Reaction Mechanisms in Organic Synthesis
Postgraduate Chemistry Series

A series designed to provide a broad understanding of selected growth areas of chemistry at postgraduate student and research level. Volumes concentrate on material in advance of a normal undergraduate text, although the relevant background to a subject is included. Key discoveries and trends in current research are highlighted, and volumes are extensively referenced and cross-referenced. Detailed and effective indexes are an important feature of the series. In some universities, the series will also serve as a valuable reference for final year honours students.

Editorial Board

Professor James Coxon (Editor-in-Chief), Department of Chemistry, University of Canterbury, New Zealand
Professor Pat Bailey, Department of Chemistry, University of Manchester, UK
Professor Les Field, School of Chemistry, University of New South Wales, Sydney, Australia
Professor Dr John Gladysz, Institut für Organische Chemie, Universität Erlangen-Nürnberg, Germany
Professor Philip Parsons, School of Chemistry, Physics and Environmental Science, University of Sussex, UK
Professor Peter Stang, Department of Chemistry, University of Utah, USA

Titles in the Series

Protecting Groups in Organic Synthesis
James R. Hanson

Organic Synthesis with Carbohydrates
Geert-Jan Boons and Karl J. Hale

Organic Synthesis Using Transition Metals
Roderick Bates

Stoichiometric Asymmetric Synthesis
Mark Rizzacasa and Michael Perkins

Catalysis in Asymmetric Synthesis (Second Edition)
Vittorio Caprio and Jonathan M.J. Williams

Photochemistry of Organic Compounds: From Concepts to Practice
Petr Klán and Jakob Wirz

Practical Biotransformations
Gideon Grogan
Reaction Mechanisms in Organic Synthesis

Rakesh Kumar Parashar
Reader, Chemistry Department, Kirori Mal College, University of Delhi, India
To Riya, Manya and Indu with love and to my parents with immense respect
Contents

Foreword xi
Preface xiii
About the Author xv
Acknowledgements xv
Abbreviations xvii

1 Synthetic Strategies 1
1.1 An introduction to organic synthesis 1
1.2 Retrosynthetic analysis (disconnection approach) 2
1.3 Umpolung strategy 6
1.4 Atom economy 8
1.5 Selectivity 10
1.5.1 Chemoselectivity 11
1.5.2 Regioselectivity 12
1.5.3 Stereoselectivity 13
1.5.4 Asymmetric synthesis or chiral synthesis 16
1.6 Protecting groups 26
1.6.1 Common hydroxy protecting groups 27
1.6.2 Common diols protecting groups 36
1.6.3 Common amine protecting groups 38
1.6.4 Common carbonyl protecting groups 42
1.6.5 Common carboxylic acid protecting groups 45
1.6.6 Common arenesulfonic acid protecting groups 47
1.6.7 Common alkyne protecting groups 48
References 48

2 Reactive Intermediates 51
2.1 Carboxations 51
2.1.1 Structure and stability of carboxations 51
2.1.2 Generation of carboxations 53
2.1.3 Reactions of carboxations 54
2.1.4 Non-classical carboxations 60
2.2 Carbanions 63
2.2.1 Structure and stability of carbanions 63
2.2.2 Generation of carbanions 65
2.2.3 Reactions of carbanions 65
2.3 Free radicals 70
2.3.1 Structure and stability of free radicals 71
2.3.2 Generation of free radicals 72
Contents

2.3.3 Radical ions 76
2.3.4 Reactions of radicals 77

2.4 Carbenes 90
2.4.1 Structure and stability of carbenes 92
2.4.2 Generation of carbenes 93
2.4.3 Reactions of carbenes 95

2.5 Nitrenes 101
2.5.1 Structure and stability of nitrenes 101
2.5.2 Generation of nitrenes 101
2.5.3 Reactions of nitrenes 102

2.6 Benzynes 105
2.6.1 Generation of benzynes 105
2.6.2 Reactions of benzynes 106

References 109

3 Stabilized Carbanions, Enamines and Ylides 112
3.1 Stabilized carbanions 112
3.1.1 Reaction of stabilized carbanions (enolates) with alkyl halides (enolate alkylation) 114
3.1.2 Reaction of stabilized carbanions with carbonyl compounds 118
3.1.3 Conjugate addition of enolate to α, β-unsaturated carbonyl compounds 125
3.1.4 Reaction of enolates with iminium ions or imines 127

3.2 Enamines 130
3.3 Ylides 134
3.3.1 Formation of ylides 135
3.3.2 Reactions of ylides 137
3.3.3 Asymmetric ylide reactions 142

References 146

4 Carbon–Carbon Double Bond Forming Reactions 148
4.1 Introduction 148
4.2 Elimination reactions 148
4.2.1 β-Eliminations 148
4.2.2 Unimolecular syn-eliminations 153
4.2.3 Reactions from epoxides, thionocarbonates and episulfides 156
4.3 Alkenation (alkylidenation) of carbonyl compounds 157
4.3.1 Wittig reactions 158
4.3.2 Julia alkenation and modified Julia alkenation (Julia–Kocienski alkenation) 166
4.3.3 Peterson reaction 172
4.3.4 Use of titanium-based reagents 174
4.3.5 Use of Zinc (Zn) and Zirconium (Zr) reagents for the alkenation of ketones and aldehydes 182
4.3.6 Bamford–Stevens reaction and Shapiro reaction 184
4.3.7 Barton–Kellogg reaction 185
4.3.8 Catalytic aldehyde and ketone alkenation 187
4.4 Reduction of alkynes 188

References 189
5 Transition Metal-Mediated Carbon–Carbon Bond Forming Reactions 191
5.1 Carbon–carbon bond forming reactions catalyzed by transition metals 193
 5.1.1 Heck reaction 193
 5.1.2 Allylic substitutions 198
 5.1.3 Cu- and Ni-catalyzed couplings 201
5.2 Transition metal-catalyzed coupling of organometallic reagents with organic halides and related electrophiles 203
 5.2.1 Coupling of Grignard reagents 205
 5.2.2 Coupling of organostannanes 208
 5.2.3 Coupling of organoboranes 211
 5.2.4 Coupling of organosilanes 213
 5.2.5 Coupling of organocopper reagents 215
 5.2.6 Coupling of organozinc compounds 216
References 222

6 Reduction 224
6.1 Reduction of carbon–carbon double bond 224
 6.1.1 Catalytic hydrogenation 224
 6.1.2 Hydrogen transfer reagents 228
6.2 Reduction of acetylenes 229
 6.2.1 Catalytic hydrogenation 229
 6.2.2 Dissolving metals 230
 6.2.3 Metal hydrides 230
 6.2.4 Hydroboration–protonation 231
6.3 Reduction of benzene and derivatives 231
 6.3.1 Catalytic hydrogenation 231
 6.3.2 Birch reduction 232
6.4 Reduction of carbonyl compounds 234
 6.4.1 Catalytic hydrogenation 234
 6.4.2 Metal hydrides 236
 6.4.3 Metal and proton source 253
 6.4.4 Hydrogen transfer reagents 255
6.5 Reduction of α, β-unsaturated aldehydes and ketone 258
 6.5.1 Catalytic hydrogenation 258
 6.5.2 Hydride reagents 258
 6.5.3 Dissolving metals 260
6.6 Reduction of nitro, N-oxides, oximes, azides, nitriles and nitroso compounds 261
 6.6.1 Catalytic hydrogenation 261
 6.6.2 Metal hydrides 261
 6.6.3 Metal and proton source 263
 6.6.4 Triphenylphosphine 264
6.7 Hydrogenolysis 265
 References 266

7 Oxidation 268
7.1 Oxidation of alcohols 268
 7.1.1 Chromium(VI) 268
 7.1.2 Potassium permanganate 272
Contents

7.1.3 Manganese dioxide (MnO₂) 273
7.1.4 Dimethylsulfoxide-mediated oxidations 274
7.1.5 Dess–Martin periodinane (DMP) 278
7.1.6 Tetra-\(n\)-propylammonium perruthenate (TPAP) 279
7.1.7 Silver oxide and silver carbonate 280
7.1.8 Oppenauer oxidation 281
7.2 Oxidation of aldehydes and ketones 283
7.3 Oxidation of phenols 288
7.4 Epoxidation 291
7.5 Dihydroxylation 297
7.6 Aminohydroxylation 301
7.7 Oxidative cleavage of C–C double bonds 302
7.7.1 Ozonolysis 303
7.7.2 Glycol cleavage 304
7.8 Oxidation of anilines 306
7.9 Dehydrogenation 307
7.10 Allylic or benzylic oxidation 308
7.11 Oxidation of sulfides 308
7.12 Oxidation of aliphatic side chains attached to aromatic ring 309
References 311

8 Pericyclic Reactions 313
8.1 Important classes of pericyclic reactions 313
8.1.1 Cycloaddition reactions 313
8.1.2 Electrocyclic reactions 314
8.1.3 Sigmatropic rearrangements 314
8.1.4 Ene reactions 314
8.1.5 Other classes of pericyclic reactions 314
8.2 Theoretical explanation of pericyclic reactions 316
8.2.1 MOs and their symmetry properties 316
8.2.2 Suprafacial and antarafacial 322
8.2.3 Conservation of orbital symmetry 324
8.3 Cycloaddition reactions 327
8.3.1 \([4+2]\)-Cycloaddition reactions 328
8.3.2 \([2+2]\)-Cycloaddition reactions 331
8.3.3 1,3-Dipolar additions 332
8.3.4 Theoretical explanation 332
8.4 Electrocyclic reactions 340
8.4.1 Theoretical explanation 342
8.4.2 General rules for electrocyclic reactions 349
8.5 Sigmatropic rearrangements 349
8.5.1 Analysis of sigmatropic rearrangements 355
8.5.2 Carbon shift 358
8.6 Ene reactions 360
8.7 Selection rules 362
References 362

Index 364
Foreword

Exciting new methods and reagents are being discovered and used everyday in the synthesis of organic molecules. Knowing the mechanism of these reactions is very important, without which it is almost impossible to carry out the synthesis of important molecules in the laboratory or in industry. Thus, the importance of organic reaction mechanisms continues to increase, and this book is a welcome addition to the available sources on the subject.

While teaching organic synthesis and practicing it in the laboratory, a need is often felt of a handy book combining organic synthesis and mechanisms of reactions employed in synthesis instead of large volumes or monograms on synthesis. There are not many such books covering these two very essential aspects of organic chemistry.

Writing a textbook for any level is always a challenge. However, Dr Parashar deserves praise for undertaking this project and interlinking these two areas of organic chemistry so well throughout the book.

The book is designed to provide fundamental aspects of organic chemistry in a flexible way rather than presenting a traditional approach. The mechanisms and stereochemical features of common reactions used in organic synthesis are discussed in a qualitative and quantitative manner. Specific examples are taken from the latest literature.

The contents of the book give a general impression about what is dealt with. The selection of topics has been done very carefully and judiciously. The material is condensed to a manageable text of 363 pages and presented in a clear and logical fashion over eight chapters. This is done by focusing purely on the basics of the subject without going through exhaustive detail or repetitive examples.

This book would be of immense help to students at the postgraduate level as well as to research workers because of its contents and the way those have been dealt with. I sincerely hope that the book will go a long way to satisfy the long-felt need of students and teachers who inspire the students to take up synthetic organic chemistry as their research topic and career.

I hope practitioners and professionals will be benefited from the experience of learning reaction mechanisms of important synthetic reactions.

I am happy to recommend this book as a self-guide for students and professionals.

Virinder S. Parmar, PhD, FRSC
Professor and Head, Department of Chemistry, and
Chairman of the Board of Research Studies
University of Delhi, India
An organic chemist is primarily concerned with (a) the synthesis of organic molecules of particular interest to the pharmaceutical and agrochemical industries and (b) the way these molecules interact in biological pathways.

Synthesis involves a careful selection of reactions; new reactions are being developed everyday. Knowing how structure affects a reaction, a rational sequence of transformations can be used to synthesize target molecules. An understanding of organic reaction mechanisms is essential without which it is impossible to plan organic synthesis. It is also required to extend one's knowledge of different areas related to organic chemical reaction mechanisms. The vital importance of the organic synthesis processes is established by the fact that many Nobel laureates have been associated with this field.

Beginning with basic introductory course, this book covers all aspects of organic reaction mechanisms, expands on the foundation acquired in chemistry courses, and enables students and research workers to understand the mechanisms and then to plan syntheses. This book will help postgraduate students to write reasonable mechanisms for organic chemical transformations, which are arranged according to an ascending order of difficulty.

Established reactions are being subjected to both technical improvements and increasing number of applications. For example, intense efforts are made in industry and university laboratories to devise innovative ways to speed up reactions, to carry them out in a continuous fashion and to provide for separation of complex mixtures. For example, ultrasound can dramatically affect the rates of chemical reactions. Microwave-assisted protocols often result in high yields and time efficiency. Solid-phase synthesis allows for easy separation of the resulting products while providing for libraries of compounds to be made. Although these methods have been discussed in special monographs and review articles, there is no recent single book covering reactions (modern or newer) with latest procedural modifications and also simultaneously explaining reaction mechanism and covering stereospecificity and regiospecificity.

The book contains examples from recently published research work to illustrate the important steps involved in synthesis. The discussion is organized by the conditions under which the reaction is executed rather than by the types of mechanisms as is the case in most textbooks at the graduate level.

The author believes that students are well aware of the basic reaction pathways such as substitutions, additions, eliminations, aromatic substitutions, aliphatic nucleophilic substitutions and electrophilic substitutions. Students may follow undergraduate books on reaction mechanisms for basic knowledge of reactive intermediates and oxidation and reduction processes. Reaction Mechanisms in Organic Synthesis provides extensive coverage of various carbon–carbon bond forming reactions such as transition metal catalyzed reactions; use of stabilized carbanions, ylides and enamines for the carbon–carbon bond forming reactions; and advance level use of oxidation and reduction reagents in synthesis.
Thus, this book may prove to be an excellent primer for advanced postgraduates in chemistry. This book will be useful both for instructors and those who are preparing for examinations.

Following is a brief account of the contents of the eight chapters of this book.

Chapter 1 is devoted to exploring strategies involved in organic synthesis. It seeks to explain concepts like retrosynthetic analysis, atom economy, umpolung approach, click chemistry and asymmetric synthesis. On the basis of interesting and relevant examples, protection and deprotection of different functional groups are explained and the most probable mechanism is also mentioned for important reactions.

Chapter 2 includes complete discussion on reaction intermediates including carbocations, carbanions, free radicals, carbenes, nitrines and benzenes. The structure, methods of generation and important reactions of all the intermediates are discussed in this chapter. The author has emphasized their applications in the asymmetric synthesis.

Chapter 3 discusses ylides and enamines, and also deals with the extended examples of carbanions.

Chapter 4 reviews the role of various reagents used in organic synthesis for the formation of carbon–carbon double bond. Specific examples are included at each stage to illustrate the mechanism under discussion.

Chapter 5 includes complete coverage of the transition metals-mediated carbon–carbon bond forming reactions. Pd-, Ni-, Cr-, Zr- and Cu-catalyzed reactions such as Heck, Negishi, Sonogashira, Suzuki, Hiyama, Stille, Kumada reactions are covered in adequate details including the applications of these reactions in organic synthesis.

Chapter 6 focuses on selected examples of reduction methods and their mechanisms in detail. The chapter gives a detailed account of reducing reagents and their applications in organic synthesis.

The oxidation examples in Chapter 7 are arranged to elucidate key aspects of organic reaction mechanisms. The importance of oxidation reagents in synthesis and their mechanism of action have been explained in detail.

Chapter 8 covers extensively pericyclic reactions and also includes the aromatic transition state theory. Most of the examples are taken from latest literature and are useful for postgraduate and research students.

As an academic convenience to readers all reaction mechanisms leading to stereospecific products are highlighted. The book will also serve as an excellent reference book since references are offered at the end of each chapter.

The book seeks to cover the postgraduate syllabi of almost all the universities. Students will be spared the tedium of collecting all the information on the subject scattered in various books and journals. Even though a comprehensive effort was made to gather information from all sources, it is inevitable that some relevant papers and reviews may be left unscanned.

The author hopes that the book proves to be an easy-to-use general organic chemistry textbook and finds a place in libraries and personal bookshelves of the academic community.

All comments and suggestions will be received with gratitude.

Rakesh Kumar Parashar
Reader, Chemistry Department
Kirori Mal College
University of Delhi, India
About the Author

Dr Rakesh Kumar Parashar completed his PhD in 1990 from the University of Delhi, Delhi, in the field of synthetic organic chemistry. He is a Reader in Chemistry at Kirori Mal College, University of Delhi, Delhi. He has done his postdoctorate from the University of Barcelona, Spain. He has published 22 papers in various national and international journals and has delivered several lectures in India and abroad. He is also the author of several books. He is actively involved in teaching and research for the past 18 years.

Acknowledgements

I sincerely thank Prof. Jim Coxon who inspired me to take up this project. He also generously helped me to improve this book at the writing stage.

My special thanks are to Prof. Virinder S. Parmar, Head of Chemistry Department, University of Delhi, for writing foreword of this book. I acknowledge Prof. J. M. Khurana, University of Delhi, for his fruitful suggestions that helped me throughout the preparation of this manuscript. I also thank Dr S. Gera and Dr Geetanjali Pandey, Chemistry Department, Kirori Mal College, University of Delhi, for reviewing several chapters.

And, finally, I thank my wife, Indu, and daughters, Riya and Manya, for their love and encouragement during the lengthy, seemingly interminable period of writing this book.
Abbreviations

Ac acetyl
Ac2O acetic anhydride
acac acetylacetonate
AIBN 2,2′-azobisisobutyronitrile
All allyloxy carbonyl
Ar aryl
BBN borabicyclo[3.3.1]nonane
BHT butylated hydroxytoluene (2,6-di-t-butyl-p-cresol)
BINAL-H 2,2′-dihydroxy-1,1′-binaphthyllithium aluminum hydride
BINAP 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
BINOL 1,1′-bis-2,2-naphthol
bipy 2,2′-bipyridyl
Bn benzyl
Boc t-butoxycarbonyl
BOM benzylloxymethyl
bp boiling point
Bs brosyl (4-bromobenzenesulfonyl)
BSA N,O-bis(trimethylsilyl)acetamide
Bu n-butyl
Bz benzoyl
CAN cerium(IV) ammonium nitrate
cat. catalyst
Cbz benzylxycarbonyl
CHIRAPHOS 2,3-bis(diphenylphosphino)butane
CIP Cahn–Ingold–Prelog priority rules
cod cyclooctadiene
m-CPBA m-chloroperbenzoic acid or m-chloroperoxybenzoic acid
CSA 10-camphorsulfonic acid
Cy cyclohexyl
d density
DABCO 1,4-diazabicyclo[2.2.2]octane
DAIPEN 1,1-dianisyl-2-isopropyl-1,2-ethylenediamine
DAST N,N-diethylaminosulfur trifluoride
dba dibenzylideneacetone
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
DCC N,N′-dicyclohexylcarbodiimide
DCE dichloroethane
Abbreviations

DCM dichloromethane
DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
De diastereomeric excess
DEG diethylene glycol
DET diethyl tartrate
(DHQ)$_2$PHAL 1,4-bis(9-O-dihydroquinine)phthalazine
(DHQD)$_2$PHAL 1,4-bis(9-O-dihydroquinidine)phthalazine
DIBAH or diisobutylaluminum hydride (i-Bu$_2$AlH)$_2$
DIBAL-H
DIPEA =DIPEA
DIOP 4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3-dioxolane or 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane
DIPAMP bis[(2-methoxyphenyl)phenylphosphino]ethane
DIPEA diisopropylethylamine
DMA dimethylacetamide
DMAP 4-(dimethylamino)pyridine
DME 1,2-dimethoxyethane, glyme or dimethyl glycol
DMEU 1,3-dimethylimidazolidin-2-one
DMF dimethylformamide
DMPU 1,3-Dimethyltetrahydropyrimidin-2(1H)-one
DMS dimethyl sulfoxide
DMSO dimethyl sulfide
DPPA 4,4′-diisopropylphenylphosphine
Dppf 1,1′-bis(diphenylphosphino)ferrocene
Dppm 1,1-bis(diphenylphosphino)methane
Dppp 1,3-bis(diphenylphosphino)propane
Dod-S-Me Dodecyl methyl sulfide
DTBPdi-t-butyl peroxide
E1cB elimination conjugate base
ee enantiomeric excess
equiv. equivalent(s)
Et ethyl
EWG electron-withdrawing group
Fmoc 9-fluorenylethoxycarbonyl
h hour(s)
HMDS hexamethyltrisilazane or 1,1,1,3,3,3,-hexamethyldisilazane
HMPA hexamethylphosphoric triamide
HWE Horner–Wadsworth–Emmons
i iso
Ipc isopinocampheyl
isc intersystem crossing
IR infrared
kcal kilocalorie
KHDM potassium hexamethyldisilazide
Abbreviations

LAH lithium aluminum hydride
LDA lithium diisopropylamide
LHMDS LiHMDS
LiHMDS lithium hexamethyldisilazide
LiTMP lithium 2,2,6,6-tetramethylpiperidide
LTA lead tetraacetate
LTEAH lithium triethoxyaluminohydride
LVT low-valent titanium
2,6-Lutidine 2,6-dimethylpyridine
M metal; also molar
Me methyl
MEM (2-methoxyethoxy)methyl
min minutes
mL millilitre
MMPP magnesium monoperoxyphthalate
MOM methoxymethyl
mp melting point
Ms mesyl or methanesulfonyl
MS molecular sieves
MTM methylthiomethyl
MW molecular weight; microwave
NaHMDS sodium hexamethyldisilazide
NBA N-bromoacetamide
NBS N-bromosuccinimide
NCS N-chlorosuccinimide
NIS N-iodosuccinimide
NMO N-methylmorpholine N-oxide
NMP N-methyl-2-pyrrolidinone
NMR nuclear magnetic resonance
Nu nucleophile
OTf Triflate or trifluoromethanesulfonate, functional group with the formula CF₃SO⁻³
PCC pyridinium chlorochromate
PDC pyridinium dichromate
Ph phenyl
PhH benzene
pent pentyl
Piv pivaloyl
PMB p-methoxybenzyl
pmIm 1-methyl-3-pentylimidazolium
PMP 1,2,2,6,6-pentamethylpiperidide
PPTS pyridinium p-toluenesulfonate
Pr n-propyl
PTC phase transfer catalyst/catalysis
PTSA p-toluenesulfonic acid
py pyridine
R alkyl group
Abbreviations

R clockwise (R, for rectus)
rt room temperature
S counterclockwise (S, for sinister)
SN1 nucleophilic substitution reaction unimolecular
SN2 nucleophilic substitution reaction bimolecular
salen bis(salicylidene)ethylenediamine
SET single electron transfer
SMEAH red-Al or sodium bis(2-methoxyethoxy)aluminum hydride
t tertiary
TASF tris(diethylamino)sulfonium difluorotrimethylsilicate
TBAB tetrabutylammonium bromide
TBAF tetrabutylammonium fluoride
TBAP tetrabutylammonium perruthenate
TBDDS t-butyldiphenylsilyl
TBHP t-butyl hydroperoxide
TBS t-butyldimethylsilyl
TEMPO 2,2,6,6-tetramethylpiperidinoxyl
TES triethylsilyl
TFA trifluoroacetic acid
TFAA trifluoroacetic anhydride
tfp tri-2-furylphosphine
THF tetrahydrofuran
THP tetrahydropyranyl
TIPS triisopropylsilyl
TMEDA N,N,N′,N′-tetramethylethylenediamine
TMS trimethylsilyl
TMSOTf trimethylsilyl trifluoromethanesulfonate
Tol p-tolyl
TPAP tetrapropylammonium perruthenate
TPP tetraphenylporphyrin
Ts tosyl or p-toluenesulfonyl; also transition state
TSOH p-toluenesulfonic acid (PTSA)
TTBS tri-t-butyldisilyl
1.1 An introduction to organic synthesis

Organic synthesis is the construction of complex organic compounds from simple starting compounds by a series of chemical reactions. The compounds synthesized in nature are called natural products. Nature provides a plethora of organic compounds and many of these possess interesting chemical and pharmaceutical properties. Examples of natural products include cholesterol (1.1), a steroid found in most body tissues; limonene (1.2), a terpene found in lemon and orange oils; caffeine (1.3), a purine found in tea leaves and coffee beans; and morphine (1.4), an alkaloid found in opium.

The synthesis of organic molecules is the most important aspect of organic chemistry. There are two main areas of research in the field of organic synthesis, namely total synthesis and methodology. A total synthesis is the complete chemical synthesis of complex organic molecules from simple, commercially available or natural precursors. Methodology research usually involves three main stages, namely discovery, optimization and the study of scope and limitations. Some research groups may perform a total synthesis to showcase the new methodology and thereby demonstrate its application for the synthesis of other complex compounds.

The compound to be synthesized may have a small carbon framework such as vanillin (1.5) (vanilla flavouring) or have more complex carbon framework such as penicillin G (1.6) (an antibiotic) and taxol (1.7) (used for the treatment of certain types of cancer). However, three challenges must be met in devising a synthesis for a specific compound: (1) the carbon atom framework or skeleton that is found in the desired compound must be assembled;
(2) the functional groups that characterize the desired compound must be introduced or transformed from other groups at appropriate locations; and (3) if stereogenic centres are present, they must be fixed in a proper manner.

Thus, in order to understand the synthesis of a complex molecule, we need to understand the carbon–carbon bond forming reactions, functional groups interconversions and stereochemistry aspects.

Carbon–carbon bond forming reactions are the most important tool for the construction of organic molecules. The reaction in which one functional group is converted into another is known as functional group interconversion. The spatial arrangements of the substituents can have a significant impact on the reactivity and interaction towards other molecules. Many chiral drugs must be made with high enantiomeric purity because the other enantiomer may be inactive or has side effects. Thus, there is a need to develop methods to synthesize organic compounds as one pure enantiomer and the use of these techniques is referred to as asymmetric synthesis (section 1.5).

Therefore, carbon–carbon bond forming reactions, asymmetric synthesis, the design of new chiral ligands, environmental-friendly reactions and atom economical syntheses are the major aims of present-day research.

1.2 Retrosynthetic analysis (disconnection approach)

E. J. Corey\(^1\)\(^2\) brought a more formal approach to synthesis design, known as retrosynthetic analysis. The analysis of synthesis in reverse manner is called retrosynthetic analysis or alternatively a disconnection approach. Retrosynthetic analysis or retrosynthesis is a technique for solving problems in synthesis planning, especially those presented by complex structures. In this approach, the synthesis is planned backwards starting from a relatively complex product to available simpler starting materials (Scheme 1.1). This approach requires construction of a carbon skeleton of the target molecule, placing the functional groups and appropriate control of stereochemistry.
The terminology used in synthetic and retrosynthetic analysis is shown in Table 1.1. A transform in the case of the retrosynthetic counterpart of the Wittig reaction is shown below:

In a similar manner, the retrosynthetic analysis of the Diels–Alder reaction is represented below:

The retrosynthetic step involving the breaking of bond(s) to form two (or more) synthons is referred to as a disconnection. A synthon is an idealized fragment, usually a cation, anion or radical, resulting from a disconnection. One must select disconnections which correspond to the high yielding reactions.

Functional group interconversion is the process of the transformation of one functional group to another to help synthetic planning and to allow disconnections corresponding to appropriate reactions. In planning a synthetic strategy, apart from devising means of
constructing the carbon skeleton with the required functionality, there are other factors which must be addressed including the control of regiochemistry and stereochemistry.

The above points are explained by discussing retrosynthetic analysis of cyclohexanol:

\[
\text{Cyclohexanol} \rightarrow \text{hydroxycarbocation + hydride ion}
\]

The hydroxycarbocation and the hydride ion formed after disconnection of cyclohexanol are synthons. The synthetic equivalents of hydroxycarbocation and the hydride ion are cyclohexanone and sodium borohydride, respectively. Thus, the target molecule cyclohexanol can be prepared by treating cyclohexanone with sodium borohydride.

\[
\text{O} \quad \text{H}
\]

1. NaBH₄
2. H₂O

Cyclohexanone → Cyclohexanol

The C–C bond of cyclohexanol can also be disconnected as shown below:

\[
\text{Cyclohexanol} \rightarrow \text{cyclohexyl carbocation + OH}
\]

The synthetic equivalent for the cyclohexyl carbocation is cyclohexyl bromide. Thus, cyclohexanol can be prepared by the reaction of cyclohexyl bromide with hydroxide ion.

\[
\text{Br} \quad \text{OH}^- \quad \rightarrow
\]

Cyclohexyl bromide → Cyclohexanol + Cyclohexene

However, in this case cyclohexene is also formed; thus, this method may not be considered as effective as the previous one.

A retrosynthetic tree is a directed acyclic graph of several (or all) possible retrosyntheses of a single target. Retrosynthetic analysis, then, consists of applying transforms to a given target, thereby generating all precursors from which that target can be made in a single step. The analysis can be repeated for each precursor, generating a second level of precursors. Each precursor molecule so generated is in some way simpler than the target from which it was derived and then considered to be a target and analyzed similarly. The analysis terminates when precursors are elaborated, which are considered to be relatively simple or readily available, generating a tree of synthetic intermediates.

The final result is a complete retrosynthetic tree that will contain all possible syntheses of the given target – reasonable and unreasonable, efficient and cumbersome. Of course, such a tree would be unmanageably large both for humans and computers, even when the number of precursor levels is limited. To keep the size of the retrosynthetic tree under control, examine all possible disconnections – check which are chemically sound (corresponding to known reactions, reagents, directing effects). The guiding principles for this selection are called strategies.
Some **guidelines for retrosynthesis** are given below:

1. It is better to use convergent approach rather than divergent for many complex molecules.
2. Use only disconnections corresponding to disconnect C–C bonds and C–X bonds whenever possible.
3. Disconnect to readily recognizable synthons by using only known reactions (transform).
4. The synthesis must be short.
5. It is better to use those reactions which do not form mixtures.
6. The focus is on the removal of stereocentres under stereocontrol. Stereocontrol can be achieved through either mechanistic control or substrate control.

The computer-assisted synthetic analysis designated **OCSS** (organic chemical simulation of synthesis) and **LHASA** (logic and heuristics applied to synthetic analysis) were designed to assist chemists in synthetic analysis by Corey *et al*.

Click chemistry is a modular synthetic approach towards the assembly of new molecular entities. The nature has overall preference for carbon–heteroatom bonds over carbon–carbon bonds; e.g. all the proteins are created from 20 building blocks that are joined via reversible heteroatom links. Thus following nature’s lead, the term ‘click chemistry’ was coined by Kolb, Finn and Sharpless in 2001 for synthesis restricted to molecules that are easy to make. The click chemistry as defined by Sharpless is reactions that are modular, wide in scope, high yielding, create only inoffensive products, are stereospecific, simple to perform and require the use of only benign solvent. Of all the reactions which fall under the umbrella of click chemistry, the Huisgen 1,3-dipolar cycloaddition of alkynes and azides to yield 1,2,3-triazoles is undoubtedly the premier example of a click reaction. The reaction is accelerated under copper(I) catalysis, requires no protecting groups, and almost complete conversion takes place. The reaction is selective, as only 1,4-disubstituted 1,2,3-triazole is the only product formed and there is no formation of 1,5-disubstituted triazole, which is also formed in the thermally induced Huisgen cycloaddition (Scheme 1.2).

![Scheme 1.2](image)

Due to the reliability, specificity and biocompatibility of **click chemistry**, its application is found in nearly all areas of modern chemistry from drug discovery to material science.
1.3 Umpolung strategy

Umpolung is a general class of reactions in which the characteristic reactivity of a group or an atom is temporarily reversed. The concept of umpolung is helpful especially with carbonyl groups. But to understand this concept, it is important to understand the normal reactivity of the carbonyl group. For example, under normal conditions carbonyl carbon is electrophilic and the \(\alpha\)-carbon is nucleophilic because of the resonance, as shown below:

![Resonance diagram]

But if the polarity of a carbonyl compound is reversed, the acyl carbon becomes nucleophilic. This is achieved by first converting the carbonyl group into dithianes 1.8, and then the carbon becomes nucleophilic. The strong base can remove the hydrogen adjacent to the sulfur in the dithiane to give 2-lithio-1,3-dithiane 1.9. The acyl anion equivalent 1.9 generated in this manner reacts with an alkyl halide to give the alkylated product 1.10. Finally, the carbonyl group is regenerated by unmasking the dithiane (Scheme 1.3). Thus, this type of inversion of the normal polarization of a functional group atom is known as umpolung.

![Scheme 1.3]

In Scheme 1.3, hexanal on reaction with 1,3-propanedithiol gives the 1,3-dithiane derivative 1.8. A strong base such as \(n\)-butyllithium abstracts the proton to give the corresponding 2-lithio-1,3-dithiane 1.9, which reacts with 1-bromopentane to give alkylated product 1.10. Treatment of 1.10 with HgO and BF\(_3\) (boron trifluoride) in aqueous THF (tetrahydrofuran) yields the dipentyl ketone (the corey-seebach reaction\(^6\)). Thus, dithiannyllithium (2-lithio-1,3-dithiane) 1.9 is an ‘acyl anion’ synthetic equivalent.

The dithiane anion 1.9 also reacts with acyl halides, ketones and aldehydes to give the corresponding dioxygenated compounds. Schemes 1.4 and 1.5 show the reaction of dithiane anions 1.11 and 1.12 with ketones. The most common example of umpolung reactivity of a carbonyl group is the benzoin condensation (Scheme 1.6).
A synthetic route for the synthesis of 2-deoxy-\(\text{C}\)-aryl glycosides using an umpolung strategy has been reported by Aidhen and co-worker\(^7\) (Scheme 1.7). The synthetic endeavour led to a versatile intermediate aryl ketone 1.13, which has paved the way for two important classes of \(\text{C}\)-glycosides, i.e. \(\text{C}\)-alkyl furanosides 1.14 and methyl 2-deoxy-\(\text{C}\)-aryl pyranosides 1.15.
1.4 Atom economy

The concept of atom economy was developed by B. M. Trost8,9 which deals with chemical reactions that do not waste atoms. Atom economy describes the conversion efficiency of a chemical process in terms of all atoms involved. It is widely used to focus on the need to improve the efficiency of chemical reactions.

A logical extension10 of B. M. Trost’s concept of atom economy is to calculate the \textbf{percentage atom economy}. This can be done by taking the ratio of the mass of the utilized atoms to the total mass of the atoms of all the reactants and multiplying by 100.

\[
\text{Percentage atom economy} = \frac{\text{Mass of atoms in the final product}}{\text{Mass of atoms in reactants}} \times 100
\]

R. A. Sheldon11 has developed a similar concept called \textbf{percentage atom utilization}. For instance, the percentage atom economy and percentage atom utilization calculation for the oxidation reaction of benzene to maleic anhydride is given below:

\[
\text{Benzene (C}_6\text{H}_6) \quad (\text{mass} = 78) + 4 \times \frac{1}{2} \text{O}_2 \quad \rightarrow \quad \text{Maleic anhydride (C}_4\text{O}_3\text{H}_2) \quad (\text{mass} = 98) + 2 \text{CO}_2 \quad + \quad 2 \text{H}_2\text{O}
\]

\[
\text{Oxygen (O}_2) \quad (\text{mass} = 144) \quad \text{Carbon dioxide (CO}_2) \quad (\text{mass} = 88) \quad \text{Water (H}_2\text{O}) \quad (\text{mass} = 36)
\]