Edited by
Vikas Mittal

Thermoset Nanocomposites
Polymer Nano-, Micro- & Macrocomposites Series

Mittal, V. (ed.)

Surface Modification of Nanotube Fillers
Series: Polymer Nano-, Micro- & Macrocomposites (Volume 1)
2011
ISBN: 978-3-527-32878-9

Mittal, V. (ed.)

In-situ Synthesis of Polymer Nanocomposites
Series: Polymer Nano-, Micro- & Macrocomposites (Volume 2)
2012
ISBN: 978-3-527-32879-6

Mittal, V. (ed.)

Characterization Techniques for Polymer Nanocomposites
Series: Polymer Nano-, Micro- & Macrocomposites (Volume 3)
2012
ISBN: 978-3-527-33148-2

Mittal, V. (ed.)

Modeling and Prediction of Polymer Nanocomposite Properties
Series: Polymer Nano-, Micro- & Macrocomposites (Volume 4)
2013
ISBN: 978-3-527-33150-5

Related Titles

Mittal, V. (ed.)

Polymer Nanotubes Nanocomposites
Synthesis, Properties and Applications
2010
ISBN: 978-0-470-62592-7

Mittal, V. (ed.)

Miniemulsion Polymerization Technology
2010

Mittal, V. (ed.)

Optimization of Polymer Nanocomposite Properties
2010
ISBN: 978-3-527-32521-4

Galimberti, M. (ed.)

Rubber-Clay Nanocomposites
Science, Technology, and Applications
2011

Fink, J.

A Concise Introduction to Additives for Thermoplastic Polymers
2010

Xanthos, M. (ed.)

Functional Fillers for Plastics
Second Edition
2010
ISBN: 978-3-527-32361-6

Thomas, S., Joseph, K., Malhotra, S.K., Goda, K., Sreekala, M.S. (ed.)

Polymer Composites
Volume 1
2012
ISBN: 978-3-527-32624-2
Thermoset Nanocomposites

Edited by Vikas Mittal
Contents

Preface IX
List of Contributors XI

1 Epoxy–Vermiculite Nanocomposites 1
Vikas Mittal
1.1 Introduction 1
1.2 Experimental 2
1.2.1 Materials 2
1.2.2 H2O2 Treatment 3
1.2.3 Milling and De-agglomeration 3
1.2.4 Delamination 3
1.2.5 Cation Exchange Capacity 4
1.2.6 Ion Exchange and Nanocomposite Preparation 4
1.2.7 Characterization of the Fillers and Composite Films 5
1.3 Results and Discussion 6
1.4 Conclusions 14
Acknowledgment 14
References 15

2 Polymer Nanocomposites with UV-Cured Epoxies 17
Roberta Bongiovanni, Muhammad Atif, and Marco Sangermano
2.1 Introduction 17
2.2 Photopolymerization of Epoxides 20
2.3 Limits in Curing Epoxy Composites by UV Irradiation 24
2.4 Top-Down UV-Cured Epoxy Nanocomposites 25
2.5 Bottom-Up UV-Cured Epoxy Nanocomposites 32
2.6 Conclusions 35
References 36

Shroff R. Mallikarjuna and Swaminathan Sivaram
3.1 Polymer Nanocomposites: An Introduction 39
3.2 Polyurethane–Clay Nanocomposites 41
3.2.1 Polyurethane Products and Chemistry 41
3.2.2 Polyurethane Clay Composites 41
3.2.2.1 Thermoplastic Polyurethane Elastomers and their Composites 42
3.2.2.2 Thermoset Polyurethanes and Their Composites 42
3.2.2.3 Polyurethane Foams and Their Composites 43
3.2.2.4 Polyurethanes Dispersions and Their Composites 43
3.3 Influence of Organic Modification of Clay and Structure of PU on PU/Clay Nanocomposites Structure 43
3.3.1 Reactive and Nonreactive Modifiers 43
3.3.2 Effect of Nature of Modifier on Clay Dispersion in PU 44
3.3.3 Effect of Nature of Modifier on Properties of PU Nanocomposites 56
3.4 Conclusions 58
Glossary 59
References 59

4 Thermal Properties of Formaldehyde-Based Thermoset Nanocomposites 69
Byung-Dae Park
4.1 Introduction 69
4.2 Theoretical Background of Thermal Kinetics 72
4.2.1 Conventional Kinetics of Thermal Cure and Degradation 72
4.2.2 Theory of Temperature-Modulated DSC (TMDSC) 74
4.2.3 Theory of Temperature-Modulated TG (MTG) 75
4.3 Thermal Properties of Nanocomposites 76
4.3.1 Cure Kinetics of MF Resin/Clay/Cellulose Nanocomposites 76
4.3.2 Cure Kinetics of PF Resin/Clay/Cellulose Nanocomposites 80
4.3.2.1 Cure Kinetics by the Ozawa and Kissinger Methods 80
4.3.2.2 Cure Kinetics by the Isoconversional Method 83
4.3.2.3 Cure Kinetics by TMDSC 84
4.3.3 Thermal Degradation Kinetics of PF Resin/MWCNT/Cellulose Nanocomposites 88
4.3.3.1 FT-IR Analysis of Surface-Modified MWCNTs 88
4.3.3.2 Thermal Degradation Kinetics Analysis of Conventional Thermogravimetry 90
4.3.3.3 Isoconversional Analysis of CTG 94
4.3.3.4 Thermal Kinetic Analysis of MTG 95
4.3.4 Dynamic Mechanical Analysis of PF Resin/MWCNT/Cellulose Nanocomposites 98
4.4 Mechanical Properties of the Nanocomposites 100
4.5 Summary 103
Acknowledgment 105
References 105
5 Mechanical Performance of Thermoset Clay Nanocomposites

Nourredine Aït Hocine, Said Seghar, Hanaya Hassan, and Saïd Azem

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>109</td>
</tr>
<tr>
<td>5.2 Viscoelasticity Analysis: Dynamical Mechanical Thermal Analysis (DMTA)</td>
<td>111</td>
</tr>
<tr>
<td>5.3 R rigidity—Young’s Modulus</td>
<td>114</td>
</tr>
<tr>
<td>5.4 Strain at Break</td>
<td>118</td>
</tr>
<tr>
<td>5.5 Stress at Break–Fracture Toughness</td>
<td>120</td>
</tr>
<tr>
<td>5.6 Conclusion</td>
<td>124</td>
</tr>
</tbody>
</table>

References 124

6 Unsaturated Polyester Resin Clay Hybrid Nanocomposites

Kanniyan Dinakaran, Subramani Deveraju, and Muthukaruppan Alagar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>129</td>
</tr>
<tr>
<td>6.2 Reinforced Unsaturated Polyester Composites</td>
<td>130</td>
</tr>
<tr>
<td>6.3 Clay Minerals</td>
<td>131</td>
</tr>
<tr>
<td>6.3.1 Layered Structure</td>
<td>131</td>
</tr>
<tr>
<td>6.3.2 General Characteristics</td>
<td>132</td>
</tr>
<tr>
<td>6.3.3 Surface Modification</td>
<td>133</td>
</tr>
<tr>
<td>6.4 Mechanical and Thermal Properties of Clay–UP Nanocomposites</td>
<td>135</td>
</tr>
<tr>
<td>6.5 Flame Retardance</td>
<td>141</td>
</tr>
<tr>
<td>6.6 Bio-Derived Unsaturated Polyester–Clay Nanocomposites</td>
<td>144</td>
</tr>
</tbody>
</table>

References 145

7 Hyperbranched Polymers as Clay Surface Modifications for Nanocomposites

Teresa Corrales, Fernando Catalina, Iñigo Larraza, Gema Marcelo, and Concepción Abrusci

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>147</td>
</tr>
<tr>
<td>7.2 Hyperbranched Polymers for Antimicrobial Surface</td>
<td>149</td>
</tr>
<tr>
<td>7.3 Hyperbranched Polymers on Adsorbents for Cr(VI) Water Treatment</td>
<td>157</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>162</td>
</tr>
</tbody>
</table>

References 162

8 New Methods for the Preparation of Metal and Clay Thermoset Nanocomposites

Kübra Doğan Demir, Manolya Kukut, Mehmet Atilla Tasdelen, and Yusuf Yagci

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>165</td>
</tr>
<tr>
<td>8.2 Thermoset Nanocomposites Based on Nanoclays</td>
<td>166</td>
</tr>
<tr>
<td>8.3 Thermoset Nanocomposites Based on Metal Nanoparticles</td>
<td>176</td>
</tr>
</tbody>
</table>
8.3.1 Polymer–Silver Nanocomposites 177
8.3.2 Polymer–Gold Nanocomposites 181
8.4 Concluding Remarks 184
References 185

9 Bio-Based Epoxy Resin/Clay Nanocomposites 189
 Mitsuhiko Shibata
9.1 Introduction 189
9.2 Bio-Based Epoxy Resins and Hardeners 191
9.2.1 Bio-Based Epoxy Resins 191
9.2.2 Bio-Based Hardeners 196
9.2.3 Properties of Cured Bio-Based Epoxy Resins 197
9.3 Bio-Based Epoxy Resins/Clay Nanocomposites 200
9.3.1 Nanocomposites Based on Polyglycerol Polyglycidyl Ether 200
9.3.2 Nanocomposites Based on Epoxidized Vegetable Oil 204
9.4 Conclusion 206
References 206

10 Electrical Properties and Electromagnetic Interference Shielding Response of Electrically Conducting Thermosetting Nanocomposites 211
 Parveen Saini
10.1 Introduction 211
10.2 EMI Shield and Shielding Effectiveness 212
10.2.1 Shielding Effectiveness: Theoretical Expressions 212
10.2.1.1 Shielding Due to Reflection 212
10.2.1.2 Shielding Due to Absorption 213
10.2.1.3 Shielding Due to MIRs 214
10.2.2 Shielding Effectiveness: Experimental Details 214
10.2.3 Materials for EMI Shielding: Polymer-Based Nanocomposites 215
10.2.4 Synthesis of Thermosetting Nanocomposites 216
10.2.5 Electrical Properties of Thermosetting Nanocomposites 217
10.2.5.1 ICP-Based Nanocomposites 218
10.2.5.2 CNT-Based Nanocomposites 223
10.2.5.3 Graphene-Based Nanocomposites 229
10.3 Conclusions 231
 Acknowledgments 232
 References 232

Index 239
Preface

Thermoset polymers are an important class of materials with many superior properties as compared with thermoplastic materials. Generation of thermoset polymer nanocomposites by the incorporation of layered silicates and other nanofillers in the polymer matrices has led to enhancement of the property profiles of the thermoset materials significantly. Nanocomposites with a large variety of thermoset polymers have been explored, and vast knowledge on the synthesis methodologies as well as properties has been generated. The goal of the book is to assimilate these research findings on many thermoset polymer-based nanocomposite systems comprehensively so as to generate better insights into the design, performance, and optimization of thermoset nanocomposites.

Chapter 1 reports the synthesis and properties of epoxy vermiculite nanocomposites. Vermiculite platelets were surface modified to enhance interfacial interactions with the polymer, and the nanocomposites were generated using \textit{in situ} polymerization method. Interesting insights into the permeation properties of the nanocomposites have been reported. Chapter 2 presents photoinduced polymerization as an efficient technique for rapid formation of highly cross-linked networks from liquid epoxy resins. The reaction involves a cationic mechanism and is usually initiated by UV light. Chapter 3 reports the synthesis and properties of polyurethane (PU) nanocomposites, and it was observed that the key to superior properties of nanocomposites is critically dependent on the choice of the organic modifier used to modify the surface of clay as well as the nature of the polymer itself. Chapter 4 reviews recent progress on thermal properties of formaldehyde-based thermoset/cellulose nanocomposites such as melamine-formaldehyde (MF) resin/clay/cellulose, phenol-formaldehyde (PF) resin/clay/cellulose, or PF resin/multiwalled carbon nanotube (MWCNT)/cellulose nanocomposites, particularly by focusing on thermal curing or degradation kinetics of these nanocomposites. Chapter 5 reports a review of mechanical properties of thermoset polymer nanocomposites. It is reported that the nanoclay particles provide to thermosets interesting mechanical properties when the constituents and the processing parameters are adequately selected. These properties are highly improved in the case of rubbery matrix than in glassy matrix. Chapter 6 demonstrates the unsaturated polyester clay nanocomposite systems. These composites are of high importance as the unsaturated polyester resins are the most widely used thermoset matrix.
resin in the coatings and composites industry, and constitutes about three-fourth of the total resins used. In Chapter 7, recent advances on applications of hyperbranched polymers as clay surface modifications are presented, with particular reference to the preparation of antimicrobial surface and adsorbents for Cr (VI) water treatment. Chapter 8 focuses on new methods to generate metal- and clay-reinforced nanocomposites. The development of in situ methods has clearly facilitated the major advances in the synthesis in a one-pot manner combining polymerization processes leading to the network formation with intercalation/exfoliation or nanoparticle formation, respectively. In Chapter 9, the preparation and properties of the bio-based epoxy resin/hardener/layered silicate nanocomposites are described. The replacement of petroleum-based epoxy resin/hardener with bio-based epoxy resin/hardener is very important from the viewpoint of the conservation of limited petroleum resources and the protection of global environment. In Chapter 10, comprehensive account of electrical and electromagnetic interference (EMI) shielding properties of thermosetting nanocomposites has been provided with special reference to those based on conducting additives like intrinsically conducting polymers and carbonaceous fillers like carbon nanotubes and graphene.

Abu Dhabi

June 2013

Vikas Mittal
List of Contributors

Concepción Abrusci
Universidad Autónoma de Madrid-UAM
Departamento de Biología Molecular
Facultad de Ciencias
Cantoblanco
28049 Madrid
Spain

Nourredine Aït Hocine
ENI Val de Loire
Laboratoire de Mécanique et Rhéologie (LMR)
3, rue de la Chocolaterie
BP 3410, 41034 Blois Cedex
France

Muthukaruppan Alagar
Anna University
Department of Chemical Engineering
AC-Tech Campus
Chennai 600025
India

Muhammad Atif
Politecnico di Torino
Department of Applied Science and Technology
Corso Duca degli Abruzzi 24
10129 Torino
Italy

Saïd Azem
Université Mouloud Mammeri de Tizi-Ouzou (UMMTO)
Laboratoire d’Elaboration et de Caractérisation des Matériaux et Modélisation (LEC2M)
15000 Tizi-Ouzou
Algeria

Roberta Bongiovanni
Politecnico di Torino
Department of Applied Science and Technology
Corso Duca degli Abruzzi 24
10129 Torino
Italy

Fernando Catalina
Instituto de Ciencia y Tecnología de Polímeros
Polymer Photochemistry Group
C.S.I.C. Juan de la Cierva 3
28006 Madrid
Spain

Teresa Corrales
Instituto de Ciencia y Tecnología de Polímeros
Polymer Photochemistry Group
C.S.I.C. Juan de la Cierva 3
28006 Madrid
Spain
Kübra Doğan Demir
Istanbul Technical University
Faculty of Science and Letters
Chemistry Department
Maslak
34469 Istanbul
Turkey

Subramani Deveraju
Anna University
Department of Chemical Engineering
AC-Tech Campus
Chennai 600025
India

Kanniyan Dinakaran
Anna University
Department of Chemistry
MIT Campus
Chennai 600044
India

Hanaya Hassan
Centre d’Etude et de Recherche sur les Matériaux Elastomères (CERMEL)
LMR
29, rue des Martyrs
37300 Joué-lès-Tours
France

Manolya Kukut
Istanbul Technical University
Faculty of Science and Letters
Chemistry Department
Maslak
34469 Istanbul
Turkey

Shroff R. Mallikarjuna
National Chemical Laboratory
Division of Polymer Science and Engineering
Dr. Homi Bhabha Road
Pune 411 008
India

Gema Marcelo
Instituto de Ciencia y Tecnología de Polímeros
Polymer Photochemistry Group
C.S.I.C. Juan de la Cierva 3
28006 Madrid
Spain

Vikas Mittal
The Petroleum Institute
Department of Chemical Engineering
Room 2204, Bu Hasa Building
Abu Dhabi 2533
UAE

Byung-Dae Park
Kyungpook National University
Department of Wood Science and Technology
Daegu 702-201
Republic of Korea

Parveen Saini
CSIR-National Physical Laboratory
Conducting Polymers Group
Polymeric and Soft Materials Section
New Rajender Nagar
New Delhi 110 012
India

Marco Sangermano
Politecnico di Torino
Department of Applied Science and Technology
Corso Duca degli Abruzzi 24
10129 Torino
Italy

Iñigo Larrazá
Instituto de Ciencia y Tecnología de Polímeros
Polymer Photochemistry Group
C.S.I.C. Juan de la Cierva 3
28006 Madrid
Spain
Said Seghar
Centre d’Etude et de Recherche sur les Matériaux Elastomères (CERMEL)
LMR
29, rue des Martyrs
37300 Joué-lès-Tours
France

Mitsuhiro Shibata
Chiba Institute of Technology
Department of Life and Environmental Sciences
Faculty of Engineering
2-17-1, Tsudanuma
Narashino
Chiba 275-0016
Japan

Swaminathan Sivaram
National Chemical Laboratory
Division of Polymer Science and Engineering
Dr. Homi Bhabha Road
Pune 411 008
India

Mehmet Atilla Tasdelen
Yalova University
Faculty of Engineering
Department of Polymer Engineering
77100 Yalova
Turkey

Yusuf Yagci
Istanbul Technical University
Faculty of Science and Letters
Chemistry Department
Maslak
34469 Istanbul
Turkey

and

King Abdulaziz University
Faculty of Science
Chemistry Department
Jeddah 21589
Saudi Arabia
Epoxy–Vermiculite Nanocomposites

Vikas Mittal

1.1 Introduction

Epoxies form a special class of thermosetting polymeric materials having high thermal and environmental stability. They are well known as creep-resistant materials with very high stiffness properties [1–3]. Owing to these properties, a wide spectrum of epoxy applications is available, which includes the use of epoxies as adhesives, coatings, printed circuit boards, electrical insulators, and so on. One of the major areas where epoxy adhesives find tremendous use are packaging laminates where their sole use is to hold together the various polymeric foils used in these commercial packaging laminates. To save the material costs, an overall decrease in the thickness of the packaging laminate can be achieved if the adhesive can also be made to contribute to the properties required for a packaging material apart from its function of being an adhesive. The common properties required being the permeation barrier, mechanical performance, transparency, suitability for food contact applications, ease of printability, and so on. Permeation barrier to oxygen and water vapor form the most important property needed in the packaging materials. This can be achieved by altering the polymer network structure obtained by crosslinking of the epoxide groups with amines or other crosslinking agents [4, 5]. The use of epoxy polymer with stiff rod-like units in the backbone can help to enhance the required properties. The other alternative includes the incorporation of inorganic fillers in the polymer matrix, this approach being easier to monitor and control. As the filler shape, size, and interfacial interactions affect the polymer properties greatly, organically treated plate-like inorganic aluminosilicate particles can be incorporated in the polymer matrix to achieve polymer nanocomposites for improvement in barrier performance. By incorporating impermeable, transparent, plate-like nanoparticles in the polymer matrix, the permeating molecules are forced to wiggle around them in a random walk, hence diffusing through a tortuous pathway [6–8]. Besides, the decrease in transmission rate of the permeant is a function of the aspect ratio of the inclusions, their volume fraction, and orientation.

The synthesis of epoxy–clay nanocomposites has been extensively studied; however, majority of these studies focused on enhancing the mechanical properties.
with the incorporation of organically modified fillers [9–17], thus largely neglecting the permeation properties. Only a few recent studies have discussed these properties in detail [18–23]. Apart from that, montmorillonite has been the most commonly used aluminosilicate in these studies. Owing to the low charge density (0.25–0.5 equiv mol\(^{-1}\)), a larger area per cation is available on the surface, which leads to a lower basal plane spacing in the clay after surface ion exchange with alkyl ammonium ions. On the other hand, minerals with high charge density (1 equiv mol\(^{-1}\)), such as mica, and hence subsequent smaller area per cation, do not swell in water and thus do not allow the cation exchange. However, aluminosilicates with medium charge densities of 0.5–0.8 equiv mol\(^{-1}\), such as vermiculite, offer a potential of partial swelling in water and cation exchange, which can lead to a much higher basal plane spacing in the modified mineral if optimum ion exchange is achieved. In the pristine state, vermiculite particles are composed of stacks of negatively charged 2:1 aluminosilicate layers (ca. 0.95 nm thick) with one octahedral sheet sandwiched between two opposing tetrahedral sheets and the resulting regular gap in between (interlayer). The chemical constitution of its unit cell is \((\text{Mg,Al,Fe})_3(\text{Al,Si})_4\text{O}_{10}(\text{OH})_2\text{Mg}_x(\text{H}_2\text{O})_n\) [24, 25]. Due to isomorphic substitutions in the lattice, the layers have permanent negative charges that are compensated mainly by hydrated Mg\(^{2+}\) as interlayer cations. Owing to the higher basal plane spacing in the modified mineral, the electrostatic interactions holding the layers together can be expected to be lower than similar montmorillonite counterparts thus increasing the potential of better properties of the hybrid nanocomposites.

The goal of this investigation was to synthesize epoxy–vermiculite nanocomposite coatings and to study their microstructure development as well as their oxygen and water vapor barrier properties in comparison with already reported epoxy–montmorillonite system [18]. Vermiculite platelets modified with two different ammonium ions were prepared for the purpose. The epoxy matrix and the curing agent were chosen to achieve polymer matrix, which meets the requirements of the food and health regulations and has low gas permeability on its own. The nanocomposite coatings were drawn on polyamide and polypropylene substrates and the curing temperatures were kept low in order to avoid the thermal damage to these substrate foils.

1.2 Experimental

1.2.1 Materials

The epoxy resin, bisphenol A diglycidyl ether (4,4′-isopropylidenediphenol diglycidyl ether) with an epoxide equivalent weight 172–176, was supplied by Sigma (Buchs, Switzerland). Tetraethylenepentamine (TEPA) and tetrahydrofuran (THF) were procured from Fluka (Buchs, Switzerland). Benzylidimethylhexadecylammo-
1.2 Experimental

Nium chloride (BzC16) was purchased from Acros Organics (Basel, Switzerland). Corona-treated substrate polypropylene (100 μm thick) and polyamide (15 μm thick) foils were supplied by Alcan Packaging (Neuhausen, Switzerland). A surfactant (trade name BYK-307) was used to achieve better wetting and adherence of the neat epoxy coating to the substrate foils and was obtained from Christ Chemie (Reinach, Switzerland). Russian vermiculite with a chemical composition of \((\text{Mg,Al,Fe})_3(\text{Al, Si})_4\text{O}_{10}(\text{OH})_2\text{Mg}_x(\text{H}_2\text{O})_n\) was obtained from Thermax, Greinsfurth, Austria. Benzyl(2-hydroxyethyl)methyloctadecylammonium chloride (BzC18OH) was synthesized by quaternizing the corresponding amine with 1-bromo-octadecane as reported earlier [18].

1.2.2 H\textsubscript{2}O\textsubscript{2} Treatment

To partially exfoliate the pristine vermiculite, H\textsubscript{2}O\textsubscript{2} treatment was performed. Twenty grams of pristine vermiculite mineral was taken in a 2000-ml beaker and 135 ml of H\textsubscript{2}O\textsubscript{2} was added to it. The mixture was stirred (glass stirrer) for 5 min at room temperature followed by heating at 50 °C for 10–15 min until the mineral started to foam. The contents were then stirred using a glass rod. The stirring was continued for 15 min with addition of small amounts of water in between to ease the stirring. After 15 min, beaker was removed from the hot plate and was stirred until the mixture stopped foaming. Once the mixture was cooled, it was filtered, washed with water, and finally with methanol and dried under vacuum.

1.2.3 Milling and De-agglomeration

The minerals were wet ground to the desired particle diameter (partially spherical stacks with average particle size of roughly 5 μm) in the wet grinding mill. The grinding operation was performed keeping in mind that only the thickness of the stacks is reduced. For the milling operation, approximately 100 g of the mineral was placed inside the mill. As much as 85 ml of water was subsequently added to the mineral and a homogeneous slurry was generated. It was then milled for 1 h in the milling chamber. The wet slurry was filtered and subsequently washed with methanol. The material was then dried at 70 °C under reduced pressure. The dried powder was sieved in a 160-μm sieve. Particles were also occasionally de-agglomerated by shearing them mechanically in a Teflon vessel containing zirconium oxide beads.

1.2.4 Delamination

In the as-supplied form, vermiculite contained Mg2+ ions on the surface. To achieve delamination, 15 g of milled vermiculite was refluxed in 4 M NaCl solution at 170 °C for 12 days followed by filtration and washing with water [26]. The
1.2.5 Cation Exchange Capacity

The cation exchange capacity (CEC) of vermiculite minerals before, during, and after the delamination process was determined as reported earlier [27]. To measure the CEC, 50 g of 5 mM copper sulfate solution was added to 52.5 g of 5 mM triethylenetetramine solution to generate Cu(trien)$_{2}^{2+}$ solution. The extinction coefficient (~4.84) of the solution at 255 nm wavelength was measured on a Cary 1E spectrometer (Varian, Palo Alto, CA). Approximately 20–30 mg of the vermiculite mineral was separately suspended (shaking and sonication) in 15 g of water in a polypropylene vial. To this suspension, 12 g of the Cu(trien)$_{2}^{2+}$ solution was added and the mixture shaken for 30 min. The suspension was then centrifuged and the supernatant liquid filtered through a cellulose acetate filter with 0.45 μm pore diameter. The concentration of Cu(trien)$_{2}^{2+}$ in the filtrate was measured photometrically and the amount of exchanged ions was calculated.

1.2.6 Ion Exchange and Nanocomposite Preparation

The mineral surface was rendered organophilic by exchanging its surface inorganic Na$^{+}$ cations with benzyldimethylhexadecylammonium chloride (BzC16) and benzyl(2-hydroxyethyl)methyloctadecylammonium chloride (BzC18OH). To a heated (70°C) dispersion of unmodified clay in water and ethanol, a solution of ammonium salt corresponding to 110% of the CEC of the mineral in ethanol was added dropwise and was stirred overnight. The modified clay was filtered and washed repeatedly with hot water–ethanol mixture. For nanocomposite synthesis, the required amounts of modified vermiculite and epoxy resin were calculated on the basis of the desired inorganic volume fraction as reported earlier:

\[
M_{OV} = M_{V} + (M_{V} \cdot \text{CECM}_{OC})
\]
\[
M_{EP} = [(M_{V} \cdot V_{EP} \cdot \rho_{EP})/(V_{\nu} \cdot \rho_{V})] - (M_{V} \cdot \text{CECM}_{OC})
\]

where M_{OV} is the mass of the modified vermiculite, M_{V} is the mass of the inorganic aluminosilicate, M_{OC} is the molar mass of the ammonium ion used to modify the vermiculite surface, M_{EP} is the mass of the epoxy resin, V_{ν} is the inorganic volume fraction, ρ_{V} is the density of sodium vermiculite (2.6 g cm$^{-3}$), V_{EP} is the epoxy volume fraction, and ρ_{EP} is its density (1.18 g cm$^{-3}$).

For the composite synthesis, necessary amount of modified montmorillonite was swollen in THF for 2 h followed by sonication (ultrasound horn). The epoxy resin solution was then mixed with the suspension and sonicated. The curing agent, that is, TEPA, was then added and the amine to epoxy mole ratio was maintained at 0.3:1. The nanocomposite films were drawn on the corona-treated surface of PP and PA foils with the help of a bar coater (90-μm gap). The coated films were dried at room temperature for 15 min and under reduced pressure for
another 15 min, then cured at 70 °C overnight, and postcured at 90 °C for 4 h. It is worth mentioning here that no sedimentation of the inorganic phase was observed for the time scale of the film preparation. Dry-coated films in the thickness range of ca. 10 μm were achieved, and the correct thickness was determined by weighing the samples in air and in ethanol using an analytical balance (Mettler AE 200) and a homemade device similar to the Mettler density kit ME-33360.

1.2.7 Characterization of the Fillers and Composite Films

The mean particle size was measured by light scattering using Malvern mastersizer. As much as 0.1 g of mineral was suspended in 15 ml of deionized water by shaking and sonication. Polydisperse sample analysis mode was employed and particle density of 2.7 g cm⁻³ was used. Laser beam length of 2.4 mm was selected. The sample presentation unit was filled with about 1000 ml of degassed water. Mineral slurry was then added to the sample presentation unit. The slurry was sonicated again for 10 min before performing the light scattering measurements. Apart from mean diameter \(D_{0.5} \), aspect ratio of the minerals (largest dimension to the shortest dimension) was also recorded. It should however be noted that these values are only average values as the particle shapes and sizes had a large distribution. The particle size analyzer visualized the mineral particles as spherical in order to calculate the effective mean diameter. Thus, the calculated mean sizes have contributions from length, breadth, and thickness of the particles.

High-resolution (Hi-Res) thermogravimetric analysis (TGA) of the modified clays, in which the heating rate is coupled to the mass loss, that is, the sample temperature is not raised until the mass loss at a particular temperature is completed, was performed on a Q500 thermogravimetric analyzer (TA Instruments, New Castle, DE). All measurements were carried out under an air stream in the temperature range 50–900 °C.

The oxygen (23 °C and 0% RH) and water vapor (23 °C and 100% RH) transmission rate through substrate foils coated with the neat epoxy and the nanocomposites was measured using OX-TRAN 2/20 and PERMATRAN-W 3/31 (Mocon, Minneapolis, MN), respectively. The PP and PA substrates were selected on the basis of their high transmission rate for the specific permeant so that they do not hinder measuring the permeation through the coated film. The transmission rate was normalized with respect to thickness and an average of five values was reported.

Wide-angle X-ray diffraction (WAXRD) patterns were collected on a Scintag XDS 2000 diffractometer (Scintag Inc., Cupertino, CA) using CuKα radiation (\(\lambda = 0.15406 \) nm) in reflection mode. The instrument was equipped with a graphite monochromator and an intrinsic germanium solid-state detector. The samples were step scanned (step width 0.02 ° 2θ, scanning rate 0.06 ° min⁻¹) at room temperature from 1.5 to 15 ° 2θ. The (001) basal-plane reflection of an internal standard muscovite (very thin platelets, 2θ = 8.84 °) was used to calibrate the line position of the reflections.

The microstructure of the filler in the composite films was studied by bright-field TEM using a Zeiss EM 912 Omega (Leo, BRD) microscope. Small pieces of
coated foils etched with oxygen plasma were embedded in an epoxy matrix (Epon 812 + Durcopan ACM 3:4, Fluka, Buchs, Switzerland) and 50- to 100-nm-thick sections were carefully microtomed with a diamond knife (Reichert Jung Ultracut E). The sections were supported on 100 mesh grids sputter-coated with a 3-nm-thick carbon layer.

1.3 Results and Discussion

On the one hand, as the lateral dimension of the montmorillonite is limited by the weathering and purification operations, the resulting aspect ratio is also limited to lower values. On the other hand, if vermiculite is optimally modified and hence is made to exfoliate in the polymer matrix, a much higher aspect ratio can be generated. As the permeation properties are significantly affected by exfoliated platelets owing to the enhancement of tortuity in the permeant random path through the membrane, better barrier performance can be expected in the vermiculite system. However, the presence of a greater number of cations in a specific area as compared to montmorillonite also makes it difficult to swell and modify and the platelets are held together by much stronger electrostatic forces. Therefore, only a combined effect of these factors can be expected on the final composite properties.

Table 1.1 shows the mean size ($D_{0.5}$) and cation exchange capacity values of the pristine vermiculite along with mineral after milling, de-agglomeration, H_2O_2 treatment, and delamination.

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>$D_{0.5}$ (μm)</th>
<th>Aspect ratio</th>
<th>CEC (μeq g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pristine vermiculite</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermiculite milled, fraction <160 μm</td>
<td>36.87</td>
<td>5.21</td>
<td>240</td>
</tr>
<tr>
<td>Vermiculite milled, fraction <160 μm, de-agglomerated</td>
<td>23.59 ($D_{0.9}$ 77.99 μm)</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Vermiculite milled, fraction 160–250 μm</td>
<td>92.87</td>
<td>6.48</td>
<td></td>
</tr>
<tr>
<td>Vermiculite milled, fraction 160–250 μm, re-milled</td>
<td>29.84 ($D_{0.9}$ 101.74 μm) for fraction <160 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermiculite milled, fraction <160 μm, H_2O_2 treatment</td>
<td>35.5</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Vermiculite milled, fraction >160 μm, H_2O_2 treatment</td>
<td>78.23</td>
<td>7.5</td>
<td>200</td>
</tr>
<tr>
<td>Delaminated vermiculite</td>
<td>34.11</td>
<td></td>
<td>1440</td>
</tr>
</tbody>
</table>
treatment as well as delamination. The as-received vermiculite mineral had a low CEC value of 150 μeq g$^{-1}$. The milled vermiculite was sieved and the fraction with <160 μm size was observed to have a mean diameter of 36.9 μm and a CEC of 240 μeq g$^{-1}$, which was higher than the pristine mineral. However, after de-agglomeration of the mineral, the size was further reduced to 23.6 μm, but a similar CEC value of 242 μeq g$^{-1}$ was observed, which indicated that the de-agglomeration process was not effective. The $D_{0.9}$ value of 78 μm also indicated the broad distribution in particle size. The fraction in the size range of 160–250 μm had a mean diameter of 92.9 μm. A rough estimate of the aspect ratio was also generated with the particle size analyzer, and the vermiculite fraction with <160 μm fraction had an aspect ratio of 5.21 as compared to 6.48 for the fraction >160 μm. Though the higher sized fraction had slightly higher aspect ratio, it was however a result of higher tactoid or stack thickness as well as higher diameter in the mineral. It should also be noted that due to large distribution in the size of the particles, a distribution in the aspect ratio also existed. The fraction in the range of 160–250 μm was re-milled and an average size of 29.9 μm was measured. A much higher diameter $D_{0.9}$ of 101.8 μm for this fraction indicated that the particle size distribution was still broad. In another trial, the hydrogen peroxide-treated vermiculite was milled and a mean size of 35.5 μm was observed for the fraction <160 μm. A cation exchange capacity value of 300 μeq g$^{-1}$ was obtained for this fraction, indicating that the H$_2$O$_2$ treatment of vermiculite prior to milling improved the CEC further as compared to both the pristine vermiculite flakes and the milled vermiculite without H$_2$O$_2$ treatment. The fraction above >160 μm had mean size of 78.2 μm and its CEC value of 200 μeq g$^{-1}$ was higher than the pristine mineral. The mean size and aspect ratio values of the particles decreased when the milling time was enhanced to 2 h, which indicated that the lateral dimensions of the minerals were impacted by the longer milling periods.

The findings from Table 1.1 confirm that both milling type and time affected the overall dimensions of the mineral particles. Though the mineral particles have average dimensions in the μm scale and various milling and sieving steps lead to minor changes in the overall size, it should be noted that these particles form precursors to the high aspect ratio primary platelets, thus their handling during the milling and de-agglomeration processes has immense significance. Reduction of lateral dimensions signifies reduced aspect ratio, which does not lead to the optimal enhancements in composite properties when such minerals are incorporated into the polymer matrices. It has been often reported that mechanical and permeation properties of the materials are strongly impacted by filler volume fraction as well as aspect ratio. In fact, only exfoliated platelets were reported to contribute to the barrier performance of the polymer-layered silicate nanocomposites [18]. Pretreatment of the pristine minerals (e.g., H$_2$O$_2$ treatment) provided additional advantages in achieving the goal of higher aspect ratio minerals. Enhancement of the CEC of the minerals after treatment suggested that higher extent of mineral surface was exposed due to penetration of the H$_2$O$_2$ molecules into the mineral interlayers and possibly reduction in the stack thickness as a consequence. Such treatments are also advantageous to remove any impurities present in the minerals.
Figure 1.1 demonstrates the evolution of CEC of vermiculite as a function of number of delamination cycles and delamination time. Vermiculite used for delamination was <160 μm sample, which was treated with H₂O₂ before milling. The first 10 days of delamination of vermiculite with NaCl allowed partial exchange of the Mg²⁺ ions with Na⁺ ions generating Na–vermiculite with a CEC of 1050 μeq g⁻¹. Second delamination cycle for further 12 days increased the CEC relatively slowly to 1440 μeq g⁻¹. It signified nearly a tenfold increase in CEC as compared to the pristine mineral. The mean size and aspect ratio of the delaminated minerals in Table 1.1 were similar to the milled materials indicating that although the interlayers were swollen and access to exchangeable cations was enhanced in the delamination process, loose stacks of platelets may still exist. It has also been reported that during the cleaving process, the particle diameter also reduced slightly along with the thickness, thus, justifying the observed values of mean particle size. However, it also confirmed that the mean size of the starting materials was suitable as it allowed the penetration of the NaCl and LiNO₃ in the interlayers during the delamination process. Though a partial access was gained to the available surface cations after the cleavage process, the minerals obtained were readily dispersible in water and their enhanced cation exchange capacity was suitable to carry out the surface modification processes to render them compatible with organic polymer matrices.

To achieve compatibility of the mineral and to reduce the surface energy, the sodium ions were exchanged with benzylidimethylhexadecylammonium chloride (BzC16) and benzyl(2-hydroxyethyl)methyloctadecylammonium chloride (BzC18OH).
The two ammonium ions were chosen in order to analyze the effect of different chemical architecture of the ammonium ions on the final composite properties. Depending on the interactions of the swelling solvent and the epoxy prepolymer with the ammonium ion, more chemical interaction of the epoxide groups with the hydroxyl groups present in the ammonium ions can be expected, thus leading to chemical grafting of the epoxy chains on the surface. Similarly, benzyl group present on the surface is also expected to aid in generating stronger van der Waals attraction forces with the epoxy polymer. Figure 1.2 shows the schematic of the modified vermiculites as well as the chemical structures of the system constituents. It is also worth mentioning here that other modifications such as benzyl dibutyl(2hydroxyethyl)ammonium chloride, which have been found to significantly exfoliate the montmorillonite clay platelets in the epoxy matrix, were also tried to be exchanged on the vermiculite surface. However, no exchange could be achieved even when the system was constantly stirred for 2 days or higher amounts of ammonium salts corresponding to the mineral CEC were used.

The presence of a local bilayer during the cation exchange was avoided as the presence of excess unattached modifier molecules can negatively interact with the epoxy prepolymer, thus inducing system instability and subsequent loss of composite properties. Figure 1.3 shows the TGA thermograms of the modified vermiculites. Absence of any low-temperature degradation peak in the thermograms
indicates that the excess of the modifier molecules could be successfully washed off. However, it was also important to achieve satisfactory extent of surface ion exchange in order to completely organophilize the mineral. Exchange of >95% of the surface ions was achieved in the present system. As the higher CEC of the mineral leads to the presence of a large number of organic chains on the surface leading to a lower density of the modified vermiculite as compared to the unmodified state, therefore these values should be taken into account for calculating the true volume fraction of the filler. Table 1.2 details these values for the modified filler and the composites. The inorganic volume fraction of 3.5% was used for composites as it was found to be an optimum value for achieving the enhancement in the permeation properties.

The basal plane spacing in the nonmodified vermiculite was found to be 1.22 nm, which was enhanced to 3.25 nm for BzC16-modified vermiculite and 3.40 nm for BzC18OH-modified vermiculite. The absence of the peak corresponding to 1.22 nm
in the diffractograms of the modified minerals also confirmed that the surface cations were fully exchanged during the exchange process. In contrast, montmorillonite modified with BzC16 and BzC18OH had, respectively, the basal plane spacing of 1.87 and 2.06 nm [18]. It clearly indicates that owing to higher CEC (880 μeq g⁻¹ for montmorillonite), the platelets were pushed to much larger distances in vermiculite than in montmorillonite for the same ammonium ions exchanged on the surface. Table 1.3 describes the basal plane spacing values of the dry fillers, the suspension of fillers in DMF, the suspension of fillers in DMF and epoxy prepolymer, and the final composites. DMF has been chosen for these experiments because of its low volatility for the time scale of the X-ray scanning experiments. The presence of an X-ray peak in the solvent suspensions of modified fillers indicates that the fillers were not completely exfoliated in the solvent itself indicating the presence of residual electrostatic forces. The suspensions of fillers in solvent and prepolymer also confirmed that the prepolymer itself was also unable to delaminate the platelets, although there was no decrease in the basal plane spacing as sometimes observed in the montmorillonite system. However, no change in the basal plane spacing on the addition of prepolymer would suggest that no or very weak intercalation of the prepolymer took place. The basal spacing was enhanced to some extent after curing and nanocomposite generation indicating that intercalation occurred during the polymerization leading to further pushing apart of the platelets. However, the presence of diffraction peak in the composite diffractograms also indicated that full exfoliation of the platelets could not be achieved indicating the presence of residual attraction forces. Figures 1.4 and 1.5 show the X-ray diffractograms of the modified fillers and their 3.5 vol% composites. As it is evident from the diffractograms that the intensity of the diffraction peak was reduced after incorporation in the polymer, but owing to the dependency of the intensity on sample preparation and mineral defects, the analysis of the microstructure of the composites was also performed by TEM. Figure 1.6 shows the TEM micrographs of the 3.5 vol% composites. The micrographs showed the presence of mostly mixed morphology with single layers and intercalated tactoids of varying thicknesses. The platelets were also observed to be bent and folded and no specific alignment of the tactoids could be observed at any magnification. One should also note here that the misalignment of platelets leads

<table>
<thead>
<tr>
<th>Filler</th>
<th>d-spacing filler powder (nm)</th>
<th>d-spacing of filler suspended in DMF (nm)</th>
<th>d-spacing of filler suspended in DMF + epoxy (nm)</th>
<th>d-spacing in epoxy composite (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na–vermiculite</td>
<td>1.22</td>
<td>1.42</td>
<td>1.42</td>
<td>1.29</td>
</tr>
<tr>
<td>BzC18OH</td>
<td>3.40</td>
<td>3.80</td>
<td>3.80</td>
<td>3.96</td>
</tr>
<tr>
<td>BzC16</td>
<td>3.25</td>
<td>3.34</td>
<td>3.53</td>
<td>3.68</td>
</tr>
</tbody>
</table>