huang et al. (1995)</td>
<td>1,900,000</td>
</tr>
<tr>
<td>Georgian Republic</td>
<td>Gabunia and Vekua (1995)</td>
<td>1,600,000–1,800,000</td>
</tr>
<tr>
<td>Java</td>
<td>Swisher et al. (1994)</td>
<td>1,800,000</td>
</tr>
<tr>
<td>Europe</td>
<td>Moncel (2010)</td>
<td>c. 1,500,000</td>
</tr>
<tr>
<td>Britain</td>
<td>Parfitt et al. (2010)</td>
<td>c. 790,000</td>
</tr>
<tr>
<td>Japan</td>
<td>Ikawa-Smith (1982)</td>
<td>c. 50,000</td>
</tr>
<tr>
<td>New Guinea</td>
<td>Bulmer (1982)</td>
<td>c. 50,000</td>
</tr>
<tr>
<td>Australia</td>
<td>Bowler et al. (2003)</td>
<td>c. 40,000–50,000</td>
</tr>
<tr>
<td>North America</td>
<td>Goebel et al. (2008)</td>
<td>15,000</td>
</tr>
<tr>
<td>Peru</td>
<td>Keefer et al. (1998)</td>
<td>12,500–12,700</td>
</tr>
<tr>
<td>Ireland</td>
<td>Edwards (1985)</td>
<td>9000</td>
</tr>
<tr>
<td>Caribbean</td>
<td>Morgan and Woods (1986)</td>
<td>4500</td>
</tr>
<tr>
<td>Madagascar</td>
<td>Crowley (2010)</td>
<td>2500</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Lowe (2008)</td>
<td>750</td>
</tr>
</tbody>
</table>
degree of certainty (Figure 1.2a). Before the agricultural ‘revolution’ some 10,000 years ago, human groups lived by hunting and gathering in parts of the world where this was possible. Population densities were low, and the optimum territory for a band of hunter-gatherers in the Middle Eastern woodland–parkland belt would have been 300–500 km², while in the drier regions it would have been 500–2000 km² (Bar-Yosef, 1998). At that time the world population may have been of the order of 5 million people (Ehrlich et al., 1977: 182), and large areas would only recently have witnessed human migration. The Americas and Australia, for example, were probably virtually uninhabited until about 15,000 and 40,000 years ago, respectively.

Human population estimates for the Holocene are diverse and controversial (Boyle et al., 2011). However, the agricultural revolution probably enabled an expansion of the total human population to about 200–300 million by the time of Christ, and to 500 million by AD 1650. It is since that time, helped by the

![Figure 1.2](image-url)
medical and industrial revolutions and developments in agriculture and colonization of new lands, that human population has exploded, reaching about 1000 million by AD 1850, 2000 million by AD 1930 and 4000 million by AD 1974. The figure had reached over 6000 million by the end of the millennium and in 2012 exceeded 7000 million. Victory over malaria, smallpox, cholera and other diseases has been responsible for marked decreases in death rates throughout the non-industrial world, but death-rate control has not in general been matched by birth control. Thus the annual population growth rate in the late 1980s in South Asia was 2.64%, Africa, 2.66% and Latin America (where population increased sixfold between 1850 and 1950), 2.73%. In the period from 2005-2010 these rates had slowed down substantially, with Latin America down to 1.2% and Africa to 2.2%. The global annual growth in population has over the last decade been around 75–77 million people (Figure 1.2b).

The history of the human impact, however, has not been a simple process of increasing change in response to linear population growth over time, for in specific places at specific times there have been periods of reversal in population growth and ecological change as cultures have collapsed, wars occurred, disease struck and habitats were abandoned. Denevan (1992), for example, has pointed to the decline of native American populations in the new world following European entry into the Americas. This created what was ‘probably the greatest demographic disaster ever’. The overall population of the western hemisphere in 1750 was perhaps less than a third of what it may have been in 1492, and the ecological consequences were legion.

Clearly, this growth of the human population of the Earth is in itself likely to be a highly important cause of the transformation of nature. Of no lesser importance, however, has been the growth and development of culture and technology. Sears (1957: 51) has put the power of humankind into the context of other species:

Man’s unique power to manipulate things and accumulate experience presently enabled him to break through the barriers of temperature, aridity, space, seas and mountains that have always restricted other species to specific habitats within a limited range. With the cultural devices of fire, clothing, shelter, and tools he was able to do what no other organism could do without changing its original character. Cultural change was, for the first time, substituted for biological evolution as a means of adapting an organism to new habitats in a widening range that eventually came to include the whole earth.

The evolving impact of humans on the environment has often been expressed in terms of a simple equation:

\[I = P A T \]

where \(I \) is the amount of pressure or impact that humans apply on the environment, \(P \) is the number of people, \(A \) is the affluence (or the demand on resources per person), and \(T \) is a technological factor (the power that humans can exert through technological change). \(P, A \) and \(T \) have been seen by some as ‘the three horsemen of the environmental apocalypse’ (Meyer, 1996: 24). There may be considerable truth in the equation and in that sentiment; but as Meyer points out, the formula cannot be applied in too mechanistic a way. The ‘cornucopia view’, indeed, sees population not as the ultimate depleter of resources but as itself the ultimate resource capable of causing change for the better (see e.g. Simon, 1996). There are cases where strong population growth has appeared to lead to a reduction in environmental degradation (Tiffen et al., 1994). Likewise, there is debate about whether it is poverty or affluence that creates deterioration in the environment. On the other hand many poor countries have severe environmental problems and do not have the resources to clear them up, where as affluent countries do. Conversely it can be argued that affluent countries have plundered and fouled less fortunate countries and that it would be environmentally catastrophic if all countries used resources at the rate that the rich countries do. Similarly, it would be naïve to see all technologies as malign, or indeed benign. Technology can be a factor either of mitigation and improvement or of damage. Sometimes it is the problem (as when ozone depletion has been caused by a new technology – the use of chlorofluorocarbons) and sometimes it can be the solution (as when renewable energy sources replace the burning of polluting lignite in power stations).

In addition to the three factors of population, affluence and technology, environmental changes also depend on variations in the way in which different societies are organized and in their economic and social structures (see Meyer, 1996: 39–49 for an elaboration of this theme). For example, the way in which land is owned is a crucial issue.
The controls of environmental changes caused by the human impact are thus complex and in many cases contentious, but all the factors discussed play a role of some sort, at some places and at some times.

We now turn to a consideration of the major cultural and technical developments that have taken place during the past 2–3 million years. Takács-Sánta (2004) argued that there have been six major transformations in the history of the human transformation of the environment: the use of fire, the development of language, the birth of agriculture, the development of cities and states, European conquests since the fifteenth century AD and the Technological-Scientific Revolution, with the emergence of fossil fuels as primary energy sources. In this book, three main phases will form the basis of the analysis: the phase of hunting and gathering; the phase of plant cultivation, animal keeping and metal working; and the phase of modern urban and industrial society. These developments are treated in much greater depth by Simmons (1996) and Ponting (2007).

Hunting and gathering

The oldest records of human activity and technology are pebble tools (crude stone tools which consist of a pebble with one end chipped into a rough cutting edge). These have been found with human bone remains in various parts of Africa (Gosden, 2003). At Dikika in Ethiopia there is evidence for stone-tool-assisted consumption of meat at 3.42–3.24 Ma (McPherron et al., 2010). At Lake Turkana in northern Kenya and the Omo Valley in southern Ethiopia, a tool-bearing bed of volcanic material called tuff has been dated by isotopic means at about 2.6 million years old, another from Gona in the north-east of Ethiopia at about 2.5 million years old (Semaw et al., 1997), while another bed at the Olduvai Gorge in Tanzania (Figure 1.3) has been dated by similar means at 1.75 million years. Indeed, these very early tools are generally termed ‘Oldowan’.

As the Stone Age progressed the tools became more sophisticated, varied and effective, and Figure 1.4 shows some beautiful Palaeolithic hand axes from Olorgesailie in East Africa. Greater exploitation of plant and animal resources became feasible. Stone may not, however, have been the only material used. Sticks and animal bones, the preservation of which is less likely than stone, are among the first objects that may have been used as implements, although the sophisticated utilization of antler and bone as materials for weapons and implements appears to have developed surprisingly late in prehistory. There is certainly a great deal of evidence for the use of wood throughout the Palaeolithic Age, for ladders, fire, pigment (charcoal), the drying of wood and digging sticks. Tyldesley and Bahn (1983: 59) went so far as to suggest that ‘The Palaeolithic might more accurately be termed the “Palaeoxylic” or “Old Wood Age”’.

The building of shelters and the use of clothing became a permanent feature of human life as the Palaeolithic period progressed and permitted habitation in areas where the climate was otherwise not congenial.
European sites from the Mousterian of the Middle Palaeolithic have revealed the presence of purposefully made dwellings as well as caves, and by the Upper Palaeolithic more complex shelters were in use, allowing people to live even in the tundra lands of Central Europe and Russia.

Another feature of early society which seems to have distinguished humans from the surviving non-human primates was their seemingly omnivorous diet. In the Palaeolithic Age humans secured a wide range of animal meats, whereas the great apes, through not averse to an occasional taste of animal food, are predominately vegetarian. One consequence of enlarging the range of their diet was that, in the long run, humans were able to explore a much wider range of environment (Clark, 1977: 19). Another major difference that set humankind above the beasts was the development of communicative skills such as speech. Until hominids had developed words as symbols, the possibility of transmitting, and so accumulating, culture hardly existed. Animals can express and communicate emotions, never designate or describe objects.

At an early stage humans discovered the use of fire (Figure 1.5). This, as we shall see (Chapter 2), is a major agent by which humans have influenced their environment. The date at which fire was first deliberately employed is a matter of ongoing controversy (Bogucki, 1999: 51–54; Caldararo, 2002). It may have been employed very early in South Africa, where Beaumont (2011) and Berna et al. (2012) found some traces of repeated burning events from Acheulean cave sediments dating back to more than a million years ago, and from East Africa, where Gowlett et al. (1981) claimed to find evidence for deliberate manipulation of fire from over 1.4 million years ago. However, it is not until after around 400,000 years ago that evidence for the association between human and fire becomes compelling. Nonetheless, as Pyne (1982: 3) has written:

> It is among man’s oldest tools, the first product of the natural world he learned to domesticate. Unlike floods, hurricanes or windstorms, fire can be initiated by man; it can be combated hand to hand, dissipated, buried, or ‘herded’ in ways unthinkable for floods or tornadoes.

He goes on to stress the implications that fire had for subsequent human cultural evolution (p. 4):

> It was fire as much as social organisation and stone tools that enabled early big game hunters to encircle the globe and to begin the extermination of selected species. It was fire that assisted hunting and gathering societies to harvest insects, small game and edible plants; that encouraged the spread of agriculture outside the flood plains by allowing for rapid landclearing, ready fertilization, the selection of food grains, the primitive herding of grazing animals that led to domestication, and the expansion of pasture and grasslands against climate gradients; and that, housed in machinery, powered the prime movers of the industrial revolution.

Overall, compared with later stages of cultural development, early hunters and gatherers had neither the numbers nor the technological skills to have a very substantial effect on the environment. Besides the effects of fire, early cultures may have caused some diffusion of seeds and nuts, and through hunting activities (see Chapter 3) may have had some dramatic effects on animal populations, causing the extinction of many great mammals (the so-called Pleistocene overkill). Locally some eutrophication may have occurred, and around some archaeological sites phosphate and nitrate levels may be sufficiently raised to make them an indicator of habitation to archaeologists today (Holliday, 2004). Equally, although we often assume that early humans were active and effective hunters, they may well have been dedicated scavengers of carcasses of animals which had either died natural deaths or been killed by carnivores like lion.

Figure 1.5 Fire was one of the first and most powerful tools of environmental transformation employed by humans. The high grasslands of southern Africa may owe much of their character to regular burning, as shown here in Swaziland. (See Plate 3)
It is salutary to remember, however, to remember just how significant this stage of our human cultural evolution has been. As Lee and DeVore (1968: 3) wrote:

Of the estimated 80,000,000,000 men who have ever lived out a life span on earth, over 90 per cent have lived as hunters and gatherers, about 6 per cent have lived by agriculture and the remaining few per cent have lived in industrial societies. To date, the hunting way of life has been the most successful and persistent adaptation man has ever achieved.

Figure 1.6 indicates the very low population densities of hunter/gatherer/scavenger groups in comparison with those that were possible after the development of pastoralism and agriculture.

Humans as cultivators, keepers and metal workers

Humans have been foragers rather than farmers for around 95% of their history, but during the end of the Pleistocene major changes were afoot. It is possible to identify some key stages of economic development that have taken place since the end of the Pleistocene (Table 1.3). For example around 14,000–15,000 years ago, in the Middle Eastern region, now consisting of Jordan, Syria, Israel, Palestine and Lebanon, the hunting folk – the Natufians – in addition to their hunting, began to build permanent houses of stone and wood, they buried their dead in and around them with elaborate rituals, gathered in communities of up to several hundred people, ground up wild cereals with pestles and mortars, and made tools and art objects from animal bones (Bar-Yosef, 1998; Barker, 1998).

Table 1.3 Five stages of economic development. Source: Adapted from Simmons (1993: 2–3)

<table>
<thead>
<tr>
<th>Economic stage</th>
<th>Dates and characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunting–gathering and early agriculture</td>
<td>Domestication first fully established in south-western Asia around 7500 bc; hunter–gatherers persisted in diminishing numbers until today. Hunter–gatherers generally manipulate the environment less than later cultures and adapt closely to environmental conditions.</td>
</tr>
<tr>
<td>Riverine civilizations</td>
<td>Great irrigation-based economies lasting from c. 4000 bc to first century ad in places such as the Nile Valley and Mesopotamia. Technology developed to attempt to free civilizations from some of the constraints of a dry season.</td>
</tr>
<tr>
<td>Agricultural empires</td>
<td>From 500 bc to around 1800 ad a number of city-dominated empires existed, often affecting large areas of the globe. Technology (e.g. terracing and selective breeding) developed to help overcome environmental barriers to increased production.</td>
</tr>
<tr>
<td>The Atlantic-industrial era</td>
<td>From c.1800 ad to today a belt of cities from Chicago to Beirut, and around the Asian shores to Tokyo, form an economic core area based primarily on fossil fuel use. Societies have increasingly divorced themselves from the natural environment, through air conditioning for example. These societies have also had major impacts on the environment.</td>
</tr>
<tr>
<td>The Pacific-global era</td>
<td>Since the 1960s there has been a shifting emphasis to the Pacific Basin as the primary focus of the global economy, accompanied by globalization of communications and the growth of multinational corporations.</td>
</tr>
</tbody>
</table>
to subsist on the game animals, birds and fish he could catch and trap, the insects and eggs he could collect and the foliage, roots, fruits and seeds he could gather, was limited in the kind of social life he could develop; as a rule he could only live in small groups, which gave small scope for specialization and the subdivision of labour, and in the course of a year he would have to move over extensive tracts of country, shifting his habitation so that he could tap the natural resources of successive areas. It is hardly to be wondered at that among communities whose energies were almost entirely absorbed by the mere business of keeping alive, technology remained at a low ebb. (Clark, 1962: 76)

It is now recognized that some hunters and gatherers had considerable leisure and did not need to develop agriculture to avoid drudgery and starvation. Moreover, some believe that the mobile hunter–gatherer lifestyle was far more attractive than a sedentary one, which creates problems of refuse disposal, hygiene and social conflict (Mithen, 2007). However, there is no doubt that through the controlled breeding of animals and plants humans were able to develop a more reliable and readily expandable source of food and thereby create a solid and secure basis for cultural advance, an advance which included civilization and the ‘urban revolution’ of Childe (1936) and others. Indeed, Isaac (1970) termed *domestication* ‘the single most important intervention man had made in his environment’; and Harris (1996) termed the transition from foraging to farming as ‘the most fateful change in the human career’. Diamond (2002) termed it ‘the most momentous change in Holocene human history’, while Mithen (2007: 705) has said that ‘The origins of farming is the defining event of human history – the one turning point that has resulted in modern humans having a quite different type of lifestyle and cognition to all other animals and past types of humans’.

A distinction can be drawn between cultivation and domestication. Whereas cultivation involves deliberate sowing or other management, and entails plants which do not necessarily differ genetically from wild populations of the same species, domestication results in genetic change brought about through conscious or unconscious human selection. This creates plants that differ morphologically from their wild relatives and which may be dependent on humans for their survival. Domesticated plants are thus necessarily cultivated plants, but cultivated plants may or may not be domesticated. For example, the first plantations of *Hevea* rubber and quinine in the Far East were established from seed which had been collected from the wild in South America. Thus at this stage in their history, these crops were cultivated but not yet domesticated.

The origin of agriculture remains controversial (Harris, 1996; Scarre, 2005; Barker, 2006). Some early workers saw agriculture as a divine gift to humankind, while others thought that animals were domesticated for religious reasons. They argued that it would have been improbable that humans could have predicted the usefulness of domestic cattle before they were actually domesticated. Wild cattle are large, fierce beasts, and no one could have foreseen their utility for labour or milk until they were tamed – tamed perhaps for ritual sacrifice in connection with lunar goddess cults (the great curved horns being the reason for the association). Another major theory – the demographic hypothesis – was that domestication was produced by crowding, possibly brought on by a combination of climatic deterioration (alleged post-Glacial progressive desiccation) and population growth. Gordon Childe’s ‘oasis propinquity hypothesis’ held that increasing desiccation brought wild animals and plants into ever closer relationships, from which symbiosis and ultimately domestication emerged (Renfrew, 2006). Such pressure may have forced communities to intensify their methods of food production. Current palaeoclimatological research tends not to support this interpretation, but that is not to say that other severe climatic changes could not have played a role (Sherratt, 1997).

Sauer (1952) believed that plant domestication was initiated in Southeast Asia by fishing folk, who found that lacustrine and riverine resources would
underwrite a stable economy and a sedentary or semi-
ized lifestyle. He surmises that the initial domest-
icates would be multi-purpose plants set around small
fishing villages to provide such items as starch foods,
substances for toughening nets and lines and making
them water-resistant, and drugs and poisons. He sug-
gested that ‘food production was one and perhaps not
the most important reason for bringing plants under
cultivation.’

Yet another model was advanced by Jacobs (1969)
which turned certain more traditional models upside
down. Instead of following the classic pattern whereby
farming leads to village which leads to town which
leads to civilization, she proposed that one could be a
hunter–gatherer and live in a town or city, and that
agriculture originated in and around such cities rather
than in the countryside. Her argument suggests that
even in primitive hunter–gatherer societies particu-
larly valuable commodities such as fine stones, pig-
maments and shells could create and sustain a trading
centre which would possibly become large and stable.
Food would be exchanged for goods, but natural
produce brought any distance would have to be
durable, so meat would be transported on the hoof for
example, but not all the animals would be consumed
immediately; some would be herded together and
might breed. This might be the start of domestication.
Indeed, settlements may have been a cause of agricul-
ture rather than a consequence (Watkins, 2010).

Another hypothesis – the feasting hypothesis – is
based on the idea that in many societies, those wishing
to achieve rank and status do so by throwing feasts.
The adoption of cultivation and the husbanding of
domestic animals made it possible for ambitious indi-
viduals to produce increasing amounts of food which
would give them an advantage in social competition
(Hayden, 1995). It is also possible that as humans
developed art and equipment to process plants, they
developed new ideas and saw cultivation and domes-
tication as a means of social prestige (Mithen, 2007). In
other words, the origins of agriculture 10,000 years ago
may perhaps be explained by a fundamental change
in the way in which the human mind conceived of
nature.

The process of domestication and cultivation was
also once considered a revolutionary system of land
procurement that had evolved in only one or two
hearths and diffused over the face of the earth, replac-
ing the older hunter–gatherer systems by stimulus dif-
fusion. It was felt that the deliberate rearing of plants
and animals for food was a discovery or invention so
radical and complex that it could have developed only
once (or possibly twice) – the so-called Eureka model.

Yet another model was advanced by Jacobs (1969)
which turned certain more traditional models upside
down. Instead of following the classic pattern whereby
farming leads to village which leads to town which
leads to civilization, she proposed that one could be a
hunter–gatherer and live in a town or city, and that
agriculture originated in and around such cities rather
than in the countryside. Her argument suggests that
even in primitive hunter–gatherer societies particu-
larly valuable commodities such as fine stones, pig-
maments and shells could create and sustain a trading
centre which would possibly become large and stable.
Food would be exchanged for goods, but natural
produce brought any distance would have to be
durable, so meat would be transported on the hoof for
example, but not all the animals would be consumed
immediately; some would be herded together and
might breed. This might be the start of domestication.
Indeed, settlements may have been a cause of agricul-
ture rather than a consequence (Watkins, 2010).

Another hypothesis – the feasting hypothesis – is
based on the idea that in many societies, those wishing
to achieve rank and status do so by throwing feasts.
The adoption of cultivation and the husbanding of
domestic animals made it possible for ambitious indi-
viduals to produce increasing amounts of food which
would give them an advantage in social competition
(Hayden, 1995). It is also possible that as humans
developed art and equipment to process plants, they
developed new ideas and saw cultivation and domes-
tication as a means of social prestige (Mithen, 2007). In
other words, the origins of agriculture 10,000 years ago
may perhaps be explained by a fundamental change
in the way in which the human mind conceived of
nature.

The process of domestication and cultivation was
also once considered a revolutionary system of land
procurement that had evolved in only one or two
hearths and diffused over the face of the earth, replac-

<table>
<thead>
<tr>
<th>Centre</th>
<th>Dates (000 years BP)</th>
<th>Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesoamerica</td>
<td>10.7–9.8</td>
<td>Squash–pumpkin</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>Bottle gourd</td>
</tr>
<tr>
<td>Near East</td>
<td>11.0–9.3</td>
<td>Fig tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emmer wheat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two-rowed barley</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einkorn wheat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pea</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lentil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flax</td>
</tr>
<tr>
<td>Far East</td>
<td>11.0–7.0</td>
<td>Broomcorn millet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gourd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water chestnut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chile pepper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Common bean</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ullucu</td>
</tr>
<tr>
<td>Andes</td>
<td>9.4–8.0</td>
<td>White potato</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Squash and Gourd</td>
</tr>
</tbody>
</table>
Figure 1.7 The geographical locations of new domesticated food crops worldwide grouped into 2000-year time intervals from >10,000 years ago (ya) to the present. Higher numbers of domestication events are represented by darker shading (from Meyer et al., 2012, figure 4). Reproduced with permission.