Treatment of Cerebral Palsy and Motor Delay

Fifth edition

Sophie Levitt
BSc (Physiotherapy) Wits
Fellow of the Chartered Society of Physiotherapy
Consultant Paediatric Physiotherapist
Tutor on Developmental Therapy

With contributions to Chapters 1, 2, 4 and 8 by

Dawn Pickering, MSc, PGCME, MCSP
Lecturer in Physiotherapy
School of Healthcare Studies
Cardiff University
Wales
Contents

Foreword vi
Preface vii
Acknowledgements xi

1 The clinical picture for therapy and management

- The motor dysfunction 1
- Associated impairments and disabilities 2
- Aetiology 3
- Clinical picture and development 3
- Classification 5
- Spastic cerebral palsy 6
- Athetoid (dyskinetic, dystonic) cerebral palsy 8
- Ataxic cerebral palsy 9
- Common features in all types of cerebral palsies 10
- Motor delay 11
- Principles of learning and therapy 12
- Summary 13

2 A collaborative learning approach

- Working with parents 15
- Collaboration with other adults 16
- The collaborative learning approach 17
- Opportunities to discover what parents and child want to achieve 18
- Opportunities to clarify what is needed for these achievements, to recognise what they already know and can do and to find out what they still need to learn and do 19
- Participation in the selection and use of methods 21
- Participation in the evaluation of progress 23
- Parent–child interaction 24
- Helping a child to learn motor control 25
- Observation of parent and child interaction 25
- Emotional support 26
- Parents’ health 27
- Teamwork with parents 27
- Siblings 29
- Records 29
- Alternative and complementary treatments 30
- Contraindications 31
- Summary 31

3 Outline of treatment approaches

- Muscle education and braces 34
- Progressive pattern movements 36
- Proprioceptive neuromuscular facilitations (PNF) 37
- Neuromotor development 38
- Neurodevelopmental treatment (Bobath approach) 39
- Sensory stimulation for activation and inhibition 40
- Reflex creeping and other reflex reactions 40
- Conductive education 41
- Sensory integration 42
- Adjuncts to therapy 42
- Systems-based task-oriented approach 46
4 Evidence-based practice 51
Research and clinical studies 51
Research on treatment approaches 51
Theoretical grounds 51
Research studies 52
Reviews of research studies 52
Studies of specific treatment systems 53
Research on specific procedures 54
Other research 54
Clinical experience with evidence-based practice 55
The appraisal of research studies for therapy 57

5 Synthesis of treatment systems 61
The eclectic viewpoint in therapy 61
Synthesis of treatment systems 62
The postural mechanisms 63
Voluntary motion 65
Perceptual-motor function principles for a synthesis of therapy systems 67
Developmental training 67
Treatment of abnormal tone 71
Training of movement patterns 73
Use of afferent stimuli 73
Management of deformity 75

6 Learning motor function 76
Learning methods 77
The development of a child’s attention and learning 79
Practical ideas to promote attention and learning 79
Learning a motor function 79
A child’s own goals and strategies 80
Task analysis 81
Cues for learning 81
Verbal guidance 83
Rewards 84
Practice and experience 84
Summary 85

7 The older person with cerebral palsy 86
Role of the physiotherapist and occupational therapist 87
Studies of function 87
Issues of concern in the older person 88
Motor abilities and self-care activities 89
Deformities 90
Healthy lifestyle 92
Develop appropriate community mobility 93
Training of self-care and cosmetic appearance 93
Knowledge about the condition 93
Therapeutic motor activities 94
Measures 94

8 Assessment for therapy and daily function 95
Approach to assessment 95
Assessment and measurements 98
Specific functional items 109
Measures of upper extremity and hand function 110
Methods of observation of gait 112
Grading in assessments 113
Additional assessment required 114
Records 123
Summary 124

9 Treatment procedures and management 125
Motor training 125
Motor development and the child with severe visual impairment 129
Prone development 134
Supine development 154
Development of sitting 167
Development of standing and walking 195
Abnormal postures in standing 201
Lower limb orthoses for standing and walking 224
Development of hand function 233
Contents

10 **Motor function and the child’s daily life** 260

- Motor function in feeding, dressing, toileting, washing, bathing, play and communication 260
- Motor function and perception 262
- Motor function and communication, speech and language 264
- Development of communication – brief summary 264
- Development of feeding – brief summary 266
- Development of dressing – brief summary 272
- Development of play – brief outline 273
- Techniques for carrying the child correctly 273

11 **Management of deformity** 275

- Causes of deformities and aims of therapy and management 276
- Deformities and gait 282
- Therapy and daily care 285
- Review of deformities 296
- Arm deformity 303
- Deformities of trunk and neck 303

12 **Therapeutic group work** 306

- General management of groups 308
- Selection of children 308
- The programme 310
- Summary 311

Appendix 1: Developmental levels 312

- Physical ability assessment guide 314
- Prone 314
- Supine 314
- Sitting 314
- Standing and walking 315
- Wheelchair use 316

Appendix 2: Equipment 317

- Basic equipment 317
- Aids to activities of daily living 320
- General 321

References 322

Index 340
I greatly welcome the fifth edition of this book which brings together the management of cerebral palsies into a comprehensive but readable form. It builds on the strengths of previous editions including specific methodologies, their conceptual framework and the long and quite tortuous historical pathway of our attempts to help children with early onset motor disorders and their parents and teachers. The developing scientific background is expanded and balanced with the understanding of what can realistically be researched in children who show such wide variations of motor, cognitive and behavioural impairments.

The approach shows recognition of the forces that have driven the subject but produces an account of what a therapist can realistically offer by way of assessment and therapy. There is always the problem of how an inexperienced therapist extracts ideas and practical methodologies from the writings of someone of Sophie Levitt’s long experience. This book is in my view an essential part of both a therapist’s and doctor’s basic understanding of the subject, but requires the practical interplay with experienced practitioners in a multidisciplinary team to set priorities for an individual child.

At one level the ‘cerebral palsies’ are being reclassified into more precise diagnostic entities, particularly by magnetic resonance imaging. At a more practical level there are a large number of young children with motor delay and disorder whose families need help on how to handle them and help them to achieve their potential. Whether you can show that a varied group of children are better for this or that intervention on a global scale of assessment may mean less than that a family has been able to relax with their disabled daughter and feel that they understand something of her needs and the methods by which they can help her.

It also may well be that setting-agreed aims to be achieved within a defined time is the best way of bridging the gap between different levels of experience. It also provides an auditable target for those who would wish to measure the efficacy of the enterprise in a mechanistic rather than psychological one.

This book remains essential for those managing children with disability.

Brian Neville
Professor of Childhood Epilepsy
Professor of Paediatric Neurology
University College London
Institute of Child Health/Great Ormond Street Hospital for Children NHS Trust
The five editions of this book reflect where we have been and where we are now. Ideas from the past are still prevalent today, but we fortunately have studies which confirm the value of some of them. Research on others may not be easy or perhaps possible at this time. In order for this book to reflect both what we did and what we do now, I have learned not only from my physiotherapy colleagues and the questions from my students but also from parents and their children. Listening attentively to parents, I have learned of their fundamental human needs for respect, for support and for a sense of control of their lives. Their practical ideas, their courage and their determination to do the best for their child are inspiring. Parents and their children with disabilities taught me that they needed empathy not sympathy. How does one present physiotherapy in this style? Did I have adequate professional knowledge to warrant the trust of parents and their children?

Fortunately, I had contact with many professionals in medicine, therapy, education, psychology and social work. This was as a member of multidisciplinary and interdisciplinary teams in both clinical work, special schools and in postgraduate education. I am grateful to many different professionals in various countries, who have given me generously of their knowledge and helped me understand their views for the benefit of the whole child and his or her family. It was not always easy to incorporate their essential messages into physiotherapy as there are contradictions in the cultures of different disciplines. However, I have drawn on their fundamental concerns for the whole child and have tried to integrate them into the development of a child’s motor function.

As a physiotherapist I simultaneously sought and am still seeking the best ways to treat and manage a child with cerebral palsy. This was challenging as it involved dealing with contradictory views in my own profession. As I was attempting to understand the views of different professions, it was somewhat easier to understand different views in my own profession! I found some common ground between different therapy approaches and recommended that an eclectic approach would be best. To my mind, there were useful contributions from various experts.

The first edition of this book (1977) proposed an eclectic approach drawing on topics in neurology, orthopaedics and normal (typical) and abnormal child development. In addition, there was always the recognition that children ‘do not move by neurophysiology alone’ but that learning processes enable a child to progress through stages of motor development. The second and third editions continued to elaborate learning principles to develop children’s motor function. Since publication of earlier editions of this book it has been rewarding to find an increase in an eclectic viewpoint and in more functional physiotherapy, which were so controversial in the past. In my work, functional therapy grew out of the question: ‘How do parents and other adults learn?’ I was helped by those studies in adult education which showed that people learn best what has meaning for them in their daily lives. Parents were clearly interested in their child’s daily function, which was so limited by cerebral palsy.

The third edition contained a specific chapter on a collaborative learning approach. I had developed this approach over some years for working with parents, carers and others involved with a child with cerebral palsy. This ‘client-centred’ approach depends on their participation in a learning process. Unlike some learning models, this model also includes the therapist’s own participation in learning, as well as the emotional issues affecting learning.
of parent and therapist in collaborative work. This approach involves consideration of the views and needs of both of them.

This approach develops respect for a family’s cultural and social values as I learned in my experience in developing countries and as a tutor/guest lecturer with international students in the Community-Based Rehabilitation Courses, Institute of Child Health, London. The collaborative learning approach depends on daily tasks chosen by people with disabilities and their parents, carers and teachers in different communities. This promotes inclusion in mainstream schools and in the specific cultural communities in which a child or older person find themselves. The collaborative approach is a learning process which can allow parents and others involved to learn at their own pace, so adjusting their expectations and attitudes while maintaining hope.

The older person. The fifth edition continues to suggest use of the framework of my collaborative learning approach in Chapter 7 ‘The older person with cerebral palsy’. Similarly, as with child and parents, it offers mutual respect between individuals and therapists and develops self-esteem and confidence in adolescents and adults. Meaning is given for their daily lives so that the procedures suggested can improve their participation in their daily life. Therapy methods and recreational therapeutic activities are included to add to their quality of life. However, currently there is the growing view among psychologists and social scientists that participation does not necessarily equal a quality of life.

Family-centred approach (care). This is also based on ‘client-centred’ practice first originated by Carl Rogers in the 1960s which formerly inspired the collaborative learning approach, but has only emerged in family-centred physiotherapy and occupational therapy at the end of the 1990s and in recent years. This approach involves all the members of a cerebral palsy team and is a welcome development. However in some places, this demands reflective learning and re-examination of long-held professional attitudes. ‘We are doing this anyway’ is often felt by genuinely well-meaning professionals, but given the new measures of what parents and families really experience from a service, there is not necessarily agreement with this statement. References to such measures are given in this edition.

A framework for assessment, therapy and management. This fifth edition crystallises ideas from earlier editions for further development of the collaborative learning approach in the following framework:

1. The task(s) (e.g., a daily activity, self-care, play or social interaction) are chosen by the person with cerebral palsy, together with his parents or other people involved in their familiar environments of home and community.

2. The motor functions for the chosen task are selected.

3. The components (abilities, skills, prerequisites) of the motor function are analysed, for example specific postural mechanisms, voluntary movement, perception and understanding (cognitive and emotional).

4. The motor impairments which constrain motor function are assessed, for example limited joint range, weakness, abnormal postural alignment, limited repertoire of movements, abnormal movement patterns (synergies) or abnormal reflex reactions, as well as general health.

5. The non-motor impairments which constrain motor function and task are considered, for example problems of vision, perception, understanding and communication.

6. The residual abilities in all areas of function are identified, so they can be augmented to increase achievement through different strategies.

The individual person and those assisting him or her in home, school or community contribute most to items 1 and 2, while the physiotherapist and her multidisciplinary colleagues contribute most to items 3–6. The clinician will find there are overlaps between items, which are addressed in the practical chapters.

Therapy goals. Therapy goals can be clarified in this framework so that methods can be selected to activate components and minimise impairments at the same time. Postural control in the best possible alignments and movements, strengthening and joint ranges and coordination are themselves improved if appropriately used whilst training function. A number of us have found that our previous focus on impairments did not always lead to function. It is dependent on the condition of individuals as to when there is a need to add specific treatment and medical procedures for impairments.

In earlier editions a view was given that spasticity has more relevance to deformities than to direct causation of most of the motor dysfunction. Nevertheless, if a deformity was developing, this acted as
a block to function and needed therapy. There were very few studies on spasticity that I could find to support my clinical impression. Today, there are many studies which have questioned the role of spasticity in function. For example, the studies on selective dorsal rhizotomies show that though spasticity was removed, there was little change in overall function. In addition, since the first edition I have found recent studies in support of my long-held view that spasticity and reflex reactions or ‘reflex-hunting’ were overemphasised. However, typical postural control or the postural mechanisms have been emphasised since the first edition. Many new studies are growing to assert the importance of postural control or balance. More of these studies are included in this edition.

Strengthening procedures. In the past, my inclusion of strengthening methods was considered controversial. This book continues to suggest strengthening methods using manual resistance, selected from proprioceptive neuromuscular facilitation and additional motor functions involving lifting of heavy objects. The methods are selected for use in the context of developmental motor functions. The treatment of deformities also continues to employ strengthening of agonists and antagonists according to the muscle imbalance.

Evidence-based practice. The fifth edition has many revisions in the light of new knowledge, research studies and clinical evidence. Unfortunately, in this complex field and with this heterogeneous population, reliable scientific evidence to support interventions that we make can be difficult to obtain. Therefore, we still rely on long experience and expert opinion. Fortunately, research studies have increased and are becoming more rigorous and we look forward to further clinical progress as a result. This edition contains sections on current ‘Assessment measures’ and ‘Evidence-based practice’ which increases information previously given in ‘Appraisal of Research Studies’ in the fourth edition.

It is worth pointing out that there is a tendency to overrate numerical data, which is the norm in the physical sciences. However, while science may often involve numbers, this is not always necessary but good research must always involve careful systematic observation and detailed analysis, that is a lot of hard thinking.

Again, even when the research is thorough, it is often reported in obscurely written papers where little attempt seems to be made to communicate the findings to clinicians who are seeking to use results to improve their practice. On behalf of therapists, I would plead with researchers to keep their findings clear and reasonably simple, and to realise that most practicing therapists have little training in or aptitude for statistical analysis. Please spell out what your statistical tests are testing and also what assumptions are made. It is well known that medical research can be harmed by poorly applied statistics.

Suggestions not recipes. There remain many methods suggested from long clinical experience which still await research studies as to their value for specific problems, at different ages or developmental stages. This is not a book of ‘recipes’ but of suggestions for therapy and daily care or management based on assessment of an individual person with cerebral palsy and/or motor delay. They are presented with any evidence that exists at this time. The suggestions are not prescriptive and need to be assessed as appropriate for an individual person with cerebral palsy. Therapy methods based on research studies are desirable, but still need assessment with a particular person and with the parents and carers.

Not all methods are given, as some are difficult to describe and need demonstration. However, wherever possible, the principle has been given as to why, when and when not to use methods, which also allows a therapist to use her own methods and invent her own methods besides those suggested in this book. Not all possibilities for each person with cerebral palsy can be covered, so the therapist will also need to solve problems in each case and draw on his or her clinical experience. This book should be used with practical courses, further study and supervision by senior colleagues.

Current theories are given but there remain limitations as well as advantages for clinical workers. Some of the advantages tune in with clinical practice for which outdated theories were used. Clinicians feel well supported by the observations of researchers, and some clinicians are reticent about acknowledging the limitations of a theory. There remains the fact that no one theory or model exists for motor control and for motor learning. There is still controversy and fortunately research continues. For example, Dynamical Systems Theory originated in the field of motor control, where it was hoped that making analogies with the physics of complex systems (a notoriously difficult subject I am told) would lead to advances. The main conclusion seems to be that ‘we should be aware that many factors
are involved in the development of motor control’. This is an excellent notion. In fact, many thoughtful clinicians, particularly those working in interdisciplinarity teams and in the community, have long been aware of this.

Unfortunately, Dynamical Systems Theory does not yet offer much guidance as to which of the varied factors are most important and how they interact in any particular circumstance. In addition, this and other theories relate to able-bodied subjects, to normal cognition and to adults with or without brain damage.

The plan of the book

Chapter 1 gives the clinical picture in direct relationship with principles of management. Chapter 2 discusses a collaborative learning approach for a child or older person and his or her parents and family. This approach is also relevant to work with other disciplines. Chapter 3 reviews the different treatment approaches with some current additions. The historical background shows how we arrived at some of our current good practice and perhaps avoids unnecessary effort to ‘reinvent the wheel’. Contemporary theories are also discussed with their usefulness and limitations in clinical practice. Chapter 4 considers the current evidence for the treatment systems and for various new methods. There is discussion on the appraisal of quantitative and qualitative research for clinicians. (Measures used in research and clinical work are given later in Chapter 8 as this is closely linked with assessment.) Chapter 5 discusses and offers a synthesis of different approaches. This eclectic approach has grown out of my studies, discussions and observations or courses with Dr Phelps, Dr and Mrs Bobath, Dr Fay, Dr Vojta, Miss Knott, Mrs Collis, Dr Hari and Mrs Cotton, as well as from my own experience. Chapter 6 integrates the learning principles for an eclectic viewpoint. Chapter 7, on the older person, suggests modifying or selecting methods described for a child’s motor function, as well as other issues of specific relevance to adolescence and adulthood.

Chapter 8 offers practical assessments and measurements with comments on their usefulness. Chapter 9 presents methods of treatment and management. As this book emphasises that equipment need to be associated with motor training and not substituted for it, equipment are discussed and described in Chapters 8, 9 and 10 (Assessment for therapy and daily function; Treatment procedures and management; Motor function and the child’s daily life). An appendix (Appendix 2) on equipment is given for reference and useful addresses include organisations which have information on current suppliers.

Swimming, horse riding, skiing, abseiling, angling, wheelchair dancing and other therapeutic and recreational leisure activities are highly recommended and the list of useful addresses include those specialising in these areas.

It is hoped that this book will respond to some extent to the remarks of my postgraduate students and colleagues who suggested I write it – remarks such as:

‘I agree with your eclectic approach, but how do I go about doing it?’

‘How is it possible to combine such different viewpoints in our field?’

‘I have followed one system but would like to extend my repertoire of methods and I am open to hearing other views.’

But especially to the remark:

‘Teach me how to enable these people and their families.’

Sophie Levitt
London

Note: For the sake of clarity a child will be referred to as ‘he’ and a therapist as ‘she’. There are a small number of exceptions.
This fifth edition is updated with acknowledgements to my reviewers and colleagues who have given me constructive criticism and much encouragement.

Dawn Pickering has stimulated me with useful discussions and her contributions. I thank her for her work and support.

I would particularly like to thank Alison Wisbeach, paediatric occupational therapist, for most of the drawings and useful discussions over the years. My special thanks to Dr Richard Lovell, physicist, who has been a great help and support in facing and critically appraising the enormous number of research studies now available for physiotherapists and occupational therapists. I am grateful for useful clinical comments from Lyn Horrocks on Chapter 11, April Winstock on communication and feeding in Chapter 10, as well as helpful discussions with Jeanne Hartley, Gillian Hill, Lesley Carroll-Few, Eva Bower, Helen Stevens, Maria Ash, Katrin Stroh, Elinor Goldschmied and from many of my postgraduate students in both the United Kingdom and overseas.

I feel privileged to have been awarded a Folke Bernadotte Fellowship supported by the paediatric group of the Swedish Physiotherapy Association and their chairperson Elisabeth Price in 1990. Their encouragement of my eclectic approach and work with parents has been an inspiration. My thanks are also due to Dr Patricia Sonksen, the late Dr Joan Reynell, Dr Pam Zinkin, the late Mary Kitzing and others with whom I worked on severely visually impaired children at the Wolfson Centre, Institute of Child Health.

This book was originally commenced when I was Director of Studies at The Cheyne Centre for Children with Cerebral Palsy, London, where I was given encouraging support from Dr John Foley and the staff. The foundation of this book was the correlation of the neurology of Dr Foley and Dr J. Purdon Martin with the child development studies of the late Dr Mary Sheridan.

I am grateful to the Leverhulme Trust Fund, which kindly awarded me a Research Fellowship for part of my studies on the synthesis of treatment systems in cerebral palsy, which formed the basis of this book in all its editions.

I remain particularly appreciative of the privilege of many observations, discussions or courses in the past with Dr Phelps, Dr Fay, Dr Vojta, Maggie Knott, Eirene Collis, Dr and Mrs Bobath, Professor Guy Tardieu, Ester Cotton and Dr Hari. They have inspired and influenced me, and without them this book would not have been written.

Thanks for the photographs to Cheyne Centre for photographs in Figs 9.62, 9.76, 9.130, 9.132, 9.133 and 12.1; to Alison Wisbeach for photographs in Figs 9.92, 9.93, 9.114 and 9.120–9.124; to the Wolfson Centre for Figs 2.2, 2.6, 9.167 and 9.170; to the Indian Spastics Society for photographs in Figs 2.1, 2.3 and 2.7; to the Foxdenton School, Lancashire for photographs in Figs 9.125 and 9.126. Many recent photographs were taken by David Halpern, with enormous organisation by Helen Stevens, formerly Superintendent Paediatric Physiotherapist, Winchester and Eastleigh Healthcare NHS Trust, and wonderful cooperation of parents and young people. Thanks for Figs 2.8, 7.2, 8.2, 8.3, 9.68, 9.111, 9.154, 9.173, 9.207, 9.210–9.212 and 10.3. Thanks for most of the remaining photographs to Ted Remington, previously Assistant Head of the Richard Cloudsley School, London, who patiently photographed them with help from Christine White, former Head Ms Suckling and staff at the time.

A special thanks to my son David Halpern who as a boy showed much patience and understanding,
with skill in supplying numerous cups of coffee, and now is a great help with advice on editing and discussing my manuscripts. Both he and Richard Lovell have amazed me with their computer skills which have helped me enormously.

I am deeply grateful to all the children, adolescents and their parents who cooperated so amazingly with all the long sessions of photography used throughout the book. My special appreciation goes to all the children and older people with cerebral palsy, their parents and families, with whom I have been privileged to work and from whom I have learned so much.

My publishers have been particularly kind, helpful and sensitive and I thank Amy Brown, Katrina Hulme-Cross, James Sowden and their staff at Wiley-Blackwell for all their help and support.

Professor Brian Neville has honoured and encouraged me by writing the Forewords for the last three editions and for having generously shared his ideas.

Disclaimer: New research and experience may lead to changes in practice, use of equipment, treatment and management. The treating practitioner is responsible for selecting the best treatment and management based on his/her expertise and knowledge of an individual patient. Practitioners should take responsibility for safety precautions. Readers should check the most up-to-date information from the literature and from manufacturers of equipment.
Cerebral palsy is the commonly used name for a group of conditions characterised by motor dysfunction due to non-progressive brain damage early in life. There are usually associated disabilities as well as emotional, social and family difficulties. Cerebral palsies are the most common cause of childhood disability. The range of severity may be from total dependency and immobility to adequate abilities of talking, independent self-care and walking, running and other skills, although with some clumsy actions. A number of people with cerebral palsy are now able to benefit from mainstream education and further education. They participate more in various activities in society. These opportunities are assisted by legislation, advances in technology and changing attitudes in their society. Bax and Brown (2004) have given an overview of the cerebral palsies.

The motor dysfunction

The brain damage results in disorganised and delayed development of the neurological mechanisms of postural control, balance and movement. The muscles activated for these motor aspects are therefore inefficient and uncoordinated. Individuals have specific impairments such as hypertonicity or hypotonicity with weakness, abnormal patterns of muscle activation including excessive co-contractions. There are absent or poor isolated movements (poor selective motor control), abnormal postures and problems with manipulation. Besides neuromuscular impairments, the motor dysfunction has musculoskeletal problems. There are biomechanical difficulties resulting from both the neuromuscular dysfunction and musculoskeletal problems, which add to this complex picture.

The motor dysfunction changes with both growth and a child’s development. Change also depends on how an individual uses his body. Physiotherapy positively contributes to body function. However, the brain damage is not progressive, though the motor behaviour changes. Musculoskeletal problems may increase in late childhood and adolescence needing physiotherapy input to minimise this.

What matters most to a child and his family is the overall functional delay and abnormal performance. Therapists need to address these daily functional difficulties together with a child and his parents or directly with an older person with cerebral palsy (see Chapters 2 and 7). Therapists will assess and assume which of the impairments and functional components are responsible for any functional disabilities. The associated impairments and disabilities below also influence the motor function. It is encouraging to know that functional limitations can be minimised even though basic impairments cannot strictly be cured.
There are different views as to which motor impairments are responsible for the total motor dysfunction and what correlation exists between them. Views also differ as to which impairments can be changed, and if not, when to make adaptations, including use of equipment, so that function can still take place. The underlying motor dyscontrol is controversial. This is not surprising, as not all the normal and abnormal neurological mechanisms are fully understood. There are also various ideas on biomechanics. Research continues on the basic dyscontrol and biomechanics.

The first edition of this book (Levitt 1977) presented a synthesis of valuable contributions from different therapy systems, some of which had been regarded as mutually exclusive. This synthesis or eclectic approach was further developed to include ideas from motor control and motor learning systems. The new edition of this book continues to synthesise current contributions from different approaches. As many colleagues are now not wedded to any one system of therapy, selections of their views are presented as well as those from each of the author’s own studies and experience.

As a child does not ‘move by neurophysiology alone’, not only various ideas on learning motor control have been integrated into the general therapy framework, but the influence of the context of a child’s function is given special consideration. This takes place in a child’s home, school and community. A child learns best in a familiar environment and gains meaning for what is being achieved clinically. It is primarily the motivation of a child by people in these contexts and a child’s own intrinsic motivation which have a profound impact on his or her achievement. In addition, consideration needs to be given to any environmental physical constraints and social attitudes which challenge a child and older person with cerebral palsy. Associated impairments and disabilities

Brain damage in cerebral palsy may also be responsible for special sense defects of vision and hearing, abnormalities of speech and language, and aberrations of perception (Hall 1984; Neville 2000). Included in the perceptual defects are the agnosias. The agnosias are difficulties in recognising objects or symbols, even though sensation as such is not impaired, and the patient can prove by other means to know or have known what the object or symbol is. There may also be dyspraxias, some of which are also called visuomotor defects. This means that the child is unable to perform certain movements even though there is no paralysis, because the patterns or engrams have been lost or have not developed. Dyspraxia can involve movements of the limbs, face, eyes, tongue or be specifically restricted to such acts as writing, drawing and construction or even dressing. In other words, there seems to be a problem in ‘motor planning’ in those children who are dyspraxic. Some children may also have various behavioural problems such as distractibility and hyperkinesis, which are based on the brain damage. All these defects result in various learning problems and difficulties in communication. In addition, there may be intellectual impairment and various epilepsies (Himmelmann et al. 2006).

Not every child has some or all of these associated impairments. Even if the impairment were only motor, the resulting paucity of movement would prevent the child from fully exploring the environment. He is therefore limited in the acquisition of sensations and perceptions of everyday things. A child may then appear to have defects of perception, but these may not be due to the brain damage but caused by lack of experience. The same lack of everyday experiences retards the development of language and affects the child’s speech. His general understanding may suffer, so he appears to be intellectually retarded. This can go so far that normal intelligence has been camouflaged by severe physical disability. Furthermore, the lack of movement can affect the general behaviour of the child. Thus, some abnormal behaviour may be due to the lack of satisfying emotional and social experiences for which movement is necessary. Motor dysfunction may therefore interact with emotional and social development of a child. However, positive attitudes in a family and child can encourage optimum development.

Teamwork. It is therefore important for any therapist to recognise that motor function cannot be isolated from other functions and that she is treating a child who is not solely physically but multiply disabled. Therapists will also need to consider when the associated physical and behavioural problems constrain motor function (Thylefors et al. 2000).

In order to manage the multiple disabilities and lack of related learning experiences which interfere
with a child’s development, a physiotherapist or occupational therapist needs to be part of a team. The teamwork varies in different places such as community centres, child development centres, units in hospitals or within educational settings. Teamwork is discussed in Chapters 2, 8, 10 and 12.

Aetiology

Premature infants are at greater risk of brain dysfunction. There are many causes of the brain damage, including abnormal development of the brain, anoxia, intracranial bleeding, excessive neonatal asphyxia (hypoxic ischaemic neonatal encephalopathy), trauma, hypoglycaemia, anoxia as in near-drowning, choking, neurotrophic virus and from various infections. These have been extensively discussed in the medical literature (Rosenbloom 1995; Hagberg et al. 1996; Stanley et al. 2000; Himmelmann et al. 2005). The therapist is, however, rarely guided by the aetiology in her treatment planning. In some cases the cause is not certain, and in many cases knowing the cause does not necessarily indicate a specific diagnosis or specific treatment. Nevertheless, the therapist should acquaint herself with the history of the case. Many of these children have been affected from infancy and have been difficult to feed and handle. Many hospitalisations and separations of babies from parents may happen in the early period. This may easily have influenced the parent–child relationships so essential for child development. Furthermore, the history may sometimes give an indication of the prognosis; for example, with marked microcephaly with severe multiple impairments the prognosis would be poor.

Clinical picture and development

It is important to recognise that the causes of cerebral palsy take place in the prenatal, perinatal and postnatal periods. In all cases, it is an immature nervous system which suffers the insult and the nervous system afterwards continues to develop in the presence of the damage. The therapist must therefore not think of herself as treating an upper motor neurone lesion in a ‘little adult’ nor can she regard the problem solely as one of retardation in development. What the therapist faces is a complex situation of pathological symptoms within the context of a developing child (Sheridan 1975, 1977; Drillien & Drummond 1977, 1983; Illingworth 1983; McGraw 1989; Sheridan et al. 2008). There are six main aspects to the clinical picture:

1. Retardation in the development of new skills expected at the child’s chronological age.
2. Persistence of infantile behaviour in all functions, including infantile reflex reactions.
3. Slow rate of progress from one developmental stage to the next.
4. A smaller variety of skills than in the able-bodied child.
5. Variations in the normal sequence of skills.
6. Abnormal and unusual performance of skills.

In order to recognise abnormal motor and general behaviour, the therapist should know what a normal child does and how he does it at the various stages of his development. Information on each individual child’s developmental levels should be sought from the consultants and other members of the cerebral palsy team. Reference will have to be made to the extensive literature on the field of child development.

Although normal child development is the basis on which the abnormal development is appreciated, it does not follow that assessment and treatment should rely upon a strict adherence to normal developmental schedules. Even ‘normal’ children show many variations from the ‘normal’ developmental sequences and patterns of development which have been derived from the average child. Cultural differences exist for normal motor development (Solomons & Solomons 1975; Hopkins & Westra 1989). However, in any culture, the child with cerebral palsy will show additional variations due to neurological and mechanical difficulties. If one considers, say, the normal developmental scales of gross motor development, in cerebral palsy a child has frequently achieved abilities (components) and motor functions at one level of development, omitted abilities at another level and only partially achieved motor abilities and functions at still other levels. There is thus more of a scatter of abilities and whole motor functions than in able-bodied children. The analysis of motor function into components is discussed in Chapters 5, 6, 8 and 9.
If the gross motor development is generally considered to be around a given age, the development of hand function, speech and language, social and emotional and intellectual levels may all be at different ages. None of these ages may necessarily coincide with the child’s chronological age.

Therefore, the developmental schedules in normal child development should only be used as guidelines in treatment, and adaptation should be made for each child’s disabilities and individuality (see Chapter 9).

More attention is usually given to motor development rather than other avenues of development, as it is the motor dysfunction which characterises cerebral palsy. Here again, the therapist should remember that abnormal motor behaviour interacts with other functions. Each area of development – such as gross motor, manipulation, speech and language, perception, social and emotional adjustments, and cognition – interacts as well as has its own pattern or avenue of development. Furthermore, the potential for function is dependent not only on the disabilities present but also on a child, his personality and ‘drive’ as well as his capacity to learn. Therefore, a total habilitation programme is necessary and should be planned to deal with the whole development of each child.

Whilst aiming at the maximum function possible, the therapists concerned must take account of the damaged nervous system and adjust their expectations of achievements by the child. This depends on a therapist’s clinical experience as prognosis is difficult in view of the multiple factors involved. There are measures of the severity of a child’s disability in Chapter 8, which guide the expectations of a therapist, but overdependence on levels of severity may not always be reliable in individual children.

Change in clinical picture

As the lesion is in a developing nervous system, the clinical picture is clearly not a static set of signs and symptoms for treatment. But whilst the lesion itself is non-progressive, its manifestations change as the nervous and musculoskeletal systems mature. As more is demanded of the child, the degree of the motor disability appears to be greater. For example, a 3-year-old is expected to do more than a baby, and therefore his difficulties are greater for the same pathology.

In addition, the pathological symptoms may develop with the years. Spasticity may increase, involuntary movements may only appear at the age of 2 or 3 years and ataxia may only be diagnosed when the child walks or when grasp is expected to become more accurate. Diagnoses may change as the baby develops to childhood, and especially as the child becomes more active. For example, a monoplegia reveals itself as a hemiplegia. Later a triplegia reveals itself as a tetraplegia. Cerebral palsies have an emerging diagnosis. Later, especially in adolescence, growth and increase in weight contribute to apparent deterioration. Recent research identifies that deterioration is not inevitable in all cases (see Chapter 7).

Treatment and management in infancy. The earlier the treatment is started, the more opportunity is given for whatever potential there may be for developing any normal abilities and for decreasing the abnormal movement patterns and postural difficulties (Kong 1987; de Groot 1993). However, abnormalities detected in infants may be transient as some infants overcome them without intervention. Therapists offer pleasurable and a variety of developmentally appropriate and active motor activities enjoyed by both parent and baby. During intervention, therapists observe if a baby or young child makes his own efforts to move using compensatory or adaptive patterns which can be ‘good enough’ but block the development of more efficient patterns or result in ‘learned disuse’ of a body part. Any immobility threatens musculoskeletal growth and development which can lead to deformities. Early physiotherapy minimises such problems.

The value of early developmental intervention is to provide an increase in a baby’s sensory-motor and everyday experiences and interaction with his mother and father. The sooner a baby can be helped to move, the sooner he can explore and the sooner he can communicate the information he gains through such exploration. The therapist is in fact contributing to his learning and understanding as well as enabling him to bond with his mother and father.

Although the clinical picture is known to change with the years, it is not yet possible to predict the natural history of the condition in each particular child. Infants and babies with marked early neurological signs may later prove to be only mildly affected, or even normal (Ellenberg & Nelson 1981; Nelson & Ellenberg 1982). On the other hand, apparently mildly affected ones may become
progressively worse with the years. It is therefore difficult to prove the value of a number of different early treatment approaches (Vojta 1984; Kong 1987; Katona 1989; Morris 1996). However, research in neonatal physiotherapy continues. Blauw-Hospers and Hadders-Algra (2005) have found positive effects on babies at term, rather than preterm, with specific and general developmental early treatments in their systematic review of 12 studies. The review by Spittle et al. (2007) found little evidence of early intervention on motor development. Reviews point out that the studies involve heterogeneous samples.

Nevertheless, until we know more definitely which babies are going to ‘come right’ on their own, it is better to let them have the benefit of treatment so that any potentials for improvement are not lost. Despite the controversy as to the value of early treatment, there is clearly no doubt about its importance to the parents, who receive a great deal of practical advice and support from the therapists. Among others, Goodman et al. (1991) found that if their research could not firmly state that neonatal physiotherapy was responsible for babies’ motor developmental progress, all mothers confirmed their great appreciation for the support and practical ideas from their physiotherapists. Olow (1986) emphasises that early intervention reduces the frustration of early rearing of children with disabilities. Whilst medical practitioners are watching the development of the child in order to make a reliable diagnosis, the parents have to live with that child throughout each day of those months and years. Parents need support and practical ideas for feeding, childcare and motor activities for their child throughout the emerging diagnoses. This is an essential part of the therapist’s management programme with them. Well-supported parents are most likely to benefit their young children’s development (see Chapter 2).

Classification

Numerous classifications and subclassifications have been proposed by different authorities, and though clinically helpful, none of these diagnostic labels suffice to formulate adequate treatment plans. The therapist must also have a detailed assessment based primarily on motor functions in order to work out a treatment programme.

Classification of topography of cerebral palsy

The topographical classifications frequently used are as follows:

- **Tetraplegia (quadriplegia).** Involvement of all limbs and body. Arms are equally or more affected than the legs. Many are asymmetrical (one side more affected).

- **Diplegia.** Involvement of limbs, with arms much less affected than legs. Asymmetry may be present.

- **Hemiplegia.** Limbs and body on one side are affected.

Neville and Goodman (2001) present different authors in a book on congenital hemiplegia. These topographical classifications can be imprecise, as they may change with a child’s development. One useful upper limb may convey a triplegia which could become a tetraplegia. Upper limbs may appear unaffected, suggesting a paraplegia but being really a diplegia with only fine-hand use being affected when this is later expected. Hemiplegia may have minor involvement on the unaffected side. A monoplegia is rare, usually becoming a hemiplegia with increased activity.

Classification of types of cerebral palsies

There are spastic types, athetoid (dyskinetic) types and a rare ataxic type. There is a hypotonic type
which either becomes a spastic, athetoid or ataxic type. There is a transient dystonic stage in babies before they are diagnosed as a spastic or dyskinetic type of cerebral palsy (Bax & Brown 2004). Tetraplegias usually have either spasticity, dystonia, dyskinesia (athetosis), hypotonia or ataxia. Hemiplégia is usually a spastic type often starting out hypotonic. Hemi-athetoids with or without dystonia are occasionally seen. Once again, classifications are not always clear-cut and the therapist may have to treat impairments of one type in another type. The predominant impairments will contribute to the diagnostic type referred for therapy. Developmental functional training is nevertheless indicated for all types of cerebral palsies.

Spastic cerebral palsy

Main motor characteristics are as follows:

Hypertonus. If spastic muscles are stretched at a particular speed, they respond in an exaggerated fashion. They contract, blocking the movement. If this sudden passive stretch is continued, the spasticity may melt away in some cases. The movement block is the ‘catch’ and with the subsequent movement this is called a ‘clasp-knife’ variety of spastic hypertonus. This hyperactive stretch reflex may occur at the beginning, middle or near the end of the range of movement. There are increased tendon jerks, occasional clonus and other signs of upper motor neurone lesion. The velocity-dependent hyperactive stretch reflex is the physiological definition of spasticity. Stiffness is not true spasticity and may or may not accompany the reflex reaction to brisk passive stretch. Viscoelastic muscle and soft tissue changes are also causes of stiffness (Katz & Rymer 1989; Dietz & Berger 1995). However, clinicians usually use ‘spasticity’ and ‘spastic muscles’ as an umbrella term for stiffness of limbs and recognise that other motor symptoms are also included under this umbrella. These are discussed below. Current views are that the hyperactive stretch reflex is not as much the cause of abnormal function as weakness (Lin 2004; Ross & Engsberg 2007). Movements are usually slower than the velocity needed to obtain the hyperactive stretch reflex.

Hypertonus may be either spasticity or rigidity (dystonia). The overlap between the two is almost impossible to differentiate when severe. A mixture of spasticity and rigidity may be diagnosed (Lin 2004). Rigidity is recognised by a plastic or continuous resistance to passive stretch throughout the full range of motion. This lead-pipe rigidity differs from spasticity as spasticity offers resistance at a point or small part of the passive range of motion. Spasticity is selective affecting specific muscles, for example giving a predominantly flexor pattern in the arm and extensor pattern in the leg. Rigidity (dystonia) affects all muscle groups equally. Drugs such as botulinum toxin A, oral and intrathecal baclofen are used to control spasticity and dystonia (Lin 2004), together with a physiotherapy programme.

Abnormal postures (see Figs 1.1–1.3). These are usually associated with the antigravity muscles which are extensors in the leg and the flexors in the arm. However, the therapist will find many variations on this, especially when the child reaches different levels of development (Bobath & Bobath
Abnormal postures and deformities, particularly in the upright positions, contribute to abnormal gaits.

Changes in spasticity and postures. These changes may occur with excitement, fear or anxiety, and pain, which increases muscle tension. Shifts in spasticity may occur in the same affected parts of the body or from one part of the body to another in, say, stimulation of abnormal reactions such as occasional remnants of tonic reflex activity. Changes in spasticity are seen with changes of position in some children. Position of the head and neck may affect the distribution of spasticity. Sudden or fast movements, rather than slow movements, increase spasticity.

Voluntary movement. Spasticity does not necessarily mean paralysis. Voluntary motion is present and may be laboured. There may be weakness in the initiation of motion or during movement at different parts of its range. If spasticity is decreased or removed by treatment or drugs, the spastic muscles may be found to be weak. For example, the removal of spasticity of the gastrocnemius with botulinum toxin A injection reveals weak plantarflexion. Spastic muscles may have specific structural changes due to adaptability to abnormal use or disuse (Tabary et al. 1981). Initially, spastic muscles are, however, structurally normal though not normally extensible (Tardieu et al. 1982). Therefore, spastic muscles tend to shorten in dynamic deformity and later may become fixed contractures. Once spasticity is decreased the antagonists may also be stronger once they no longer have to overcome the resistance of tight spastic muscles and can work in mid-range or full range. However, in time these antagonists may have become weak with disuse within the muscle imbalance between agonists and antagonists.

The groups of muscles or chains of muscles used in the movement patterns (muscle activation patterns) are different from those used in normal children of the same age. Either the muscles which work in association with each other are stereotyped and are occasionally seen in the normal child, usually at an infantile level of movement, or the association of muscles is abnormal. For example, hip extension–adduction–internal rotation is normally used in creeping movements or within the push-off in walking but many other combinations must be used during the full execution of creeping and walking. This may be impossible and a child only uses the same pattern at all times in the motor skill. One example of a normal arm pattern is
shoulder flexion–adduction with some external rotation for feeding or combing one’s hair. In the case of the child with spasticity, the arm pattern is usually flexion–adduction with \textit{internal} rotation and \textit{pronation} of the elbow. The ability to fractionate movement is very difficult for the child, for example to maintain flexion at the shoulder and extension of the elbow and wrist when reaching for an object. The arm pattern usually tends to persist in flexion at all joints.

Co-contraction of the agonist with the antagonist instead of the normal reciprocal relaxation persists in the spastic type of cerebral palsy. Normal co-contraction is also evident in any person attempting a new and difficult skill in hand function or in the legs. Before the postural control develops in normal infants there is a co-contraction response in weight-bearing and co-contraction features in early stages of walking in children without cerebral palsy. These patterns persist in cerebral palsy (Leonard \textit{et al.} 1991; Foley 1998; Lin 2000). The co-contraction provides some stability but for a more flexible mature gait, postural control training is essential. Voluntary arm and leg movements are also directly affected by poor postural control, as this interferes with their efficiency creating weakness of both postural muscles and voluntary synergies (movement patterns).

Lack of isolated or discrete movements (selective motor control) and fine motor coordination are also delayed in younger able-bodied children as well as in the spastic type, particularly if severe.

\textit{Associated impairments}

(1) Intelligence varies and is usually more impaired in tetraplegia.

(2) Sensory loss occasionally occurs in hemiplegia with visual field loss and lack of sensation in the hand (Tizard \textit{et al.} 1954). Sensory dysfunction such as sensory discrimination and sensory integration rather more than sensory loss is present in individuals (Lesny \textit{et al.} 1993; Yekutiel \textit{et al.} 1994). Lack of sensory awareness and sensory information for motor actions often relates to poor motor experience rather than loss of sensation. A child may be hyposensitive or hypersensitive to sensory input, so sensory-motor therapy needs to be carefully assessed.

(3) Perceptual problems especially of body and spatial relationships are more common in the spastic type of cerebral palsy. They relate to sensory dysfunction and cognitive problems as well as to poor sensory-motor experiences.

(4) Poor respiration with later rib cage abnormalities may exist.

(5) Feeding problems exist, particularly in tetraplegia.

(6) Growth of hemiplegic limbs or severely affected lower limbs in bilateral cases can be less than the other limbs.

(7) Epilepsies are more common in tetraplegia and hemiplegia but minimal in diplegia (Neville 2000).

(8) A congenital suprabulbar palsy is found in some tetraplegias with mild spasticity (Neville 2000) or severe involvement.

\textbf{Athetoid (dyskinetic, dystonic) cerebral palsy}

Main motor characteristics are as follows:

\textit{Involuntary movements – athetosis.} These are bizarre, purposeless movements which may be uncontrollable. The involuntary movements may be slow or fast; they may be writhing, jerky, tremor, swiping or rotary patterns or they may be unpatterned. They are present at rest in some children. The involuntary motion is increased by excitement, any form of insecurity and the effort to make a voluntary movement or even to tackle a mental problem. Factors which decrease dyskinesia (athetosis) are fatigue, drowsiness, sleep, fever, prone lying or the child’s attention being deeply held. Involuntary motion may be present in all parts of the body including the face and tongue. Dyskinesia may only appear in hands or feet or in proximal joints or in both distal and proximal joints. Generally the child finds great difficulty in being still.

\textit{Postural control.} The involuntary movements or dystonic spasms may throw a child off balance. However, the well-known instability in children with dyskinesia is often directly connected with the postural mechanisms discussed in Chapter 5 (Foley 1983). Foley (1998) relates involuntary motion with abnormal tilt reactions. Abnormal standing postures usually involve backward lean with hip extension, lordosis and kyphosis with chin jutting well forward. This is a compensation for instability.
Voluntary movements. These are possible but there may be an initial delay before the movement is begun. The involuntary movement may partially or totally disrupt the willed movement, making it uncoordinated. There is a lack of finer movements and weakness. Grasp and release have extreme flexion and extension movements which some older children learn to control for finer grasp or use of large keys on a computer.

Hypertonia or hypotonia. Either they may exist or there may be fluctuations of tone. The hypertonus or dystonia is a ‘lead-pipe’ or ‘cog-wheel’ rigidity. There is a continuous resistance to passive stretch throughout full range of motion. Dystonia can be particularly disabling, especially if combined with spasticity. Arousal of emotions increases tone. Sudden flexion or extensor spasms could occur. Sudden wide opening of the mouth with spasm can take place. Sleep decreases spasms or dystonic postures. Deformities are less likely due to the fluctuations in muscle spasms and stiffness.

The athetoid dance. Some athetoids are unable to maintain weight on their feet and continually withdraw their feet either upwards, or upwards and outwards, in an ‘athetoid dance’. They may take weight on one foot whilst pawing or scraping the ground in a withdrawal motion with the other leg. This has been attributed to a conflict between grasp and withdrawal reflexes. This conflict of reflexes may also be seen in the hands (Twitchell 1961). A common pattern is a ‘run headlong’ using momentum as they cannot stand still nor adjust their posture for slower walking. They run before they can walk.

Paralysis of gaze movements may occur, so athetoids may find it difficult to look upwards and sometimes also to close their eyes voluntarily. Poor head control also disrupts use of the eyes.

The dyskinetic types change with time. They may be floppy in babyhood and only exhibit the involuntary movements when they reach 2 or 3 years of age. Adult athetoids do not appear hypotonic but have muscle tension. Muscle tension also seems to be increased in an effort to control involuntary movements. The standing posture of late childhood, adolescence and adulthood is usually with extended hips, bent knees and pronated feet and rounded back with arms and chin held forward to counter the extension backwards (Fig. 1.4).

Associated impairments

(1) Intelligence is frequently good and may be very high. Intellectual impairment is occasionally present.
(2) Hearing loss of a specific high frequency type is associated with athetoids caused by kernicterus, though it is now a rare cause.
(3) ‘Drive’ and outgoing personalities are often observed. Emotional lability is more frequent than in other types of cerebral palsies.
(4) Articulatory speech difficulties and breathing problems may be present, and the child’s oro-motor problems create feeding difficulties. Poor arm function may adversely affect the development of self-feeding.

Ataxic cerebral palsy

Main motor characteristics are as follows: Disturbances of balance. There is poor stabilisation of the head, trunk, shoulder and pelvic girdles.
Some ataxics overcompensate for this instability by having excessive balance-saving reactions in the arms. Instability is also found in children with any type of cerebral palsy and may be called ataxia in the dyskinetic or spastic type as pure ataxia is fairly rare. Unsteady gait arises from the brain lesion affecting motor control (Foley 1998; Neville 2000).

Voluntary movements. They are present but clumsy or uncoordinated. The child overreaches or underreaches for an object and is said to have ‘dysmetria’. This inaccurate limb movement in relation to its objective may also be accompanied by intention tremor. Poor fine hand movements occur.

Hypotonia. It is usual. There is excessive flexibility of joints and poor muscle power.

Nystagmus. It may exist.

Associated impairments

1. Intellectual impairment may exist, especially in the presence of visual and perceptual problems.
2. ‘Clumsy’ intelligent children are sometimes diagnosed as having ataxic cerebral palsy.
3. A ‘pure’ ataxic is rarely diagnosed except for a group of genetic origin called ‘dysequilibrium syndrome’ (Neville 2000).

Common features in all types of cerebral palsies

Postural mechanisms

The classification into types of cerebral palsies has tended to obscure the fact that there are important motor features which are common to all types. For instance, all cerebral palsied children are delayed in motor development. However, the symptoms of the different types of cerebral palsies, such as spasticity, sudden spasms and the various involuntary movements, only play a part in this disturbance of development. Delayed or abnormal development of the postural balance mechanisms significantly disturbs the motor development. Postural mechanisms are an intrinsic part of motor skills. When they are absent or abnormal, this leads to absent or abnormal motor skills.

Chapters 5 and 9 discuss these aspects in detail, as they are fundamental to the framework for therapy.

A common feature is also associated weakness of neck, trunk, shoulder and pelvic muscles, which are not activated by undeveloped postural mechanisms.

Classification based on motor function

A classification based on motor function incorporates postural control, which is intrinsic to motor developmental functions. This is not directly based on any diagnostic type of cerebral palsy.

The Gross Motor Function Classification System (GMFCS) for children with cerebral palsy (Palisano et al. 1997, updated 2008) classifies children according to what they can do at different ages. There are five levels of classification, giving distinctions in self-initiated motor functions. Level I children function without restriction, only having limitations in advanced motor skills. The motor functions decrease from I to V, with level V representing children with severe motor restrictions. This is a clinical and research classification which is detailed. This classification provides good communication between colleagues internationally rather than ‘mild, moderate or severe’ classifications.

Abnormal reflexes

Besides the desirable postural mechanisms, there are abnormal reflexes which have no predilection for any specific type of cerebral palsy. These are infantile (primitive) reflexes which are present in the normal newborn and which become integrated or disappear as the baby matures. In cerebral palsied children, infantile reflexes are still present long after the ages when they should have become integrated within the nervous system. As children with cerebral palsy have not been able to develop more mature neurological postural mechanisms, the infantile reflexes can be their only way to function. Whilst there are many infantile reflexes, those of most interest to the therapist are the Moro reflex, the palmar and plantar grasp reflexes, automatic stepping, excessive neck righting reflex, positive supporting, extensor thrust and feeding reflexes (Capute et al. 1984; see Table 8.3). These reactions may be stimulated by either peripheral or cortical activations. Some children with severe multiple disabilities activate some of these reflex responses in their efforts
to balance, move or communicate non-verbally. A therapist needs to include knowledge of how her peripheral stimulation and handling might cause undesirable reflex responses instead of developing more advanced motor control. Examples of the use of reflexes are as follows: a child may use grasp reflexes to hold a small object, a plantar grasp to grip the floor for stability, automatic stepping when the body is fully supported in a walker and positive supporting reaction for standing in a standing frame. Children use extensor thrusts or Moro reactions to communicate non-verbally.

There are also the tonic reflexes, which are the tonic labyrinthine reflexes, the asymmetrical tonic neck reflex and the symmetrical tonic neck reflexes. Some neurologists group these tonic reflexes amongst the infantile reflexes, whereas others argue that they are not present in the normal infant and are always pathological. Tonic reflexes are only seen in the most severely impaired children (Foley 1977), especially if obligatory. These tonic reflexes are sometimes called postural reflexes but they are abnormal postural reflexes and should not be confused with the normal postural mechanisms as described by Rushworth (1961), Martin (1967), Foley (1977, 1998), Shumway-Cook and Woollacott (2001) and others.

The principle of treatment which therapists should follow in relation to the complicated collection of reflexes is not to go ‘reflex hunting’. In the past, some therapists observed that reflexes interfere with motor function and speech. This does not always occur. The approach is to examine the function of the child first and, only when abnormality has been detected, to then consider whether one of the reasons for this abnormality seems to be a pathological or primitive reflex. However, it is the therapist’s work in building a child’s function that simultaneously can modify or overcome any reflex reactions in a child. Table 8.3 of primitive and tonic reflex reactions is given so that a therapist recognises any total or remnants of these reflex reactions or infantile (primitive) responses in individual children so that she can assess if children are using these infantile patterns as compensation for lack of motor control.

Recent research calls into question the importance of primitive (infantile) reflexes. They are no longer considered a substrate for motor control and are not reliable predictors of future motor development. New ideas on theoretical bases of motor training disagree with therapy using the ‘hierarchical lists’ of primitive and tonic reflexes followed by more mature reactions (Cioni et al. 1989, 1992; Horak 1992; Prechtl 2001; Einspieler et al. 2005). These studies on reflexes lend support to ‘avoid reflex hunting’ expressed in this book since the first edition in 1977.

Additional impairments

Individual children, particularly with severe cerebral palsy, may have sleep problems, fatigue, feeding problems and poor nutrition, decreased bone mineral density, musculoskeletal pain or pain from severe gastroesophageal reflux, and are less fit than able-bodied children. Most of these problems develop in later childhood and are managed by medical consultants. Nevertheless, a therapist needs to be aware of them as they may impinge on the amount of energy a child has available for therapy programmes. Parents are often short of sleep as they need to comfort, feed or give medicines to their child at night. This impacts on their capacities to carry out a child’s home therapy. Fitness is naturally in the realm of therapy and management. Pain and decreased bone mineral density are prevented to some degree by therapists using activities and weight-bearing postures.

Motor delay

Cerebral palsy consists of both motor delay and motor disorder. There are many other conditions which present similar problems of motor delay or of delay and disorder. All these conditions are also called the developmental disabilities (Pearson & Williams 1972; Levitt 1984).

They may be due to the following:

Intellectual impairment, which is caused by various metabolic disorders, chromosome anomalies, leucodystrophies, microcephaly and other abnormalities of the skull and brain, endocrine disorders and the causes of brain damage given for the cerebral palsies. Down’s syndrome also creates motor delay.

Deprivation of normal stimulation associated with social, economic and emotional problems, including maternal depression.
Malnutrition alone, but usually together with deprived environments. Once malnutrition is treated, lack of normal stimulation may still retard the child’s development.

The presence of non-motor impairments, which may lead to motor delay, for example severe visual impairments, severe perceptual defects, apraxias as well as intellectual disabilities mentioned above. Children with delay in any developmental area may have an associated delay in motor development (see the section on motor development and the visually impaired child in Chapter 9).

Presence of motor impairments other than the cerebral palsies. For example, spina bifida, the myopathies, myelopathies and various progressive neurological diseases and congenital deformities may obviously delay development of fine and gross motor function (Holt 1975).

Principles of treatment and organisation of treatment will be similar to those discussed in Chapters 2, 5, 6 and 9. Specific problems in the conditions above are considered in other publications (Levitt 1984; Eckersley 1993; Shepherd 1995; Burns & MacDonald 1996; Campbell et al. 2006; Tecklin 2008).

Principles of learning and therapy

Broad framework for therapy and management

A broad framework for therapy and management assists interpreting assessments and comprehensive programme planning for intervention. Details of how each aspect is implemented are not given. The World Health Organization’s current International Classification of Functioning, Disability and Health (ICF) (WHO 2001) describes a person’s functioning in terms of body structures, body functions, activity and participation.

Definitions of components in the ICF

Body functions are physiological functions of body systems (including psychological functions).

Body structures are anatomical parts of the body and limbs.

Impairments are problems in body function or structure such as abnormal balance, and deformity.

Activity is the execution of a task or action by an individual such as standing, walking, grasping. This can include daily living tasks such as eating, dressing, toileting and washing. However, these tasks can also be participation in life situations.

Participation is involvement in a life situation such as participation in an individual’s community, as in some school activities, shopping, caring for children, social and sporting activities, and use of playgrounds.

Personal factors influence how disability is experienced by an individual. These include age, coping styles, character and overall behaviour.

Environmental factors affect the individual’s function and participation. These include family and social attitudes, architectural barriers, climate and terrain.

Practical application

The components of the ICF model are not sequential. Participation in society may not depend on improving impairments when a person’s own functional strategies are used and when special equipment, electric wheelchairs, computers and other technology are chosen. Depending on the severity of cerebral palsy, innovative functional strategies or motor compensations may allow independent function without focusing on impairments, for example MOVE (Bidabe & Lollar 1990) and Conductive Education (Hari & Akos 1988). Research by Charles et al. (2006) did not change impairment but improved function in the arm and hand. Quality of life is particularly dependent on participation. Bjornson et al. (2008), in their research with people aged 10 and over, found that ‘functional level and performance did not influence quality of life’.

There are three points supporting this view confirmed by clinical experience:

- Owing to the brain damage, not all impairments can be minimised.
- When selected impairments have been minimised, this did not always carry over into daily function.
- Participation may not be dependent on impairments nor functional performance.

However, secondary impairments such as contractures and musculoskeletal pain may result from particular motor compensations, and impairments such as specific weakness, poor balance, abnormal
coordination and hypertonus may increase with time. These secondary impairments have limited the reliability of daily functions and limited the range of participation in an individual’s home and community. Current and future research will clarify these different views for individuals with cerebral palsy. The relationships of impairment, activity and participation are complex. We cannot firmly maintain that treatment of impairment leads to function and that improvement of function leads to participation in the individual’s different environments.

Therefore, therapy principles include:

- Assessment and management based on the perspectives of an individual, the family, teachers and others involved with that individual.
- Assessment and management of impairments which constrain functions and daily tasks needed.
- Assessment and prevention of secondary and increasing impairments.
- Focus on functional therapy and correction of impairments within function.
- Assess and manage function in the context of a person’s home, school and community.
- Consideration of attitudes in family and society that disable a person.
- Encouragement of the personal attributes of an individual with disability and of his or her family.

There is increasing research on the relationships between the items in the ICF model, which will be discussed in this book.

Aims of physiotherapy, occupational therapy and speech therapy are:

1. To develop forms of communication (gesture, speech, typing and alternative forms of communication with signs or electronic aids).
2. To develop independence in the daily activities of eating, drinking, dressing, washing, toileting and general self-care with and without aids, such as special utensils, toys and special furniture.
3. To develop abilities to play and achieve hobbies and recreational activities with or without adapted equipment.
4. To develop some form of locomotion and independent mobility, which may include wheelchairs, playthings, tricycles or driving adapted motor vehicles.

All these aims need to be considered in terms of learning processes interacting with neurological and orthopaedic aspects and environmental constraints. Therefore all therapists draw on the fields of education and psychology and gain much from close teamwork with teachers, psychologists, social workers and psychotherapists. The psychotherapists and social workers are important as learning is intimately involved with emotions. Some learning models do not give adequate attention to this fact. The role of cultural factors in planning the programme needs to be considered by everyone. A collaborative learning approach initially developed by the author in consultation with a psychiatric social worker (Levitt & Goldschmied 1990) carries out the principles of therapy and management, with emphasis on physiotherapy and occupational therapy.

Summary

This chapter provides basic information for planning treatment and management.

1. The child should be seen as having primarily a motor impairment but may have individual associated impairments due to the brain damage. The motor and other functional disabilities are created by some of the impairments as well as by lack of many everyday learning experiences in various environments.

2. There is an interaction between the communication, intellectual, sensory, perceptual and motor functions. Physiotherapists therefore consider the influence of associated disabilities on the motor programmes.

3. Treatment is aimed at impairments and developing gross-motor and fine-motor functions which involve procedures for individual combinations of:
 - Postural mechanisms of balance
 - Movement patterns (synergies) of voluntary movement, including hand function
 - Strengthening for weakness of various kinds
 - Minimising hypertonicity, hypotonicity and involuntary movements
 - Improving postural alignments and patterns of gait
 - Improving ranges of motion of muscles, joints and soft tissues.
Views differ on the significance of specific problems and also on the relationship between them. Therapists need to make careful assessments to clarify the impairment and functional problems of an individual with cerebral palsy, and reflect on their relationships.

(4) Therapy programmes should not have a strict adherence to specific diagnostic classifications, and aetiology may not always influence the treatment used by therapists.

(5) Emphasis needs to be given to the daily functional activities and a participation in life situations, which are priorities of a child or an adult with disabilities and of their families.

(6) The various impairments are preferably treated in the context of total daily functions as well as in specific treatments for individuals. The emphasis is therefore less on isolated treatments and more on integrating therapy of impairments within developmental functional training.

(7) The therapist always needs to recognise the emerging functional abilities and whole functions within each child's developmental pattern. Normal developmental schedules are only guides and need to be carefully adapted.

(8) Management and therapy are planned from infancy throughout an individual's lifespan to take account of clinical change and different circumstances in an individual's home, schools and community. Management focuses on educating all those primarily involved with a person with cerebral palsy. Chapter 2 discusses this in more detail in a collaborative learning approach. Management also involves working with any other disciplines involved with an individual with cerebral palsy.

(9) Physiotherapists and occupational therapists need to integrate motor learning principles in their therapy programmes. Motor learning models need to encompass emotional, cultural and social issues.

(10) Treatment and management need to commence as early as possible for parental support, parent–child relationships and to promote a child's motor activity as well as minimise any musculoskeletal problems.

(11) The model suggested by the ICF is a general guide to assessment and planning of therapy and management, which matches much that is discussed in this book.

(12) Promoting positive motor experience is key for motivating the best therapy.
A collaborative learning approach

Working with parents

Today, therapists recognise the importance of working with the parents of each child and for some time home programmes have been shown to them (Collis 1947; Finnie 1997; among others). This chapter emphasises client-centred or person-centred therapy and learning (Rogers 1983), which may not be used by professionals who devise home programmes for parents. A more person-centred view presenting home programmes is given in a book for carers and parents of children with multiple disabilities (Levitt 1994).

King et al. (1997) and Rosenbaum (2004), in their many studies of the wishes of parents of children with disabilities, found that parental involvement in decisions about their child lowers stress levels and improves parents’ mental health. This was the top priority of the parents’ list of what they wanted from a service. This chapter conveys a belief that this also applies to parent participation in therapy programmes.

In the last 21 years, I have been developing a practical style of working which involves a child along with his parents in a collaborative learning experience with a physiotherapist. All share responsibility in assessments, therapy plans, methods and evaluations (Levitt & Goldschmied 1990; Levitt 1991b, 1999: 153–155). Ross and Thomson (1993) have recommended this specific collaborative approach (outlined in Levitt & Goldschmied 1990) following their studies on the evaluation of parents’ involvement in physiotherapy. Piggot et al. (2003) also find this approach of interest in their qualitative research project on parental adjustment and participation in home therapy.

This collaborative learning approach is a creative learning process, not only for a child and his parents but also for any therapist. The therapist learns what the hopes and expectations of a child and his parents are and what they already know and can do. Using these resources, therapists are better able to draw on their technical expertise for a more relevant programme. The respect and trust given to what parents and child already understand and can manage develops their confidence. More positive relationships grow between parents, child and therapist. There is more motivation as parents and child respond positively to a therapist who appreciates their desires and their ideas for solving some of their own problems.

The idea of joint goal setting and involving the parents and child in the shared decision-making process fits well with the United Kingdom’s National Service Framework for disabled children and young people with complex health needs (Department of Health and Department for Education and Skills 2004).
Odman et al. (2007) carefully studied parents’ perceptions of the service quality of two training programmes for a range of severity in children with cerebral palsy. Most parents were ‘influenced by high service quality rather than by perceived functional improvements’. The researchers used a measure (given in the appendix to their volume). This measure, ‘Patient Perspective on Care and Rehabilitation Process’ (POCR), was slightly adapted and has seven dimensions of the needs of the parent or child. Experience with the collaborative learning approach has shown substantial agreement with many of the findings of Odman et al. (2007).

Collaboration with other adults

When considering parents as adult learners, it is useful to draw on the studies of Rogers (1983, 2003, recent books following his many writings since the 1960s), Knowles (1984) and others in adult education. Rogers developed his ideas on human behaviour and the process of learning from studies of adults in psychotherapy. Rogers and Knowles applied ‘whole-person’ learning, together with other studies, to adult education. Similar concepts underlie the collaborative learning model developed from practical teaching experience not only for parents but also for other adults such as family members, other professionals and carers assisting a child’s development. This approach is also relevant to older people with disabilities (Chapter 7). The therapist will grow both professionally and personally as she or he learns and takes into account the knowledge, priorities and preferred learning style of these adults. A therapist becomes better able to select and devise methods to suit individual adults involved with a child. She or he also gains information from adults about various environments and cultures in which a child needs to function.

When family members and carers assist with the therapy programme in the way that parents wish, time needs to be given for them to become familiar with these programmes to maximise the child’s potential. This inclusive team approach facilitates both parents’ and family’s participation and helps them feel of value to their child with cerebral palsy. However, some family members may find working with their child stressful and prefer to give their personal strength to support the parents and child emotionally.

Family members also need support from therapists whether they participate or not in therapy programmes. The well-being of families positively affects the development of their child. Therapists need to listen respectfully to their views and concerns and promote their education about therapy.

Consideration must also be given to the fact that babies and young children with disabilities prefer being handled by one or two adults as they have to relate to an adult and adapt to different ways of being handled. No two adults are precisely the same in their touch, speed of ‘hands-on’ therapy and manual guidance. This is particularly relevant to those babies and young children who experience many unexpected spasms, uncontrolled reflexes and unreliable control of their posture and movements.

The therapists themselves are assisted and supported by other members of their team such as psychologists, social workers and paediatricians who work specifically with the families in ‘family-centred care’. Family-centred care has broadened from being child-centred to include not only the child but also the practical and psycho-social needs of parents and families. As services have evolved for children with cerebral palsy, the concept of family-centred care has become central to service provision. A number of research studies on family-centred care by Rosenbaum et al. (1998), King et al. (1997, 1999), Larsson (2000) and Odman et al. (2007) give evidence of increased satisfaction with services with lower stress levels and better mental health.

It is reassuring that family-centred care continues to grow in physiotherapy. However, the collaborative learning approach differs from various models in that it emphasises that learning processes are involved not only in ‘changing function of a disabled person’s body but also in changing ideas, behaviour and attitudes’ (Levitt & Goldschmied 1990). The person with disability and his or her family members and carers are changing as they embrace new ideas, new attitudes and behaviour as well as alternative ways of solving problems. Therapists also become learners as they deepen their understanding, gain new ideas, change any of their attitudes and give up old assumptions. A person’s willingness to change is facilitated by desires to learn, achieve more and feel more satisfaction in daily life. It is the quality of rapport between a therapist and a disabled