Glasbau 2013

Bauten und Projekte
Bemessung und Konstruktion
Forschung und Entwicklung
Energieeffizienz und Nachhaltigkeit
Bernhard Weller, Silke Tasche (Hrsg.)
Glasbau 2013
Bernhard Weller, Silke Tasche (Hrsg.)

Glasbau 2013
Herausgeber:
Bernhard Weller, Silke Tasche
Technische Universität Dresden
Institut für Baukonstruktion
George-Bähr-Straße 1
01069 Dresden

Titelbild: Die Fassade des Museums Cité de l’Océan et du Surf in Biarritz, Frankreich, besteht größtenteils aus transparenter Wärmedämmung (TWD). Dadurch wird der Ausstellungsbereich mit Tageslicht versorgt, was einen hohen Farbwiedergabeindex und somit eine unverfälschte Wahrnehmung der Exponate ermöglicht (Foto: Fernando Guerra)

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

© 2013 Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Rotherstr. 21, 10245 Berlin, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publisher.

Umschlaggestaltung: Sophie Bleifuß, Berlin
Herstellung und Produktion: NEUNPLUS1 GmbH, Berlin

Printed in the Federal Republic of Germany.
Gedruckt auf säurefreiem Papier.

Print ISBN: 978-3-433-03039-4
ePDF ISBN: 978-3-433-60293-5
ePub ISBN: 978-3-433-60294-2
eMob ISBN: 978-3-433-60295-9
o-Book ISBN: 978-3-433-60292-8
Vorwort

Wesentlicher Dank gebührt dem Bundesverband Flachglas e.V. und dem Fachverband Konstruktiver Glasbau e.V., die Forschung und Entwicklung im Glasbau maßgeblich anregen und vorantreiben. Bundesverband Flachglas e.V. und Fachverband Konstruktiver Glasbau e.V. haben den Druck des Buches entscheidend unterstützt.

Prof. Dr.-Ing. Bernhard Weller
Dr.-Ing. Silke Tasche

Dresden, März 2013
Herausgeber
Prof. Dr.-Ing. Bernhard Weller
Dr.-Ing. Silke Tasche

Wissenschaftlicher Beirat
Prof. Dipl.-Ing. Dr. nat. techn. Oliver Englhardt, Technische Universität Graz
Prof. Dr. Markus Feldmann, Rheinisch-Westfälische Technische Hochschule Aachen
Prof. Dr.-Ing. Harald Kloft, Technische Universität Braunschweig
Prof. Dr.-Ing. Jan Knippers, Universität Stuttgart
Prof. Dr.-Ing. Jens Schneider, Technische Universität Darmstadt
Prof. Dr.-Ing. Geralt Siebert, Universität der Bundeswehr München
Prof. Dr.-Ing. Frank Wellershoff, HafenCity Universität Hamburg
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwort</td>
<td>V</td>
</tr>
<tr>
<td>Teil A – Bauten und Projekte</td>
<td></td>
</tr>
<tr>
<td>Das Enzo Ferrari Museum - eine Fusion zweier Designwelten</td>
<td>1</td>
</tr>
<tr>
<td>Lucio Blandini, Timo Schmidt, Thomas Winterstetter, Werner Sobek</td>
<td></td>
</tr>
<tr>
<td>Pérez Art Museum Miami: Hurrikan-resistente Verglasungen</td>
<td>11</td>
</tr>
<tr>
<td>Martien Teich, Matthias Oppe, Hauke Jungjohann, Thorsten Helbig, Heiko Schmid</td>
<td></td>
</tr>
<tr>
<td>Projektbericht: Leichte Vorsatzschale aus geklebtem Acrylglas an der Vitra VSL Factory</td>
<td>23</td>
</tr>
<tr>
<td>Matthias Michel, Holger Techen</td>
<td></td>
</tr>
<tr>
<td>Innovative und energiesparende Fassadentechnik am Beispiel der KfW Westarkade, Frankfurt/Main</td>
<td>35</td>
</tr>
<tr>
<td>Thomas Winterstetter, Werner Sobek</td>
<td></td>
</tr>
<tr>
<td>Schlaues Haus, intelligente Fassade: Tourismus- und Ausstellungs-zentrum Oldenburg</td>
<td>47</td>
</tr>
<tr>
<td>Frank Kimpel, Matthias Rudolph, Peter Tückmantel</td>
<td></td>
</tr>
<tr>
<td>Palacio de Comunicaciones – frei geformtes Glasdach für das neue Rathaus in Madrid</td>
<td>63</td>
</tr>
<tr>
<td>Uwe Burkhardt, Mike Schlaich</td>
<td></td>
</tr>
<tr>
<td>Teil B – Bemessung und Konstruktion</td>
<td></td>
</tr>
<tr>
<td>DIN 18008 Teile 1-5: Neuerungen gegenüber eingeführten Regelungen</td>
<td>75</td>
</tr>
<tr>
<td>Geralt Siebert</td>
<td></td>
</tr>
<tr>
<td>Tragverhalten von nicht-monolithischen Glasverbundträgern für große Spannweiten</td>
<td>87</td>
</tr>
<tr>
<td>Erich Trösch, Thomas Baumgärtner</td>
<td></td>
</tr>
<tr>
<td>Zwischenbericht aus dem Arbeitskreis 'Kantenfestigkeit' im Fachverband Konstruktiver Glasbau e.V. (FKG)</td>
<td>99</td>
</tr>
<tr>
<td>Frank Ensslen</td>
<td></td>
</tr>
<tr>
<td>Titel</td>
<td>Seite</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Edelstahlgewebeanbindung für explosionssichere Gläser</td>
<td>109</td>
</tr>
<tr>
<td>Jürgen Neugebauer</td>
<td></td>
</tr>
<tr>
<td>Langzeittragverhalten von in Verbundglas integrierten Lasteinele</td>
<td>117</td>
</tr>
<tr>
<td>einleitungselementen</td>
<td></td>
</tr>
<tr>
<td>Jürgen Denonville, Kerstin Puller, Walter Haase, Werner Sobek</td>
<td></td>
</tr>
<tr>
<td>Begehbare und befahrbare Verglasungen</td>
<td>129</td>
</tr>
<tr>
<td>Barbara Siebert, Arthur Pistora</td>
<td></td>
</tr>
<tr>
<td>Wandartige Monoglasstützen unter axialen Drucklasten und Biegung</td>
<td>143</td>
</tr>
<tr>
<td>Katharina Langosch, Markus Feldmann, Benno Hoffmeister</td>
<td></td>
</tr>
<tr>
<td>Teil C – Forschung und Entwicklung</td>
<td></td>
</tr>
<tr>
<td>Verfahrenskonzept zur Überwachung von Klebverbindungen im Glasbauen</td>
<td>157</td>
</tr>
<tr>
<td>Holger Thiede, Martin Kahlmeyer, Stefan Böhm</td>
<td></td>
</tr>
<tr>
<td>Transparente Klebstoffe für Glas-Metall-Verbindungen</td>
<td>169</td>
</tr>
<tr>
<td>Bernhard Weller, Jan Wünsch</td>
<td></td>
</tr>
<tr>
<td>Entwicklung von verklebten Holz-Glaskonstruktionen, Bemessung und</td>
<td>185</td>
</tr>
<tr>
<td>Anwendung</td>
<td></td>
</tr>
<tr>
<td>Werner Hochhauser, Wolfgang Winter, Alireza Fadai</td>
<td></td>
</tr>
<tr>
<td>Geklebte Verbundbauteile aus Glas</td>
<td>201</td>
</tr>
<tr>
<td>Kai Koschecknick, Jochen Menkenhagen</td>
<td></td>
</tr>
<tr>
<td>Optische Charakterisierung von Oberflächenschäden auf Einscheiben-</td>
<td>211</td>
</tr>
<tr>
<td>Sicherheitsglas bei Fassaden- und Dachverglasungen</td>
<td></td>
</tr>
<tr>
<td>Sebastian Schula, Paula Stemberg, Jens Schneider</td>
<td></td>
</tr>
<tr>
<td>Experimentelle und numerische Analyse des thermisch-induzierten</td>
<td>227</td>
</tr>
<tr>
<td>Glaskantenbruchs</td>
<td></td>
</tr>
<tr>
<td>Jörg Hildebrand, Maria Pankratz</td>
<td></td>
</tr>
<tr>
<td>Glasscheiben mit photokatalytischen Eigenschaften und erhöhter</td>
<td>237</td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
</tr>
<tr>
<td>Tina Tölke, Andreas Pfuch, Andreas Heft, Bernd Grünler</td>
<td></td>
</tr>
<tr>
<td>Untersuchungen zum Ermüdungsverhalten von gezielt vorgeschädigtem</td>
<td>247</td>
</tr>
<tr>
<td>Floatglas aus Kalk-Natron-Silikatglas bei zyklischer Belastung</td>
<td></td>
</tr>
<tr>
<td>Jonas Hilcken, Kaja Boxheimer, Jens Schneider, Johann-Dietrich Wörner</td>
<td></td>
</tr>
</tbody>
</table>
Teil D – Energieeffizienz und Nachhaltigkeit

Das Dreischeibenhaus Düsseldorf, The Landmark .. 265
Martin Lutz, Jürgen Einck

Bewegung in der Gebäudehülle? Gegenüberstellung passiver und aktiver Konzepte ... 281
Winfried Heusler

Sonnenschutz im Scheibenzwischenraum .. 293
Marc-Steffen Fahrion, Waldemar Dörr, Werner Stiglauer, Stefan Reich

Schallschutz mit Glas ... 303
Michael Elstner, Markus Broich, Denise Goldau, Steffen Schäfer

Primärenergieeinsparung durch edelgasgefüllte Isolierverglasungen 327
Stefan Reich, Bernhard Weller, Marc-Steffen Fahrion

Statische Analysen zur Dimensionierung von Solarmodulen 337
Cedrik Zapfe

Autorenregister .. 355

Schlagwortverzeichnis .. 357

Keywordverzeichnis .. 359
Das Enzo Ferrari Museum - eine Fusion zweier Designwelten

Dr.-Ing. Lucio Blandini1, Dr. Timo Schmidt1,3, Dr.-Ing. Thomas Winterstetter1, Prof. Dr. Dr. E.h. Werner Sobek1,2,3

1 Werner Sobek Stuttgart, Albstrasse 14, 70597 Stuttgart, Deutschland
2 Universität Stuttgart, ILEK, Pfaffenwaldring 7+14, 70569 Stuttgart, Deutschland
3 IIT, Illinois Institute of Technology, 3360 S. State St., Chicago, IL, 60616, USA

Engineering the Skin of the “Casa Enzo Ferrari” Museum in Modena. The exhibition gallery of the Enzo Ferrari Museum in Modena has been designed by Future Systems London, referring to iconic free form elements of the sport car design. The gallery façade is composed of a curved glass envelope facing Enzo Ferrari’s birth house as well as of a free-form yellow aluminium roof. This paper focuses on the customized solutions developed to engineer both the glass and the aluminum façade.

Schlagwörter: Freiform-Geometrie, Seilfassade, Aluminiumdach

Keywords: free form geometry, cable-stayed facade, aluminium roof

1 Architektonisches Konzept

Das Enzo Ferrari Museum - eine Fusion zweier Designwelten

Aus dem Museum schaut man so – quasi durch die Frontscheibe – direkt auf das historische Geburtshaus von Enzo Ferrari, während man umgekehrt aus dem Geburtshaus heraus Gestaltungselemente sieht, die wesentlich durch Enzo Ferrari geprägt wurden.

Bild 1-1 Gesamtansicht – Das neue Ausstellungsgebäude rechts und das renovierte Geburtshaus von Enzo Ferrari links, Modena

2 Geometrie

Die organische Formensprache führt zu doppelt gekrümmten Flächen, die mit konventionellen Gebäudehüllen nicht zu generieren sind. Die 78 m lange und 45 m breite Karosserie ist „geometrisch unbestimmt“, kann also nicht abgewickelt und somit auch nicht durch die Addition einfach gekrümmter Elemente erzeugt werden. Die Gebäudehülle ist spiegelsymmetrisch zur Längsachse des Bauwerkes. Entlang der Glasfassade sind die Dachhälften unterschiedlich beschnitten, was optisch eine Aufhebung der Symmetrie zur Folge hat. Die Hauptfläche der Gebäudehülle ist synklastisch gekrümmt; lediglich die Auswölbungen der zehn Skylights führen zu einer antiklastischen Krümmung im Übergangsbereich zur Hauptschiffhalle.
Das Enzo Ferrari Museum – eine Fusion zweier Designwelten

Aus dem Museum schaut man so – quasi durch die Frontscheibe – direkt auf das historische Geburtshaus von Enzo Ferrari, während man umgekehrt aus dem Geburtshaus heraus Gestaltungselemente sieht, die wesentlich durch Enzo Ferrari geprägt wurden.

Bild 1-1 Gesamtansicht – Das neue Ausstellungsgebäude rechts und das renovierte Geburtshaus von Enzo Ferrari links, Modena

2 Geometrie

Die organische Formensprache führt zu doppelt gekrümmten Flächen, die mit konventionellen Gebäudehüllen nicht zu generieren sind. Die 78 m lange und 45 m breite Karosserie ist “geometrisch unbestimmt”, kann also nicht abgewickelt und somit auch nicht durch die Addition einfach gekrümmter Elemente erzeugt werden. Die Gebäudehülle ist spiegelsymmetrisch zur Längsachse des Bauwerkes. Entlang der Glasfassade sind die Dachhälften unterschiedlich beschnitten, was optisch eine Aufhebung der Symmetrie zur Folge hat. Die Hauptfläche der Gebäudehülle ist synklastisch gekrümmt; lediglich die Auswölbungen der zehn Skylights führen zu einer antiklastischen Krümmung im Übergangsbereich zur Hauptdachfläche.

Unter Verwendung von klar definierten Toleranzen − in einfach gebogene Stahlprofile segmentiert, um die Herstellung deutlich zu vereinfachen. Die einzelnen Segmente mit einer variablen Wandstärke von bis zu 40 mm wurden dann vor Ort zusammengeschweißt.

Bild 2-1 Geometrie der Aluminiumhülle und der Glasfassade

Die um 12,5° nach innen geneigte Glasfassade ist geometrisch durch zwei sich überschneidende Kegelflächen definiert. Dadurch ist die Fassadenfläche abwickelbar und kann mit trapezförmigen, planaren Glasscheiben belegt werden. Nur die oberste Scheibenreihe der Seilfassade ist aufgrund der räumlich gekrümmten Schnittfläche unregelmäßig. Hierdurch entstehen 21 Sonderdetails im Bereich der Fassadenanbindung; diese wurden durch typisierte Details gelöst, die parametrisch an die jeweilige bauliche Situation angepasst wurden.

Bild 2-2 Obere Fassadenanbindung - Parametrische Beschreibung der 21 Sonderdetails
3 Die Glasfassade

Die leicht geneigte Seilfassade wird von vertikal angeordneten Edelstahlspiralseilen mit einem Durchmesser von 32 mm getragen. Die mit Argon gefüllte Isolierverglasung besteht aus außenliegenden, je 10 mm starken ESG-Glasscheiben und einem innenliegenden SentryGlas®-Plus-Verbund aus zwei miteinander laminierten TVG-Glasscheiben, die beide je eine Stärke von 6 mm haben.
Der Sonnenschutz der Fassade wird durch schwarz beschichtete Aluminiumelemente gewährleistet, die nicht nur den Energieeintrag regulieren, sondern die auch das Erscheinungsbild eines Autokühlers assoziieren. Die extrudierten Profile sind nicht gebogen; die außenliegenden Enden wurden aber je nach Position in der Fassade stärker oder schwächer abgefräst, um eine gebogene Kante zu bilden. In die Aluminiumelemente eingesetzte Heizbänder sorgen dafür, dass die Fassade im Winter schneefrei bleibt.

Bild 3-1 Glasfassade, Sicht von außen

Ein wichtiger Zielwert bei der Tragwerksplanung der Seilfassade war die Begrenzung der horizontalen Verformung: durch entsprechende Maßnahmen konnte die maximale Verformung (d.h. unter extremen Windlasten) auf 133 mm begrenzt werden. Hierdurch wird sichergestellt, dass die Verwindung der Glasscheiben nie über den mit dem Glashersteller abgestimmten Wert hinausgeht. Aufgrund der Fassadenkrümmung wird das Silikon in den Fugen bei einer Verformung der Fassade ungleichmäßig belastet; die Bemessung der Silikonfugen war deshalb besonders wichtig. Um die angestrebten lokalen und globalen Verformungswerte zu erreichen, wurde jede Seilvorspannung einzeln optimiert – die Vorspannungswerte variieren dabei zwischen 80 und 330 kN. Die beiden Türen in der Fassade konnten im Übrigen ohne Berücksichtigung der Fassadenverformungen geplant werden, da die Türrahmen vom Stahlportal (an den die Seile anschließen) entkoppelt sind.
Die Spiralseile sind an einem Rundhohlprofil oben angeschlossen. Dieser Träger schließt in der Horizontalen an den Dachstahlbau an; der Anschluss an den Massivbau des Gebäudes erfolgt durch eine Gabelverbindung an den beiden Enden des Trägers. In seiner Mitte wird der Träger durch zwei Y-förmige, geneigte Stahlstützen gehalten, die an ihren Kopf- und Fußpunkten gelenkig gelagert sind. Der Querschnitt der Stützen ist variabel und besteht aus jeweils drei Rohren, die durch 10 mm dicke gelaserte Stahlbleche zusammengeschweißt sind.

4 Die Aluminiumhülle

Für die Eindeckung der opaken Außenhaut wurde ein aus dem Schiffsbau adaptiertes Aluminiumsystem verwendet. Das aus 125 mm breiten Strangpressprofilen bestehende System kann in den meisten Fällen durch Kaltverformung in Extrusionsrichtung und durch eine Polygonalisierung entlang der Nut- und Federverbindungen die vorgegebene Geometrie abbilden.

Im Übergangsbereich zwischen der Hauptdachfläche und den Erhebungen der Skylights finden sich die stärksten Krümmungsradien; diese konnten nicht allein über eine reine Kaltverformung der Strangpressprofile vor Ort realisiert werden. Die Aluminiumprofile wurden für diese Bereiche vorgebogen auf die Baustelle geliefert. Die Anordnung der zehn Skylights folgte rein architektonischen Vorgaben. Die Schnittkanten der Auswölbungen fielen deshalb nicht mit den gegebenen Rändern der Aluminiumprofile zusammen. Die Fixierung auslaufender Aluminiumprofile an der Dachhaut und an der Unterkonstruktion stellte die größte konstruktive Herausforderung dar.
Um die organische Form wirtschaftlich zu erstellen, wurden das Haupttragwerk, die Trapezblecheindeckung und die Wärmedämmung aus Foamglas nicht doppelt gekrümmt, sondern polygonal ausgeführt. Lediglich die opake Außenhaut und die transluzente Membran der Innenraumdecke sind doppelt gekrümmt. Im Foamglas sind Krallenplatten positioniert, auf die die Dachunterkonstruktion montiert wurde. Eine Bitumenbahn überdeckt das Foamglas und die integrierten Krallenplatten und bildet die Notentwässerungsebene. Zur Überbrückung der variierenden Abstände zwischen Tragwerk und Hüle wurde eigens ein Anschlussdetail entwickelt, das auf unterschiedliche Winkel- und Höhendifferenz eingestellt werden kann.

Die fugenlose Hüle verhält sich thermisch wie eine monolithische Aluminiumplatte. Mit angesetzten Oberflächentemperaturen von -20 °C bis +80 °C muss ein Temperaturdelta von 100 K berücksichtigt werden. Aufgrund der daraus resultierenden thermischen Verformungen wurde das Dach nur an einem zentralen Punkt in Bauwerksmitte an einem Festlager fixiert; zusätzlich erfolgte eine Befestigung an zwei Loslagern in Querrichtung und an einem Loslager in Längsrichtung. Alle weiteren Verbindungspunkte sind horizontal verschiebbar und ermöglichen dadurch eine freie Bewegung der gesamten Dachhaut.
Als tragende Unterkonstruktion wurde aus Kostengründen ausschließlich mit Laser
geschnittener Flachstahl verwendet, der nach dem Zuschnitt als L-Profil gekantet wur-
de. Durch den gebogenen Verlauf der Oberkante konnten die Profile optimal an die
gewünschte Geometrie angepasst werden. Die Daten für die Unterkonstruktion konnten
so als ein kompletter Satz direkt an die Hersteller geliefert werden. Insgesamt wurden
allein für die Regeldachflächen 5.000 Anschlussdetails gefertigt und auf der Dachkon-
struktion positioniert. Hierfür wurden parametrisch generierte Datensätze für 2.500
unterschiedliche L-Profile mit 10.000 Lasercutlinien und 62.500 individuell positionier-
ten Bohrlöchern bereitgestellt.

Die Konstruktion der Skylights erwies sich als noch anspruchsvoller als die (bereits sehr
komplexe) Dachhaut selbst. Alle Daten für die Oberflächen der Laibungen und die
dazugehörigen Verbindungselemente wurden ebenfalls parametrisch generiert. Auf den
Aluminiumblechen wurden rückseitig Gewindebolzen angebracht, um die Fixierung
nicht nach außen hin sichtbar werden zu lassen.
5 Fazit

6 Literatur

Pérez Art Museum Miami: Hurrikan-resistente Verglasungen

Dr.-Ing. Martien Teich¹, Dr.-Ing. Matthias Oppe², Hauke Jungjohann³, Thorsten Helbig²,³, Heiko Schmid¹

1 seele sedak GmbH, Einsteinring 1, 86368 Gersthofen Deutschland
2 Knippers Helbig GmbH, Tübinger Str. 12-16, 70178 Stuttgart, Deutschland
3 Knippers Helbig Inc, 155 Avenue of Americas, New York City (NY), USA

Pérez Art Museum Miami: hurricane resistant glazing. The Pérez Art Museum Miami currently under construction in Miami, Florida is designed by Herzog & de Meuron. The vertical glass facades have been designed in close collaboration between seele and Knippers Helbig, fabricated and installed by seele. Miami is well known to be located in a region with high wind loads and risk of hurricanes, requiring compliance to demanding hurricane resistant specifications for the glass façades. Up until now, the large glass units that are planned - up to approx. 5.20 m high and 2.30 m wide - have not been used in this hurricane prone region. All the elements of the façade must prove their robustness in hurricane tests. The panes of glass are fixed to stainless steel rails cast into the ultra-high performance concrete (UHPC) mullions. The joint is either concealed by narrow pressure plates or a toggle-system is used to fix the glass panels to the mullions. Owing to the threat of hurricanes, each pane consists of two double-glazing units with a reinforcing interlayer in between. Here, a demanding owner and even more demanding architects, with the help of seele and Knippers Helbig, are pushing material limits.

Schlagwörter: Hurrikan, hochfester Faserbeton, Doppelverglasung

Keywords: hurricane, ultra-high performance concrete, double glazing
1 Einleitung

In Florida an der Biscayne Bay entsteht zur Zeit das Pérez Art Museum Miami nach Plänen von Herzog & de Meuron. Der dreigeschossige Museumskörper steht auf einem ausladenden Sockelplateau. Filigrane Stützen tragen ein weit auskragendes Dach, das für eine natürliche Verschattung des Gebäudes sorgt. Darunter sind drei unterschiedlich hohe Ausstellungsebenen aufeinander geschichtet. Durch die gänzlich unterschiedlichen Grundrisse der Ebenen ergeben sich vielfältige Vor- und Rücksprünge in der Fassade, sodass die geschlossenen Ausstellungskörper teilweise fast schwebend wirken. Die Erschließungs- und Ausstellungsflächen zwischen ihnen und darum herum sind von einer Glasfassade umhüllt, die Blickbezüge in den Park und auf die Biscayne Bay zulässt (Bild 1-1).

![Bild 1-1](Pérez Art Museum Miami – Ansicht Südseite (© Herzog & de Meuron))

Miami liegt in einer stark durch Hurrikans gefährdeten Zone mit hohen Windlasten bis zu 235 km/h (65 m/s). Entsprechend groß sind die Anforderungen an die gläserne Außenhülle. Es handelt sich dabei um eine Pfosten-Riegel-Fassade, bei der in der ersten und dritten Ebene die Pfosten außen, in der zweiten Ebene dagegen innen liegen. Eine Besonderheit ist, dass die Fassadenpfosten mit konischem Querschnitt auf besonderen Wunsch der Architekten aus ultrahochfestem, kunststoffbewehrten Faserbeton hergestellt sind. Mittels in den Beton eingegossener Edelstahlschienen werden die Glasscheiben daran befestigt. Die vertikale Fuge ist nur von schmalen Leisten abgedeckt. Aufgrund der Hurrikangefährdung sind die Scheiben mit jeweils zwei Doppelverglasungen ausgeführt. Bislang wurden Scheiben dieser Größe - bis zu circa 5,20 m Höhe und 2,30 m Breite - in dieser Zone noch nicht ausgeführt.

Schäden an Fassaden sind in der Regel nicht zu vermeiden. Ein vollständiges Versagen der Tragstruktur sollte jedoch in jedem Fall verhindert werden. Wird eine Fassade so stark beschädigt, dass der Wind in das Gebäude eindringen kann, dann stellt dies eine erhebliche Gefährdungssituation für das gesamte Gebäude dar, da der Winddruck nun vom Gebäudeinneren nach außen wirkt („internal pressurization“). Zusätzlich ist der Formbeiwert (z.B. c_{pe} nach DIN 1055) für Wind im Gebäudeinneren wesentlich größer als für von außen auf das Gebäude einwirkender Wind.
Somit kann das Gebäude auf zwei Weisen gegen Hurrikan-Einwirkungen bemessen werden: (1) Berechnung der inneren Windlasten, falls die Fassade oder ein Teil der Fassade versagt (Entstehen von Öffnungen) und Bemessung des Gebäudes gegen diese höheren Windlasten oder (2) Entwurf der Fassade so, dass diese auch unter höheren Windlasten oder beim Auftreffen von Gegenständen nicht versagt und keine Öffnungen in der Fassade entstehen.

3 Statisches Konzept
3.1 Konstruktionsprinzip

3.2 Bemessungskonzept & Beanspruchungen

Generell mussten die lokal gültigen Normen und Regelwerke für die Bemessung der gesamten Fassadenkonstruktion angewendet werden. Aufgrund der Tatsachen, dass es sich zum einen bei UHPC auch in den USA um einen nicht geregelten Baustoff handelt, dessen Bemessung somit auch nicht Gegenstand der aktuell gültigen Normen ist und dass zum anderen der gesamte Stahlbau bei seele Pilsen in Tschechien gefertigt und anschließend in die USA transportiert wurde, hat man sich mit den lokalen Behörden sowie dem verantwortlichen „Engineer of Record“ (EOR) auf das folgende Bemessungskonzept geeinigt:

2. UHPC-Mullions: Festigkeiten gemäß Herstellerangaben von LaFarge,

Sämtliche Berechnungen wurden durch zum Teil aufwändige experimentelle Untersuchungen ergänzt (siehe hierzu auch Abschnitt 4).
Aufgrund des weit auskragenden Dachs des Gebäudes, den hängenden Gärten sowie den vielfältigen Vor- und Rücksprüngen in der Fassade waren Windkanaluntersuchungen erforderlich, um die Bemessungswindlasten zu ermitteln. Durch die von cpp durchgeführten Untersuchungen [7] konnten die statischen Windlasten für einen Bemessungswind mit einer Wiederkehrperiode von 100 Jahren somit korrekt erfasst werden. Im Rahmen der statischen Berechnungen wurden 3,83 kN/m² in Level 01 (LV01) bzw. 4,31 kN/m² in Level 02 (LV02) als charakteristische Lasten angesetzt.

Um die Wirtschaftlichkeit der Verglasung bzw. der gesamten Konstruktion zu verbessern, hat man sich nach Rücksprache mit dem EOR sowie der Bauherrschaft darauf verständigt, sämtliche Verformungsnachweise im Grenzzustand der Gebrauchstauglichkeit (SLS) mit reduzierten Windlasten (10jährige Wiederkehrperiode) zu führen.

3.3 Konstruktionsdetails

Da die Primärkonstruktion z.T. sehr große Spannweiten sowie ein extrem unregelmäßiges Tragwerksraster aufweist, treten im Bereich der Fassaden große vertikale Deformationen, welche durch Langzeitverformungen des Betons zusätzlich verstärkt werden, auf. Sämtliche Anschlussdetails mussten daher so ausgelegt werden, dass Gesamtverformungen von 59 mm (LV01) bzw. 26 mm (LV02) in Langlöchern am Kopf punktanschluss aufgenommen werden können. Die Breite der vertikalen Silikonfugen in LV02 wurde so dimensioniert, dass kein Aufreißen infolge großer Differenzverformungen (max. 9 mm) benachbarter Scheiben auftritt. Des Weiteren sind die Scheiben an der unteren Kante lediglich mittig geklotzt und somit gelenkig gelagert und nicht wie üblich an zwei Punkten geklotzt. Sie können sich frei verdrehen, wodurch sichergestellt ist, dass die Scheiben unabhängig von der Deckenverformung vertikal stehen und nicht aneinanderschlagen (Bild 3-1).

![Bild 3-1 Lagerung der Glasscheiben (© Knippers Helbig)](image_url)

Extrem beengte Platzverhältnisse (Kopf punktanschlüsse der Mullions in Pockets (Aussparungen)) führten dazu, dass das Design der Brackets (Anschlüsse) sowie der Monta-
geablaufen entsprechend geplant werden mussten. Aufgrund der klimatischen Anforderungen bzw. der hohen Korrosionsgefährdung durch die exponierte Lage direkt an der Biscayne Bay, war es zwingend notwendig, sämtliche Stahlbauteile aus rostfreiem Edelstahl zu fertigen. Hierbei wurde weitestgehend die Stahlgüte 1.4571 eingesetzt, lediglich einige hochbeanspruchte Bauteile sind aus Duplexstahl 1.4462 hergestellt worden. Um allen Anforderungen gerecht zu werden, erforderte die Ausführung der Anschlussdetails zum Teil recht aufwändige Lösungen.

Mittels einbetonierter handelsüblicher Halfenschiene HTA 28/15 werden die Glas Scheiben über eine Pressleiste aus Aluminium (LV01) bzw. ein Klemmhalter-Toggle-System (LV02) an den UHPC-Mullions befestigt (Bild 3-2). Somit hat man insbesondere im Hinblick auf die Toleranzaufnahme eine optimale Lösung zur Anbindung der Glasscheiben gefunden.

Aufgrund der hohen mechanischen Beanspruchungen war eine Längsbewehrung notwendig (jeweils vier Bewehrungsstäbe Ø 16 mm (LV01) bzw. Ø 20 mm (LV02)). Auf

Bild 3-2 Querschnitte der UHPC-Mullions sowie Anbindung der Glasscheiben (© Knippers Helbig)
eine Bügelbewehrung hätte theoretisch verzichtet werden können, da die mit Polyvinylalkoholfasern (PVA-Fasern) verstärkte UHPC-Mischung über eine ausreichend hohe Zugfestigkeit verfügt, welche rechnerisch berücksichtigt werden kann. Um den Zustimmungsprozess zu vereinfachen, hat man jedoch entschieden, im Auflagerbereich eine entsprechende Bügelbewehrung vorzusehen (siehe Bild 3-2).

3.4 Numerische Berechnung der UHPC-Mullions

Die Modellierung der UHPC-Mullions erfolgt im Programmsystem Sofistik. Um ein möglicher Stabilitätsversagen infolge Biegedrillknicken entsprechend berücksichtigen zu können, wurden Imperfektionen in Form einer sabelstichartigen Vorverformung sowie eine zusätzliche Verdrillation des Querschnitts implementiert. Als resultierende Imperfektion des Druckgurtes sind mindestens L/500 bzw. 9,5 mm berücksichtigt worden (Bild 3-3). Um die seitliche Verklotzung der Scheiben möglichst realistisch abzubilden und die Verglasung gleichzeitig zur horizontalen Aussteifung in Fassadenebene heranziehen zu können, wurde die seitliche Verformung der UHPC-Mullions in der numerischen Berechnung durch Auflagerfedern mit Spalt verhindert. Im Bereich der Verklotzung beträgt der Spalt 1 mm, in der Mitte des Mullions 2,5 mm. Die in den Auflagerfedern auftretenden Kräfte entsprechen somit Horizontallasten in Fassadenebene, welche in der Glasstatik als Einzellasten entsprechend berücksichtigt worden sind.

![Bild 3-3 Modellierung der UHPC-Mullions im Programmsystem Sofistik (© Knippers Helbig)](image.png)

Da sich die Fassadenpfosten im Level 01 außerhalb der Verglasung befinden, wurde neben einer Windbeanspruchung senkrecht zur Fassade auch eine Last in Fassadenebene, welche Biegung um die schwächere Achse der UHPC-Mullions verursacht und die Imperfektion vergrößert, angesetzt.
3.5 Verglasung

Die aus rechnerischer Sicht statischen Anforderungen an die zulässigen Spannungen und Verformungen der Verglasung können mit folgendem Glasaufbau erfüllt werden: 2 × 6 mm TVG (innen) mit einer 2,25 mm starken Zwischenschicht aus Sentry Glass Plus (SGP) und 2 × 8 mm TVG (außen) mit einer 2,25 mm PVB-Folie aus Zwischenschicht.

4 Experimentelle Nachweise
4.1 Generelle Informationen

Um die in Abschnitt 2 dargestellten Effekte von Hurrikan-Einwirkungen näherungsweise abzubilden, sind in den USA experimentelle Untersuchungen nach ASTM E1886 erforderlich. Die ASTM E1996 beschreibt die konkrete Versuchsdurchführung der in ASTM E1886 definierten Versuche.

Das Auftreffen von herumfliegenden Gegenständen wird je nach Schutzklasse sowie Lage der Scheiben im Gebäude durch ein kleines („small missile impact“) oder ein großes Geschoss („large missile impact“) simuliert, das mit einer definierten Aufprallgeschwindigkeit auf den Prüfkörper trifft. Der Prüfkörper ist ein repräsentativer Teil der Fassade mit identischer Einbausituation und Lagerung. Alle Materialien sowie konstruktiven Details müssen der endgültigen Ausführung der Fassade entsprechen. Das kleine Geschoss ist eine Stahlkugel mit einem Durchmesser von 8 mm und einer Masse von 2 g mit einer Auftrreffgeschwindigkeit von 40 % bis 75 % der Windgeschwindigkeit. Für das große Geschoss wird ein Holzbalken mit einer Länge von 1,20 m bis max. 4 m und einem Gewicht von 2 kg bis max. 6,8 kg mit einer Auftrreffgeschwindigkeit von 10 % bis 55 % der Windgeschwindigkeit verwendet.