Egbert Torenbeek

Advanced Aircraft Design

Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes

©2013 Rolls-Royce plc
ADVANCED AIRCRAFT DESIGN
Aerospace Series List

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes</td>
<td>Torenbeek</td>
<td>June 2013</td>
</tr>
<tr>
<td>Design and Analysis of Composite Structures: With Applications to Aerospace Structures, Second Edition</td>
<td>Kassapoglou</td>
<td>April 2013</td>
</tr>
<tr>
<td>Aircraft Systems Integration of Air-Launched Weapons</td>
<td>Rigby</td>
<td>April 2013</td>
</tr>
<tr>
<td>Understanding Aerodynamics: Arguing from the Real Physics</td>
<td>McLean</td>
<td>November 2012</td>
</tr>
<tr>
<td>Aircraft Design: A Systems Engineering Approach</td>
<td>Sadraty</td>
<td>October 2012</td>
</tr>
<tr>
<td>Introduction to UAV Systems, Fourth Edition</td>
<td>Fahlstrom and Gleason</td>
<td>August 2012</td>
</tr>
<tr>
<td>Theory of Lift: Introductory Computational Aerodynamics with MATLAB and Octave</td>
<td>McBain</td>
<td>August 2012</td>
</tr>
<tr>
<td>Sense and Avoid in UAS: Research and Applications</td>
<td>Angelov</td>
<td>April 2012</td>
</tr>
<tr>
<td>Morphing Aerospace Vehicles and Structures</td>
<td>Valasek</td>
<td>April 2012</td>
</tr>
<tr>
<td>Gas Turbine Propulsion Systems</td>
<td>MacIsaac and Langton</td>
<td>July 2011</td>
</tr>
<tr>
<td>Advanced Control of Aircraft, Spacecraft and Rockets</td>
<td>Tewari</td>
<td>July 2011</td>
</tr>
<tr>
<td>Cooperative Path Planning of Unmanned Aerial Vehicles</td>
<td>Tsourdos et al</td>
<td>November 2010</td>
</tr>
<tr>
<td>Principles of Flight for Pilots</td>
<td>Swatton</td>
<td>October 2010</td>
</tr>
<tr>
<td>Air Travel and Health: A Systems Perspective</td>
<td>Seabridge et al</td>
<td>September 2010</td>
</tr>
<tr>
<td>Unmanned Aircraft Systems: UAVS Design, Development and Deployment</td>
<td>Austin</td>
<td>April 2010</td>
</tr>
<tr>
<td>Introduction to Antenna Placement and Installations</td>
<td>Macnamara</td>
<td>April 2010</td>
</tr>
<tr>
<td>Principles of Flight Simulation</td>
<td>Allerton</td>
<td>October 2009</td>
</tr>
<tr>
<td>Aircraft Fuel Systems</td>
<td>Langton et al</td>
<td>May 2009</td>
</tr>
<tr>
<td>The Global Airline Industry</td>
<td>Belobaba</td>
<td>April 2009</td>
</tr>
<tr>
<td>Computational Modelling and Simulation of Aircraft and the Environment: Volume 1 - Platform Kinematics and Synthetic Environment</td>
<td>Diston</td>
<td>April 2009</td>
</tr>
<tr>
<td>Handbook of Space Technology</td>
<td>Ley, Wittmann and Hallmann</td>
<td>April 2009</td>
</tr>
<tr>
<td>Aircraft Performance Theory and Practice for Pilots</td>
<td>Swatton</td>
<td>August 2008</td>
</tr>
<tr>
<td>Introduction to Aircraft Aeroelasticity and Loads</td>
<td>Wright and Cooper</td>
<td>December 2007</td>
</tr>
<tr>
<td>Stability and Control of Aircraft Systems</td>
<td>Langton</td>
<td>September 2006</td>
</tr>
<tr>
<td>Military Avionics Systems</td>
<td>Moir and Seabridge</td>
<td>February 2006</td>
</tr>
<tr>
<td>Design and Development of Aircraft Systems</td>
<td>Moir and Seabridge</td>
<td>June 2004</td>
</tr>
<tr>
<td>Aircraft Loading and Structural Layout</td>
<td>Howe</td>
<td>May 2004</td>
</tr>
<tr>
<td>Aircraft Display Systems</td>
<td>Jukes</td>
<td>December 2003</td>
</tr>
<tr>
<td>Civil Avionics Systems</td>
<td>Moir and Seabridge</td>
<td>December 2002</td>
</tr>
</tbody>
</table>
ADVANCED AIRCRAFT DESIGN
CONCEPTUAL DESIGN, ANALYSIS AND OPTIMIZATION OF SUBSONIC CIVIL AIRPLANES

Egbert Torenbeek
Delft University of Technology, The Netherlands

WILEY
A John Wiley & Sons, Ltd., Publication
Contents

Foreword xv
Series Preface xix
Preface xx
Acknowledgements xxv

1 Design of the Well-Tempered Aircraft 1
1.1 How Aircraft Design Developed 1
 1.1.1 Evolution of Jetliners and Executive Aircraft 1
 1.1.2 A Framework for Advanced Design 4
 1.1.3 Analytical Design Optimization 4
 1.1.4 Computational Design Environment 5
1.2 Concept Finding 6
 1.2.1 Advanced Design 6
 1.2.2 Pre-conceptual Studies 7
1.3 Product Development 8
 1.3.1 Concept Definition 10
 1.3.2 Preliminary Design 11
 1.3.3 Detail Design 13
1.4 Baseline Design in a Nutshell 13
 1.4.1 Baseline Sizing 13
 1.4.2 Power Plant 15
 1.4.3 Weight and Balance 16
 1.4.4 Structure 16
 1.4.5 Performance Analysis 17
 1.4.6 Closing the Loop 18
1.5 Automated Design Synthesis 19
 1.5.1 Computational Systems Requirements 19
 1.5.2 Examples 20
 1.5.3 Parametric Surveys 21
1.6 Technology Assessment 22
1.7 Structure of the Optimization Problem 25
 1.7.1 Analysis Versus Synthesis 25
 1.7.2 Problem Classification 26
Bibliography 27
Early Conceptual Design

2.1 Scenario and Requirements 31
 2.1.1 What Drives a Design? 31
 2.1.2 Civil Airplane Categories 33
 2.1.3 Top Level Requirements 35

2.2 Weight Terminology and Prediction 36
 2.2.1 Method Classification 36
 2.2.2 Basic Weight Components 37
 2.2.3 Weight Limits 39
 2.2.4 Transport Capability 39

2.3 The Unity Equation 41
 2.3.1 Mission Fuel 43
 2.3.2 Empty Weight 44
 2.3.3 Design Weights 45

2.4 Range Parameter 46
 2.4.1 Aerodynamic Efficiency 47
 2.4.2 Specific Fuel Consumption and Overall Efficiency 48
 2.4.3 Best Cruise Speed 49

2.5 Environmental Issues 51
 2.5.1 Energy and Payload Fuel Efficiency 51
 2.5.2 ‘Greener by Design’ 54

Bibliography

Propulsion and Engine Technology

3.1 Propulsion Leading the Way 59
3.2 Basic Concepts of Jet Propulsion 60
 3.2.1 Turbojet Thrust 60
 3.2.2 Turbofan Thrust 61
 3.2.3 Specific Fuel Consumption 62
 3.2.4 Overall Efficiency 63
 3.2.5 Thermal and Propulsive Efficiency 63
 3.2.6 Generalized Performance 65
 3.2.7 Mach Number and Altitude Effects 66

3.3 Turboprop Engines 67
 3.3.1 Power and Specific Fuel Consumption 67
 3.3.2 Generalized Performance 68
 3.3.3 High Speed Propellers 69

3.4 Turbofan Engine Layout 70
 3.4.1 Bypass Ratio Trends 70
 3.4.2 Rise and Fall of the Propfan 72
 3.4.3 Rebirth of the Open Rotor? 74

3.5 Power Plant Selection 74
 3.5.1 Power Plant Location 75
 3.5.2 Alternative Fuels 76
 3.5.3 Aircraft Noise 77

Bibliography
4 Aerodynamic Drag and Its Reduction 81
 4.1 Basic Concepts 81
 4.1.1 Lift, Drag and Aerodynamic Efficiency 82
 4.1.2 Drag Breakdown and Definitions 83
 4.2 Decomposition Schemes and Terminology 84
 4.2.1 Pressure and Friction Drag 84
 4.2.2 Viscous Drag 85
 4.2.3 Vortex Drag 85
 4.2.4 Wave Drag 86
 4.3 Subsonic Parasite and Induced Drag 87
 4.3.1 Parasite Drag 87
 4.3.2 Monoplane Induced Drag 90
 4.3.3 Biplane Induced Drag 91
 4.3.4 Multiplane and Boxplane Induced Drag 94
 4.4 Drag Polar Representations 95
 4.4.1 Two-term Approximation 95
 4.4.2 Three-term Approximation 96
 4.4.3 Reynolds Number Effects 97
 4.4.4 Compressibility Correction 98
 4.5 Drag Prediction 99
 4.5.1 Interference Drag 100
 4.5.2 Roughness and Excrescences 101
 4.5.3 Corrections Dependent on Operation 102
 4.5.4 Estimation of Maximum Subsonic L/D 102
 4.5.5 Low-Speed Configuration 104
 4.6 Viscous Drag Reduction 106
 4.6.1 Wetted Area 107
 4.6.2 Turbulent Friction Drag 108
 4.6.3 Natural Laminar Flow 108
 4.6.4 Laminar Flow Control 110
 4.6.5 Hybrid Laminar Flow Control 111
 4.6.6 Gains, Challenges and Barriers of LFC 112
 4.7 Induced Drag Reduction 114
 4.7.1 Wing Span 114
 4.7.2 Spanwise Camber 115
 4.7.3 Non-planar Wing Systems 115
 Bibliography 115

5 From Tube and Wing to Flying Wing 121
 5.1 The Case for Flying Wings 121
 5.1.1 Northrop’s All-Wing Aircraft 121
 5.1.2 Flying Wing Controversy 123
 5.1.3 Whither All-Wing Airliners? 124
 5.1.4 Fundamental Issues 126
 5.2 Allocation of Useful Volume 127
 5.2.1 Integration of the Useful Load 128
 5.2.2 Study Ground Rules 128
5.2.3 Volume Ratio 129
5.2.4 Zero-Lift Drag 130
5.2.5 Generalized Aerodynamic Efficiency 131
5.2.6 Partial Optima 132
5.3 Survey of Aerodynamic Efficiency 134
5.3.1 Altitude Variation 134
5.3.2 Aspect Ratio and Span 135
5.3.3 Engine-Airframe Matching 136
5.4 Survey of the Parameter ML/D 138
5.4.1 Optimum Flight Conditions 138
5.4.2 The Drag Parameter 139
5.5 Integrated Configurations Compared 140
5.5.1 Conventional Baseline 141
5.5.2 Is a Wing Alone Sufficient? 143
5.5.3 Blended Wing Body 144
5.5.4 Hybrid Flying Wing 146
5.5.5 Span Loader 147
5.6 Flying Wing Design 149
5.6.1 Hang-Ups or Showstopper? 149
5.6.2 Structural Design and Weight 150
5.6.3 The Flying Wing: Will It Fly? 151
Bibliography 152

6 Clean Sheet Design 157
6.1 Dominant and Radical Configurations 157
6.1.1 Established Configurations 157
6.1.2 New Paradigms 159
6.2 Morphology of Shapes 159
6.2.1 Classification 160
6.2.2 Lifting Systems 160
6.2.3 Plan View Classification 162
6.2.4 Strut-Braced Wings 163
6.2.5 Propulsion and Concept Integration 164
6.3 Wing and Tail Configurations 165
6.3.1 Aerodynamic Limits 165
6.3.2 The Balanced Design 167
6.3.3 Evaluation 168
6.3.4 Relaxed Inherent Stability 169
6.4 Aircraft Featuring a Foreplane 169
6.4.1 Canard Configuration 170
6.4.2 Three-Surface Aircraft 172
6.5 Non-Planar Lifting Systems 173
6.5.1 Transonic Boxplane 173
6.5.2 C-Wing 175
6.6 Joined Wing Aircraft 177
6.6.1 Structural Principles and Weight 178
6.6.2 Aerodynamic Aspects 179
6.6.3 Stability and Control 180
6.6.4 Design Integration 181

6.7 Twin-Fuselage Aircraft 182
6.7.1 Design Integration 185

6.8 Hydrogen-Fuelled Commercial Transports 186
6.8.1 Properties of LH2 187
6.8.2 Fuel System 188
6.8.3 Handling Safety, Economics and Logistics 189

6.9 Promising Concepts 189

Bibliography 190

7 Aircraft Design Optimization 197

7.1 The Perfect Design: An Illusion? 197
7.2 Elements of Optimization 198
7.2.1 Design Parameters 198
7.2.2 Optimal Control and Discrete-Variable Optimization 199
7.2.3 Basic Terminology 200
7.2.4 Single-Objective Optimization 201
7.2.5 Unconstrained Optimizer 202
7.2.6 Constrained Optimizer 204

7.3 Analytical or Numerical Optimization? 206
7.3.1 Analytical Approach 206
7.3.2 Multivariate Optimization 207
7.3.3 Unconstrained Optimization 209
7.3.4 Constrained Optimization 210
7.3.5 Response Surface Approximation 211
7.3.6 Global Models 212

7.4 Large Optimization Problems 213
7.4.1 Concept Sizing and Evaluation 213
7.4.2 Multidisciplinary Optimization 214
7.4.3 System Decomposition 215
7.4.4 Multilevel Optimization 217
7.4.5 Multi-Objective Optimization 218

7.5 Practical Optimization in Conceptual Design 219
7.5.1 Arguments of the Sceptic 219
7.5.2 Problem Structure 220
7.5.3 Selecting Selection Variables 220
7.5.4 Design Sensitivity 222
7.5.5 The Objective Function 222

Bibliography 223

8 Theory of Optimum Weight 229

8.1 Weight Engineering: Core of Aircraft Design 229
8.1.1 Prediction Methods 230
8.1.2 Use of Statistics 231
8.2 Design Sensitivity
 8.2.1 Problem Structure
 8.2.2 Selection Variables
8.3 Jet Transport Empty Weight
 8.3.1 Weight Breakdown
 8.3.2 Wing Structure (Item 10)
 8.3.3 Fuselage Structure (Item 11)
 8.3.4 Empennage Structure (Items 12 and 13)
 8.3.5 Landing Gear Structure (Item 14)
 8.3.6 Power Plant and Engine Pylons (Items 2 and 15)
 8.3.7 Systems, Furnishings and Operational Items (Items 3, 4 and 5)
 8.3.8 Operating Empty Weight: Example
8.4 Design Sensitivity of Airframe Drag
 8.4.1 Drag Decomposition
 8.4.2 Aerodynamic Efficiency
8.5 Thrust, Power Plant and Fuel Weight
 8.5.1 Installed Thrust and Power Plant Weight
 8.5.2 Mission Fuel
 8.5.3 Propulsion Weight Penalty
 8.5.4 Wing and Propulsion Weight Fraction
 8.5.5 Optimum Weight Fractions Compared
8.6 Take-Off Weight, Thrust and Fuel Efficiency
 8.6.1 Maximum Take-Off Weight
 8.6.2 Installed Thrust and Fuel Energy Efficiency
 8.6.3 Unconstrained Optima Compared
 8.6.4 Range for Given MTOW
 8.6.5 Extended Range Version
8.7 Summary and Reflection
 8.7.1 Which Figure of Merit?
 8.7.2 Conclusion
 8.7.3 Accuracy
Bibliography

9 Matching Engines and Airframe
9.1 Requirements and Constraints
9.2 Cruise-Sized Engines
 9.2.1 Installed Take-Off Thrust
 9.2.2 The Thumbprint
9.3 Low Speed Requirements
 9.3.1 Stalling Speed
 9.3.2 Take-Off Climb
 9.3.3 Approach and Landing Climb
 9.3.4 Second Segment Climb Gradient
9.4 Schematic Take-Off Analysis
 9.4.1 Definitions of Take-Off Field Length
 9.4.2 Take-Off Run
10 Elements of Aerodynamic Wing Design

10.1 Introduction
 10.1.1 Problem Structure
 10.1.2 Relation to Engine Selection

10.2 Planform Geometry
 10.2.1 Wing Area and Design Lift Coefficient
 10.2.2 Span and Aspect Ratio

10.3 Design Sensitivity Information
 10.3.1 Aerodynamic Efficiency
 10.3.2 Propulsion Weight Contribution
 10.3.3 Wing and Tail Structure Weight
 10.3.4 Wing Penalty Function and MTOW

10.4 Subsonic Aircraft Wing
 10.4.1 Problem Structure
 10.4.2 Unconstrained Optima
 10.4.3 Minimum Propulsion Weight Penalty
 10.4.4 Accuracy

10.5 Constrained Optima
 10.5.1 Take-Off Field Length
 10.5.2 Tank Volume
 10.5.3 Wing and Tail Weight Fraction
 10.5.4 Selection of the Design

10.6 Transonic Aircraft Wing
 10.6.1 Geometry
 10.6.2 Wing Drag in the Design Condition
 10.6.3 Modified Wing Penalty Function
 10.6.4 Thickness Ratio Limit
 10.6.5 WPF Affected by Sweep Angle and Thickness Ratio

10.7 Lift Coefficient and Aspect Ratio
 10.7.1 Partial Optima
 10.7.2 Constraints
 10.7.3 Refining the Optimization
10.8 Detailed Design

10.8.1 Taper and Lift Distribution 309

10.8.2 Camber and Twist Distribution 310

10.8.3 Forward Swept Wing (FSW) 311

10.8.4 Wing-Tip Devices 312

10.9 High Lift Devices 313

10.9.1 Aerodynamic Effects 313

10.9.2 Design Aspects 314

Bibliography 315

11 The Wing Structure and Its Weight 319

11.1 Introduction 319

11.1.1 Statistics can be Useful 319

11.1.2 Quasi-Analytical Weight Prediction 320

11.2 Methodology 321

11.2.1 Weight Breakdown and Structural Concept 321

11.2.2 Basic Approach 323

11.2.3 Load Factors 324

11.3 Basic Wing Box 326

11.3.1 Bending due to Lift 326

11.3.2 Bending Material 331

11.3.3 Shear Material 333

11.3.4 In-Plane Loads and Torsion 334

11.3.5 ribs 334

11.4 Inertia Relief and Design Loads 335

11.4.1 Relief due to Fixed Masses 336

11.4.2 Weight-Critical UL and Design Weights 337

11.5 Non-Ideal Weight 338

11.5.1 Non-Taper, Joints and Fasteners 339

11.5.2 Fail Safety and Damage Tolerance 340

11.5.3 Manholes and Access Hatches 340

11.5.4 Reinforcements, Attachments and Support Structure 341

11.5.5 Dynamic Over Swing 342

11.5.6 Torsional Stiffness 342

11.6 Secondary Structures and Miscellaneous Items 344

11.6.1 Fixed Leading Edge 345

11.6.2 Leading Edge High-Lift Devices 345

11.6.3 Fixed Trailing Edge 346

11.6.4 Trailing Edge Flaps 346

11.6.5 Flight Control Devices 348

11.6.6 Tip Structures 348

11.6.7 Miscellaneous Items 349

11.7 Stress Levels in Aluminium Alloys 349

11.7.1 Lower Panels 350

11.7.2 Upper Panels 350

11.7.3 Shear Stress in Spar Webs 352
11.8 Refinements

11.8.1 Tip Extensions
11.8.2 Centre Section
11.8.3 Compound Taper
11.8.4 Exposed Wing Lift
11.8.5 Advanced Materials

11.9 Application

11.9.1 Basic Ideal Structure Weight
11.9.2 Refined Ideal Structure Weight
11.9.3 Wing Structure Weight
11.9.4 Accuracy
11.9.5 Conclusion

Bibliography

12 Unified Cruise Performance

12.1 Introduction

12.1.1 Classical Solutions
12.1.2 Unified Cruise Performance
12.1.3 Specific Range and the Range Parameter

12.2 Maximum Aerodynamic Efficiency

12.2.1 Logarithmic Drag Derivatives
12.2.2 Interpretation of Log-Derivatives
12.2.3 Altitude Constraint

12.3 The Parameter ML/D

12.3.1 Subsonic Flight Mach Number
12.3.2 Transonic Flight Mach Number

12.4 The Range Parameter

12.4.1 Unconstrained Optima
12.4.2 Constrained Optima
12.4.3 Interpretation of η_M
12.4.4 Optimum Cruise Condition

12.5 Range in Cruising Flight

12.5.1 Bréguet Range Equation
12.5.2 Continuous Cruise/Climb
12.5.3 Horizontal Cruise, Constant Speed
12.5.4 Horizontal Cruise, Constant Lift Coefficient

12.6 Cruise Procedures and Mission Fuel

12.6.1 Subsonic Flight
12.6.2 Transonic Flight
12.6.3 Cruise Fuel
12.6.4 Mission Fuel
12.6.5 Reserve Fuel

12.7 Reflection

12.7.1 Summary of Results
12.7.2 The Design Connection

Bibliography
A Volumes, Surface and Wetted Areas 393
A.1 Wing 393
A.2 Fuselage 394
A.3 Tail Surfaces 395
A.4 Engine Nacelles and Pylons 395
A.5 Airframe Wetted Area 395
 Bibliography 396
B International Standard Atmosphere 397
C Abbreviations 399
Index 403
Aircraft design is a very fascinating and motivating topic for pupils, students and young researchers. They are interested in the engineering subject, knowing that this is a complex subject with the aerodynamics to make the aircraft fly, with the structural layout to accommodate some sort of payload and keep the integrity of the vehicle, and with the aspects of flight mechanics to stabilize and control the aircraft, just to mention the basic aspects. In the scientific world, the faculties of aerospace engineering follow this principle and consider the basic disciplines such as aerodynamics, lightweight structures, flight mechanics and space technologies as the fundamentals to provide the envelope for aeronautics and space for the engineering students. Aircraft design is normally not considered a specific discipline worthy of inaugurating a specific chair. Some exceptions, however, do exist. The Delft University of Technology was one of the first Technical Universities in Europe to inaugurate a specific chair for aircraft design, and with the nomination of Egbert Torenbeek in 1980 they found a very strong personality who has further developed the scientific approach and methodology for preliminary aircraft design. The Technical University of München (TUM) in 1995 established a new chair for aeronautical engineering with the specific focus on aircraft design and I was nominated for this chair. This shows that the focus of integrated aircraft design has only slowly found its role in the scientific world.

A similar view can also be seen in industry. During my time at Airbus, the Technical management was not fully convinced that the aircraft design had the same importance and role as the big engineering departments like aerodynamics, structures, systems, propulsion and cabin. On the other hand, Airbus suddenly discovered about some ten years ago with some urgency that they did not have enough engineers with sufficient global knowledge to understand the total aircraft as a complex system. A huge push was then started to develop within the company ‘aircraft architects’ and ‘aircraft integrators’, also highlighting, that the discipline ‘aircraft design’ with its specific knowledge and experience is of prime importance.

There is, however, a huge discrepancy between industry and research centres or universities with regard to integrated aircraft design. Industry claims and wishes that universities as well as research centres should not look too closely at aircraft integration; this is seen as the unique role of industry. Industry claims to be the only partner, who knows the market demand and who has to consider the right design approach with respect to time, cost, quality and risk before deciding on a new product and its introduction onto the market. Industry therefore would like to keep the universities out of the domain of aircraft design, and do not want to give too many details to the scientific community, on how to prepare an innovative aircraft design. On the other hand, students and young engineers have to be trained and have to learn
and understand the basic features of aircraft design at university during their studies. Students are primarily not so much fascinated by details of low speed aerodynamics or the detailed design of a fuselage frame compared to designing an aircraft. They are motivated to develop aircraft models, sailplanes and want to know how to design this sort of flying vehicles and what is the approach to defining the size of the wing, tailplane and engines. The scientific approach to aircraft design is therefore a major topic for the universities and has to be part of the aeronautical engineering curriculum.

There are several good books on the market, one of the best in my view written by Egbert Torenbeek. But these books were written mainly in the years 1980 to 1990 and have established a lot of design data, collected from aircraft designs of the 1960s to the 1980s. Also at that time the focus was on the preliminary aircraft design, starting from the weight breakdown, defining wing and tailplane areas and checking stability and controllability.

Over the past twenty years, computer capabilities have improved considerably and a lot of aircraft design software programs are distributed on the market with some quite good success and good results as long as the aircraft design follows the classical design features. The new dimension which has been added to the aircraft design process is called multidisciplinary optimization (MDO) methodologies. The continuous increase in computer speed and capacity has first allowed FEM methods for all sort of structural layout and CFD methods for the aerodynamic design of aircraft components and the total aircraft to be developed. The next steps were then multidisciplinary tools, first, to integrate the different design boundaries such as high-speed and low-speed aerodynamics, and in a next step, today the multidisciplinary methods permit an aircraft to be designed by using the integration of aerodynamic, structural and flight mechanics design constraints and by using multidisciplinary optimization methodologies. MDO is the new design methodology for all aircraft design features and nearly all papers in aircraft design are now using some sort of multidisciplinary optimization approach.

I remember that some five years ago – sitting on the Wolga beach in Samara (Russia) during a seminar for aircraft design professors – we had some lively discussions on some aircraft optimization problems. We also learned that Egbert Torenbeek was working on a new book about advanced aircraft design. However, he had some doubts whether there were still enough people interested in learning about the complex aspects of advanced aircraft design, while all institutions are just working with big and complex software tools. He was not sure whether the aircraft community would like to see such a book. We encouraged him very much to continue. Egbert Torenbeek has a very high reputation among the aircraft design professors and I am very happy to see that he finally managed to finish his book. Having read several chapters, I really believe that his way of addressing a quasi-analytical approach to aircraft design is very valuable and an excellent complementary way to the common normal approach of computerized analysis.

In the next decades, the aeronautical industry will be faced with considerable new environmental challenges. The past success of air transport will be confronted with new questions like ‘Which optimal flight altitude will have minimum impact on the atmosphere?’ or ‘How can new aircraft concepts with new engine options like Open Rotors improve fuel efficiency and also the environmental footprint for a given mission?’ I am convinced that new aircraft concepts for the future will be required to cope better with the increasing environmental restrictions which air transport will have to face. This book will be of great help and interest for these sorts of questions where the impact of new boundary conditions will have to be analyzed and investigated and where the large industrial computer software is not yet properly
validated and verified. The physics-based approach of this book will help to better qualify the dominant parameters for different new and unconventional aircraft concepts and also help the reader to understand the assessment of benefits and risks of these concepts.

I wish this book a lot of success and hope that my colleagues from industry and the scientific community and especially the young scientists will appreciate this book as well.

Prof.h.c. Dr.-Ing. Dr.h.c. Dieter Schmitt
Aeronautical consultant. Former Head of Future Projects at Airbus SAS
Former Professor at TU München, Institute of Aeronautical Engineering
Blagnac, 25th November 2012
Series Preface

The Aerospace Series covers a wide range of aerospace vehicles and their systems, comprehensively covering aspects of structural and system design in theoretical and practical terms. This book complements the others in the Series by looking at the concept phase of design of the aircraft.

Aircraft Design is an early stage of activity in the evolution of an aircraft project starting at the concept and enduring until the preliminary design. It is time for broad thinkers, for people prepared to take risks and to understand the big picture. At this stage of an aircraft project the important issues are the shape of the aircraft, its fuel and load carrying capability and its mass leading to an assessment of its suitability to perform a mission. From ideas generated during this process will gradually emerge a solution that can be committed to design and manufacture.

The author introduces the topic with an overview of the advanced design process, considering design requirements and methodologies, considerations driving a design, followed by an example of early design mass prediction. The next stage deals with the selection of the aircraft general arrangement, an essential but complex issue which concerns new technology applications and operational properties. Decisions made at this stage involve and affect many disciplines in a project – many of those dealt with in other books in the Series. This is the challenging stage of integration and the role of the Chief Designer. Then an approach to explicit optimization by means of quasi-analytic relations is developed and the book concludes with analytical examples that are essential to advanced design in general and optimization in particular.

This is performed in a clear and concise manner to make the book a comprehensive treatise on the subject of advanced design of subsonic civil aircraft from initial sizing through to final drag calculations. There are lessons to be learned here also for military aircraft designers. It will be of great use to undergraduate and postgraduate students as well as to practitioners in the field of aircraft design and scientists in aerospace research and development. The author has given his work authority by basing it on many years of research at the Delft University of Technology where this subject is taught under the auspices of a Chair in the subject.

Peter Belobaba, Jonathan Cooper and Allan Seabridge
Preface

I don’t know why people are frightened by new ideas. It’s the old ones that frighten me.
—John Cage, American composer

Advanced Design (AD) is the name for the activity of a team of engineers and analysts during the early stages of an aircraft design and development process. The point of departure is a set of top level requirements specifying payload/range capabilities, cabin accommodation, flight performance, operational, and environmental characteristics. The first design activity generates a conceptual baseline configuration defined by (electronic) drawings of its layout, a database specifying the physical characteristics and the essential technological assumptions, and an assessment of the feasibility of complying with the requirements. Designers may propose one or several concepts which are subsequently refined and compared during the second advanced design stage called the preliminary design. Conceptual design and preliminary design are crucial phases in the development process during which creativity and ingenuity are of paramount importance to support the far-reaching decisions that can make or break the programme as a whole.

Since the 1970s, aircraft design has become the subject of academic education and research at an increasing number of academic institutions which have an aerospace curriculum. Many topics typical of aircraft design projects are nowadays covered in academic courses, and educational handbooks, and an abundance of software tools have become available to support students in their design exercises. Although many academic courses pay modest attention to aircraft design, a design-oriented approach to the traditional aeronautical disciplines can contribute to an improved understanding of aeronautical science as a whole. However, design handbooks are essentially based on existing or even obsolete technology and may produce unrealistic results when applied to future advanced aircraft design projects. And design technologies are becoming more complicated due to the introduction of integrated product design technology and multidisciplinary design optimization, subjects not covered in most handbooks.

In writing this book it has been the author’s aim to contribute to the advancement of aircraft design (teaching) by emphasizing clear design thinking rather than sophisticated computation or using a huge collection of statistical information. Another orientation came from industrial design staff and academic teachers who indicated that they would be particularly interested in assessments of unusual aircraft concepts and examples of practical optimization in the early design stage. It was decided to focus on subsonic transports and executive (business) aircraft. The present text combines the author’s academic teaching approach with numerous results
from in-depth investigations on advanced technologies and innovative aircraft configurations reported since the 1970s. Particular attention is paid to research by staff of the aircraft design chair at Delft University of Technology between 1980 and 2000. Although some information about design methodologies and statistical data of recent airplane models are included, the result is not intended to be used as a handbook in the first place. Most of the material presented is readily understood by those who have previous experience with airplane design. The niche market for this book is formed by MSc and PhD students doing design-oriented research, academic staff teaching design, advanced airplane designers and applied scientists at aeronautical research laboratories.

The contents of this book can be subdivided into the following groups of chapters.

1. Chapters 1 and 2 offer an overview of the advanced design process, design requirements and methodologies, considerations driving a design, and an example of early design weight prediction by applying the unity equation. Chapter 3 is a summary of modern gas turbine engine technology and configurations, defining characteristics such as overall efficiency and thrust lapse rates to be used in subsequent chapters. Chapter 4 introduces the reader to different methods of decomposing and predicting aerodynamic drag and to technologies for drag reduction. Many of these topics are familiar to experienced designers; some of them may be eye-openers to students or researchers.

2. Chapters 5 and 6 focus on the choice of the aircraft’s general arrangement. This is an essential but complex issue since numerous decisions with respect to (new) technology applications and operational properties are involved and many of these decisions have a highly interdisciplinary sphere of influence. Chapter 5 deals with the basic question of how to allocate the useful load inside a generic combination of a wing and a fuselage body. In the past, this question gave rise to a discussion between analysts, some in favour of and some against the flying wing. However, the optimum configuration is not necessarily an all-wing aircraft or a traditional tube and wing (TAW). For instance, the blended wing body could become a viable alternative. Chapter 6 deals with clean-sheet design of aircraft which do not have a payload inside the wing. A qualitative assessment is made of several unusual concepts such as canard and three-surface configurations, highly non-linear lifting systems, the joined wing, twin-fuselage and hydrogen-propelled aircraft. An unusual configuration may be the best solution in the case of a dominant performance requirement or geometric constraint.

3. Chapters 7 to 10 are intended to develop an approach to explicit optimization by means of quasi-analytic relations between figures of merit – such as the maximum take-off weight or energy efficiency – and primary selection variables. Chapter 7 offers an overview of the general optimization problem, terminology and strategies to identify a feasible solution. Chapter 8 is primarily devoted to weight engineering, an essential discipline of aircraft design. Design-sensitive expressions are derived for the gross weight and its components. These are intended to show how a baseline design may be modified to improve different figures of merit, disregarding design constraints. Chapter 9 deals with matching the engines to the airframe by incorporating constraints on the installed engine power or thrust derived from high- and low-speed performance requirements. Chapter 10 derives analytical criteria for optimum wing planform area, aspect ratio, sweep angle and thickness ratio. Results are illustrated for a subsonic freighter and a transonic jetliner, both with a classical general arrangement.
4. The last chapters deal with subjects with a predominantly analytical character that are essential to advanced design in general and optimization in particular. Chapter 11 presents the derivation of a wing structure weight prediction methodology which satisfies most of the requirements for application to conceptual optimization. Chapter 12 explains why traditional criteria for optimum cruising flight cannot be applied to high-speed airplanes.

The theory is unified for (optimum) cruise performance analysis of propeller- as well as jet-powered aircraft and includes a simplified estimation of mission and reserve fuel.

The quasi-analytical character of the present approach to conceptual design optimization cannot replace rigorous numerical methods. Intended primarily to support advanced designers and researchers and help them to understand the complex relationships between the effects on airplane characteristics of varying design parameters, the results may also be useful to validate complex design sizing and optimization programs. Moreover, the simplicity of the analytical criteria is useful to quickly estimate the effects of introducing alternative technologies for propulsion and airframe design. If used judiciously, quasi-analytical relationships can be sufficiently accurate to successfully answer ‘what-if’ questions and make trade-off studies such as weight growth problems, specification changes and considering derivative aircraft. From this perspective, the present book can be seen as a tribute to prominent scientists and designers from the past – such as I.H. Ashkenas, R.T. Jones, D. Küchemann, and G.H. Lee – who pioneered this approach during the era when computer-based aircraft design technology did not yet exist. The author hopes that this effort will contribute to the way of thinking of those who consider conceptual design as an art rather than a science: the art of conceiving and building well-tempered aircraft.
I am indebted to chair holders Michel van Tooren and Theo van Holten who offered me the hospitality of their disciplinary group SEAD and to Michiel Haanschoten for his professional assistance with ICT problems. I am grateful to the staff of DAR – in particular, Arvind Gangoli Rao, Gianfranco la Rocca, Dries Visser, Roelof Vos and Mark Voskuijl – for frequent interesting communications on propulsion and aircraft design and for giving valuable feedback after reading draft versions of chapters. Thanks are also due to Evert Jesse of ADSE who has been my prime consultant on the subject of weight prediction.

This book would never have been realized without the support of my wife. Dear Nellie Volker, considering my weakness to find a proper balance between the dedication you deserve and my insatiable fascination for aeronautical engineering, I am eternally grateful that you tolerated my periods of distraction and continued to respect me during the more than 10 years of writing this book.

E. Torenbeek

Delft University of Technology, The Netherlands, April 2013
1

Design of the Well-Tempered Aircraft

Let no new improvement in flying and flying equipment pass us by.

—Bill Boeing (1928)

As our industry has matured . . . we have become increasingly enslaved to our data bases of past successful achievements. Increased competitive pressures and emphasis on control of rapidly escalating costs have combined to preclude the level of bold risks taking in exploring possible new configuration options that might offer some further increase in performance, etc., but for which no adequate data exist to aid development.

—J.H. McMasters [57] (2005)

1.1 How Aircraft Design Developed

1.1.1 Evolution of Jetliners and Executive Aircraft

The second half of the twentieth century has been truly revolutionary. In particular, the period 1945–1960 produced some highly innovative projects which demonstrated that propulsion of transport aircraft by means of jet engines had become feasible. In combination with the appearance of the sweptback wing, this resulted in a jump in maximum cruising speeds from about 550 to more than 850 km/h (Figure 2.1). Having pioneered the B-47 swept-wing bomber, Boeing introduced its basic jet concept to the 367-80 tanker transport and later to the 707 passenger transport; see Figure 1.1(a). This concept proved successful and has been adopted for jetliners almost universally since the 1960s. When one realizes that in the early 1950s designers did not yet avail themselves of the advantage of electronic computers, it will be appreciated that this revolution in design technology was a monumental achievement.

Modern jetliners are mostly low-wing designs with two or four engines installed in nacelles mounted underneath and to the fore of the wing leading edge. It should not be concluded, however, that since the Boeing 707 little progress has been made in configuration design. An early example of an unusual mutation was the Sud-Est Caravelle, see Figure 1.1(b), the airliner that
Figure 1.1 Prime examples of early post-WW II passenger aircraft. (a) Boeing 707 (1954): the first jet-powered airliner of US design. (b) Sud-Est Caravelle (1959): the first airliner with rear fuselage-mounted jet engines. (c) Fokker F 27 (1955): turboprop designed as a regional aircraft; still operational in 2012. (d) Gates Learjet 24B (1963): business jet designed in the early 1960s.

pioneered jet engines attached to the rear fuselage. Even though this was a patented concept, several short-haul designs soon emerged with a similar layout and some of these were very successful. The introduction of bypass engines (~1960) and large turbofans (~1970) further improved the productivity and economy of jetliners. In combination with the strong worldwide economic expansion, this resulted in an unprecedented growth of air traffic and the almost complete extinction of competing modes of transportation over long distances, including the long-haul piston-powered and even the brand-new turboprop-powered propeller airliners.

Short-range jets initially suffered from poor low speed performances and high fuel expenditure. This market niche was filled by the four-engine Vickers Viscount and other turboprops designed in the 1950s. The twin-engine Fokker Friendship – see Figure 1.1(c) – had its Rolls-Royce Dart turboprop engines mounted to the high-set wing. This configuration was difficult to improve on and became the standard for similar propeller aircraft appearing later. Short-range turboprops have survived the twentieth century thanks to their excellent fuel economy and low operating costs. The idea of producing economy-size jets for large companies and wealthy individuals came around 1960. A prime example of a successful business jet was the Learjet depicted in Figure 1.1(d). Seating six in a slim fuselage (‘no-one walks about in a Cadillac’), it outperformed jetliners of its time in maximum speed. Learjet’s general arrangement, a low-wing design with engines attached to the rear fuselage and a high-set horizontal tail, has been adopted on most executive jets.