Advances in Modeling and Design of Adhesively Bonded Systems

Edited by S. Kumar and K.L. Mittal
Advances in Modeling and Design of Adhesively Bonded Systems
Adhesion and Adhesives: Fundamental and Applied Aspects

The topics to be covered include, but not limited to, basic and theoretical aspects of adhesion; modeling of adhesion phenomena; mechanisms of adhesion; surface and interfacial analysis and characterization; unraveling of events at interfaces; characterization of interphases; adhesion of thin films and coatings; adhesion aspects in reinforced composites; formation, characterization and durability of adhesive joints; surface preparation methods; polymer surface modification; biological adhesion; particle adhesion; adhesion of metallized plastics; adhesion of diamond-like films; adhesion promoters; contact angle, wettability, and adhesion; superhydrophobicity and superhydrophilicity. With regards to adhesives, the Series will include, but not limited to, green adhesives; novel and high-performance adhesives; and medical adhesive applications.

Series Editor: Dr. K.L. Mittal
1983 Route 52,
P.O.1280, Hopewell Junction, NY 12533, USA
Email: usharmittal@optimum.net

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)
Preface xiii
Acknowledgements xv

1 Stress and Strain Analysis of Symmetric Composite Single Lap Joints Under Combined Tension and In-Plane Shear Loading
Jungmin Lee and Hyonny Kim
1.1 Introduction 2
1.2 Equations and Solution
1.2.1 Model Description 3
1.2.2 Governing Equations for Tension Loading N_x 4
1.2.3 Governing Equation for In-Plane Shear Loading N_{xy} 7
1.2.4 Solutions
1.2.4.1 Adhesive Peel Stress σ_{zz} Due to N_x 12
1.2.4.2 Adhesive Shear Stress τ_{xz} Due to N_x 13
1.2.4.3 Adhesive Shear Stress τ_{yz} Due to N_{xy} 13
1.3 Solution Verification 13
1.4 Yield Criterion 18
1.5 Case Studies 19
1.6 Summary 21
References 22

2 Finite Element Modeling of Viscoelastic Behavior and Interface Damage in Adhesively Bonded Joints
Feifei Cheng, Ö. Özgü Özsoy and J.N. Reddy
2.1 Introduction 23
2.2 Finite Element Analysis of Viscoelastic Adhesively Bonded Joints
 2.2.1 Constitutive Relation 27
 2.2.2 Numerical Example 28
 2.2.2.1 Stress Distribution along Overlap Length 29
 2.2.2.2 Effect of Thermal Expansion 31
2.3 Damage Analysis of Viscoelastic Adhesively Bonded Joints
 2.3.1 Constitutive Relation of Cohesive Element 33
 2.3.1.1 Linear Elastic Traction-Separation Law 33
 2.3.1.2 Damage Initiation and Evolution 34
 2.3.2 Numerical Example 35
 2.3.2.1 Joint Stiffness 36
 2.3.2.2 Damage of Cohesive Elements 37
 2.3.2.3 Effects of Interface Damage on Adhesive Layer 39
2.4 Summary and Conclusions 43
Acknowledgements 44
References 44

3 Modeling of Cylindrical Joints with a Functionally Graded Adhesive Interlayer 47
 S. Kumar
3.1 Introduction 48
3.2 Axisymmetric Model 52
 3.2.1 Stress Fields in the Bonded Assembly 55
 3.2.1.1 Inner Adherend 55
 3.2.1.2 Adhesive 56
 3.2.1.3 Outer Adherend 56
 3.2.2 Stiffness Tailored Adhesive Interlayer 58
 3.2.2.1 Tubular Joints 59
 3.2.2.2 Shaft-Tube Joints 60
3.3 Constitutive Models of the Adherends and FMGB Adhesive 62
3.4 Variational Approach 62
 3.4.1 Case I: FMGB1 (σ_{rr}^{(i)} ≠ 0 & \chi_1 ≠ 0) 63
 3.4.2 Case II: FMGB (σ_{zz}^{(i)} = 0 & \chi_1 → 0) 66
3.4.3 Case III: MMB1 \((\sigma_{rr}^{(i)} \neq 0 \& \chi_1 \neq 0) \) 66
3.4.4 Case IV: MMB \((\sigma_{rr}^{(i)} = 0 \& \chi_1 \rightarrow 0) \) 67

3.5 Solution Procedure 68

3.6 Results and discussion 69
3.6.1 Influence of Bond Length (L) 74
3.6.2 Influence of Modulus Function 77
3.6.3 Influence of Stiffness Mismatch 78

3.7 Summary 80

References 86

4 A Simplified Stress Analysis of Bonded Joints Using Macro-Elements 93

E. Paroissien, F. Lachaud, and T. Jacobs

4.1 Introduction 94
4.1.1 Context 94
4.1.2 Objective 94
4.1.3 Overview of the Simplified Linear Elastic Method 95
4.1.4 Overview of the Paper 96

4.2 Linear Elastic 1D-Bar and 1D-Beam Models 96
4.2.1 1D-Bar Model 96
4.2.1.1 Formulation of the BBa Element 96
4.2.1.2 Assembly of the Stiffness Matrix for a Single-Lap Joint 101
4.2.2 1D-Beam Model 101
4.2.2.1 Formulation of the BBe Element 101
4.2.2.2 Validation on the Example Single-Lap Joint 109

4.3 Assuming a Non-linear Adhesive Material 110
4.3.1 Numerical Approach 110
4.3.2 Example of Application to Structures: Single-Lap Joint, In-Plane Loading 111
4.3.2.1 Equilibrium of the Structure 111
4.3.2.2 Determination of the Nodal Residue 113
4.3.2.3 Projected Stresses 116
4.3.2.4 Solution Procedure 117
4.3.3 Considering a Bi-Triangular Damage Evolution Adhesive Behavior

4.4 Validation

4.4.1 Overview

4.4.2 FE Models for a Validation Purpose

4.4.2.1 1D-Bar or 1D-Beam FE Models

4.4.2.2 3D FE Model Forced for 1D-Bar Analysis

4.4.3 1D-Bar Model

4.4.3.1 Linear Shear Stress in the Adherends

4.4.3.2 Elastic Perfectly Plastic Adhesive Material Behavior

4.4.3.3 Elastic Perfectly Plastic and Bi-linear Adhesive Material Behavior with Elastic Unloading

4.4.3.4 Bi-triangular Damage Evolution Adhesive Material Behavior with Elastic Unloading

4.4.4 1D-Beam Model

4.4.4.1 Linear Shear Stress in the Adherends

4.4.4.2 Thermal Expansion in the Adherends

4.5 Comparison With Finite Element Predictions

4.5.1 Overview

4.5.2 Description of the 3D FE Model

4.5.3 Comparison of Results

4.5.3.1 Present 1D-Beam Model vs. 3D FE Models

4.5.3.2 Evolution of Adhesive Stress Distribution with the Applied Load

4.5.4 Assessment of the Relevance of the Model

4.6 Conclusion

Acknowledgment

References
5 Simulation of Bonded Joints Failure using Progressive Mixed-Mode Damage Models 147
M.F.S.F. de Moura and J.A.G. Chousal
5.1 Introduction 148
5.2 Cohesive Damage Model 149
5.3 Measurement of Cohesive Parameters 153
 5.3.1 Double Cantilever Beam (DCB) Test 153
 5.3.2 End Notched Flexure (ENF) Test 156
 5.3.3 Determination of Cohesive Parameters of the Trapezoidal Law 157
 5.3.4 Bonded Joints Strength Prediction 159
5.4 Continuum Damage Models 161
 5.4.1 Application to DCB Test 165
 5.4.2 Application to Single-Lap Joints 167
5.5 Conclusion 168
References 170

6 Testing of Dual Adhesive Ceramic-Metal Joints for Aerospace Applications 171
6.1 Introduction 172
6.2 Experimental Details 173
 6.2.1 Materials 173
 6.2.2 Specimens 175
 6.2.3 Static Testing at Low and High Temperature 177
 6.2.4 Impact Testing at Room Temperature 180
6.3 Results 181
 6.3.1 Static Testing 181
 6.3.2 Impact Testing 185
6.4 Conclusions 188
Acknowledgments 190
References 190

7 Modelling of Composite Sandwich T-Joints Under Tension and Bending 191
J.H. Tang, I. Sridhar, G.B. Chai and C.H. Ong
7.1 Introduction 192
7.2 Description of the Experiment 193
7.3 Description of the Finite Element Model 196
7.4 Description of the Peel Stress Model: Strength of Materials Approach 199
 7.4.1 Tensile Model: Stress Based Assessment 200
 7.4.2 Bending Model: Stress Based Assessment 201
7.5 Results and Discussion 202
 7.5.1 Experimental Measurement and Finite Element Analysis 203
 7.5.2 Peel Stress Analysis: Finite Element and Peel Stress Models 205
 7.5.2.1 Tensile Model 206
 7.5.2.2 Bending Model 208
 7.5.2.3 Limitations of Peel Stress Model 210
7.6 Concluding Remarks 211
Acknowledgement 212
References 217

8 Strength Prediction Methods for Adhesively Bonded Lap Joints between Composite–Composite/Metal Adherends 219
 P.K. Sahoo, B. Dattaguru, C.M. Manjunatha and C.R.L. Murthy
8.1 Introduction 220
 8.1.1 Literature on the Stress Analysis of Bonded Joints 220
 8.1.1.1 Two-Dimensional Analysis 221
 8.1.1.2 Three-Dimensional Solutions 222
 8.1.2 Strength Prediction of Bonded Joints 222
 8.1.2.1 Elastic Singularities at the Ends of Lap Length 223
8.2 Strength Prediction Using Characteristic Distances in Problems with Singular Stresses 224
 8.2.1 Point Stress Criterion 224
 8.2.2 Average Stress Criterion 224
8.3 Strength Prediction in Aluminium-Aluminium Joints 225
 8.3.1 Experimental Failure Load Determination 226
 8.3.2 FE Analysis 227
8.4 Strength Prediction in CFRP-Aluminium and CFRP-CFRP Joints 229
8.4.1 Details of the Experiment 229
8.4.2 FE Analysis of CFRP Composite-Al and CFRP-CFRP Bonded Joints 230
8.5 Results and Discussion 232
8.5.1 Convergence Study of FEA Results 232
8.5.2 Characteristic Distance in Single Lap Adhesively Bonded Joints Using Point Stress Criterion 232
8.6 Conclusions 234
Acknowledgments 235
References 235

9 Interface Failure Detection in Adhesively Bonded Composite Joints Using a Novel Vibration-Based Approach 237
Ramadan A. Esmaeel and Farid Taheri
9.1 Introduction 238
9.2 Conventionally Used Non-destructive Techniques (NDTs) for Damage Detection 238
9.2.1 Ultrasonic 238
9.2.2 Optical Fibers 239
9.2.3 Vibration Signature 239
9.2.4 Lamb Waves 240
9.3 Motivation and Methodology 240
9.3.1 Hilbert-Huang Transform 240
9.3.2 Energy Damage Index (EDI) 241
9.4 Experimental Procedure 243
9.4.1 Specimens Preparation and Description of Damage Cases 244
9.4.2 Test Procedure and Equipment 245
9.5 Experimental Results 248
9.6 Finite Element Modeling Investigation 250
9.6.1 Adhesive Single Lap Joint Model 250
9.6.2 Finite Element Model Verification and Results 253
9.6.2.1 Model Verification 253
9.6.2.2 Disbond Damage in FRP/FRP ABJs 254
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6.2.3 Disbond Damage in FRP/Aluminum ABJs</td>
<td>255</td>
</tr>
<tr>
<td>9.6.2.4 Disbond Damage in Aluminum/Aluminum ABJs</td>
<td>255</td>
</tr>
<tr>
<td>9.6.2.5 Delamination Damage in ABJs</td>
<td>256</td>
</tr>
<tr>
<td>9.7 Summary and Conclusions</td>
<td>258</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>260</td>
</tr>
<tr>
<td>References</td>
<td>260</td>
</tr>
</tbody>
</table>
Preface

Adhesively bonded systems find applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship-building, biomedical, etc.) for various purposes. Emerging adhesive materials with improved mechanical properties has allowed adhesion strength approaching that of the bonded materials themselves. Owing to advances in adhesive materials and many potential merits adhesive bonding offers, adhesive bonding has replaced other joining methods in many applications. More recently there has been a high tempo of interest in bonding composite materials. The need for innovative joints and a variety of material combinations is inevitable to realize more efficient, cost-effective structural systems.

There are many aspects to proper fabrication and successful implementation of adhesive joints including adequate surface preparation, proper control of variables dictating the performance, durability and reliability. In this vein, the modeling and design of adhesively bonded joints is of cardinal importance in predicting the reliability and life of such joints.

This book containing 9 articles written by world-renowned experts deals with the advances in modeling (theoretical and computational), and the design and experimental aspects of adhesively bonded structural systems. Advances in stress analysis and strength prediction of adhesively bonded structural systems considering a range of material models under a variety of loading conditions are discussed. Finite element modeling using macro-elements is elaborated. Recent developments in modeling and experimental aspects of bonded systems with graded adhesive layer and dual adhesives are described. Simulation of progressive damage in bonded joints is addressed. A novel vibration-based approach to detect disbonds and delamination in composite joints is also discussed.

In essence, this book represents a commentary on some of the advances which have been made in the arena of modeling and design of adhesively bonded systems. All signals indicate that
the interest in this topic will continue unabated and innovative approaches to modeling and design of adhesively bonded systems will be taken in the future which will help in expanding the utilization of bonded systems in a host of applications with increased confidence.

It should be recorded that all manuscripts were rigorously peer-reviewed, properly edited and suitably revised before inclusion in this book. So this book is not a mere collection of papers but articles which have passed muster.

This book should be of interest to both academic researchers engaged in the mechanics of structural adhesive joints as well as to R&D personnel in various industries which rely on structural adhesive bonding for a variety of purposes.

Also we hope this book will serve as a fountainhead for new research ideas in modeling and design of adhesively bonded systems.
First of all, we are beholden to the authors for their contribution, interest, enthusiasm and cooperation without which this book would not have been possible. Second, we are very thankful to the reviewers for their time and effort in providing critical and constructive comments, as the comments from peers are *sine qua non* to maintain the highest standard of a publication. Also it is our pleasure to extend our appreciation to Martin Scrivener (Scrivener Publishing) for his steadfast interest in this book project and unwavering support in more ways than one.

S. Kumar
Masdar Institute of Science and Technology
Abu Dhabi, UAE
E-mail: skumar@eng.oxon.org

K.L. Mittal
P.O. Box 1280
Hopewell Junction, NY, USA
E-mail: UshaRMittal@optimum.net
Stress and Strain Analysis of Symmetric Composite Single Lap Joints Under Combined Tension and In-Plane Shear Loading

Jungmin Lee¹ and Hyonny Kim²

¹Samsung Mobile Display Inc., Yongin-City, Gyeonggi-Do, South Korea
²Department of Structural Engineering, University of California San Diego, La Jolla, California, USA

Abstract
An analysis is presented that predicts adhesive shear and peel stresses in adhesively bonded composite single lap joints. The single lap joint is under combined tension and in-plane shear loading, and accounts for moments induced by geometric eccentricity. These eccentricity moments primarily contribute to the peel stress. When shear, tension, and eccentricity moments are simultaneously applied to a joint, a combined multiaxial stress state (two shear stress components and peel) in the adhesive can be calculated. Example calculations presented in this paper show that the predicted stress profiles are well matched with finite element analysis (FEA) predictions. The von Mises yield criterion is applied to predict the elastic limit of the adhesive for a lap joint under combined loading. This approach allows the calculation of an envelope of combined loading conditions under which the joint is expected to behave elastically.

Keywords: Adhesive bonding, combined load, multiaxial stress, peel, elastic limit
1.1 Introduction

A closed-form model is derived that predicts shear and peel stress profiles in adhesively bonded symmetric single lap joints under multiaxial loading: in-plane shear load N_{xy} and in-plane tension load N_x. Edge moments induced from the geometric eccentricity have been accounted for when formulating shear and peel governing equations corresponding to in-plane tension load N_x. Shear stress components are computed based on shear-lag assumptions and peel stress is obtained from a beam on elastic foundation (BOEF) approach.

Classical analyses, based on shear-lag, have been previously developed to predict only the adhesive shear stress in bonded joints of uniform bondline thickness for a symmetric joint subjected to tension loading only [1, 2]. Improvements to the classical model include predicting peel stress and edge moments in single lap joints [3–6], accounting for plasticity in the adhesive prior to failure [7, 8], and allowing for transverse shear deformation of the symmetric adherends [9]. Delale et al. [10] extended Goland and Reissner’s approach for symmetric joints by formulating the adhesive shear stress equation to account for asymmetric adherends. Similar approaches for the asymmetric joints are presented by Yang and Pang [11], Bigwood and Crocombe [12], and Wu et al. [13].

Adhesively bonded lap geometries loaded by in-plane shear have been discussed by Hart-Smith [2], van Rijn [14], and the Engineering Sciences Data Unit [15]. The authors of these works indicate that shear loading can be analytically accounted for by simply replacing the adherend Young’s modulus in the tensile loaded lap joint solution with the respective adherend shear modulus. This assumption is valid only for simple cases with one-dimensional loading, whereas in-plane shear loaded joints are generally two- or three-dimensional. A closed-form solution for combined multiaxial loading is presented by Mortensen and Thomson [16], although the boundary conditions are treated as input parameters and the solution is not validated by FEA or experiment. To the authors’ best knowledge, there are no closed-form analytical works that are applicable to symmetric joints under combined shear loading and tension loading with self-induced eccentricity moments. Previous work by Lee and Kim [17] predicts adhesive shear and peel stress profiles for a generally asymmetric joint and includes the effects of eccentricity moments. Kim and Kedward [18] have
computed failure envelopes for combined tension and shear but did not account for adherend bending and peel stress. Mathias et al. [19] and Adams and Peppiatt [20] have also developed stress analyses predicting the multi-axial stress state from bi-directional loading and Poisson’s ratio effects. Like the work of Kim and Kedward [18], however, these did not account for the bending moments due to load path eccentricity.

This work is the combination of recent tension/bending calculations [17] with the prediction of stresses due to in-plane shear [21]. The presented analysis accounts for uncoupled bending rigidity, Young’s modulus and shear modulus of the composite adherends depending on the laminate lay-up sequence and different lamina types (e.g., glass/epoxy versus carbon/epoxy). For an example analysis, the three adhesive stress component profiles (two shear stress components, one normal stress) for joints having \([0/45]_s\) and \([45/0]_s\) woven glass/epoxy adherends are compared with FEA predictions. Yield criterion based on von Mises effective stress is applied using the analytically predicted adhesive stress solutions to establish elastic limit loading envelopes. Carbon/epoxy composite adherends and glass/epoxy composite adherends with four different lay-ups are used to compare the effects of bending rigidity and modulus on the yield envelope.

1.2 Equations and Solution

1.2.1 Model Description

A general single lap joint with in-plane tension load (per unit width) \(N_x\) and the in-plane shear (per unit width) \(N_{xy}\) is shown in Figure 1.1. The following assumptions are made for the single lap joint:

- adherends and adhesive have uniform thickness
- adhesive carries shear and peel stresses only
- uniform shear and peel stress profiles through the adhesive thickness (z-direction)
- adherends do not deform due to transverse shear
- linear elastic material behavior

The multi-axially loaded joint can be considered as a combination of two independent problems since the material behavior is assumed elastic and the in-plane tension load \(N_x\) and the in-plane
shear load N_{xy} are independent of each other. For the tension loading (which includes edge moments), two adhesive strain components γ_{xz} and ε_{zz} are developed and, therefore, needed to be considered [17]. For the shear loading, only one adhesive strain component γ_{yz} exists [21] and is independent of the strains produced from tension loading. The governing equations, written in terms of these three independent adhesive strain components, are based on the in-plane x-direction (u_1, u_2), in-plane y-direction (v_1, v_2) and transverse z-direction (w_1, w_2) displacements at the upper and lower adherend-adhesive interfaces, where the index 1 refers to (upper) Adherend 1, and the index 2 refers to (lower) Adherend 2, as shown in Figure 1.1.

1.2.2 Governing Equations for Tension Loading N_x

The x-direction displacement u_i and transverse z-direction displacement w_i (where $i = 1, 2$) are used to compute the adhesive shear strain γ_{xz} and peel strain ε_{zz} for the in-plane tension loading N_x. These displacements at the adhesive-adherend interface are functions of the in-plane normal stress resultants (N_1 and N_2) and the moment resultants (M_1 and M_2) from the in-plane normal stress component σ_{xx}, as well as the joint geometric and material parameters: thickness t_i and effective Young’s modulus E_i and bending rigidity D_i of the adherends in the x-direction. These resultants are depicted in Figure 1.2 which shows a differential slice of the joint with local coordinates z_1 and z_2 for each adherend defined such that the adhesive-adherend interface is
located at \(z_1 = 0 \) and \(z_2 = t_2 \). The bending rigidities \(D_1 \) and \(D_2 \) for the composite adherends are calculated from classical laminated plate theory bending rigidity \([D]\) matrix. Specifically, these are the \(D_{11} \) matrix terms representing the x-direction bending rigidity of each adherend. The adhesive shear strain \(\gamma_{xz}^a \) is defined in terms of the interface-adjacent horizontal x-displacements \(u_1 \) and \(u_2 \) and thickness \(t_a \) of the adhesive.

\[
\gamma_{xz}^a = \frac{1}{t_a} (u_1 - u_2)
\]

(1.1)

Figure 1.2 Differential segment of single lap joint under tension loading.
Differentiating Eq. 1.1 with respect to x yields

$$\frac{d\gamma_{xz}^a}{dx} = \frac{1}{t_a}(\varepsilon_{xx1} - \varepsilon_{xx2})$$ (1.2)

ε_{xx1} and ε_{xx2} are the x-directional normal strains in the adherends at the adhesive interface. These can be determined from the in-plane normal stress resultants (N_1 and N_2) and the internal moment resultants (M_1 and M_2) based on simple beam theory [17].

$$\varepsilon_{xx1} = \frac{N_1}{t_1} + \frac{M_1 t_1}{2D_1} = N_1 \left(\frac{1}{E_1 t_1} + \frac{t_1^2}{4D_1}\right)$$ (1.3)

$$\varepsilon_{xx2} = \frac{N_2}{t_2} - \frac{M_2 t_2}{2D_2} = N_2 \left(\frac{1}{E_2 t_2} + \frac{t_2^2}{4D_2}\right)$$ (1.4)

where the moment resultants $M_1 = \frac{1}{2}N_1 t_1$ and $M_2 = -\frac{1}{2}N_2 t_2$ are calculated [17] based on summing moments at the adhesive-adherend interface (where shear stress acts on each adherend) as shown in Figure 1.2. Inserting Eqs. 1.3 and 1.4 into Eq. 1.2 and differentiating with respect to x once more yields the relationship

$$\frac{d^2\gamma_{xz}^a}{dx^2} = \frac{1}{t_a}\left[\left(\frac{1}{E_1 t_1} + \frac{1}{E_2 t_2}\right) + \frac{1}{4}\left(\frac{t_1^2}{D_1} + \frac{t_2^2}{D_2}\right)\right] \tau_{xz}^a$$

$$+ \frac{1}{2t_a}\left(\frac{t_1}{D_1} Q_1 + \frac{t_2}{D_2} Q_2\right)$$ (1.5)

where τ_{xz}^a is the adhesive shear stress which can be shown to relate N_1, M_1 and the transverse shear resultants Q_i via force and moment equilibrium applied to the differential slices shown in Figure 1.2 [17].

The adhesive peel strain ε_{zz}^a is defined in terms of the interface-adjacent z-direction displacements w_1 and w_2 and thickness t_a of the adhesive.

$$\varepsilon_{zz}^a = \frac{1}{t_a}(w_1 - w_2)$$ (1.6)

The adhesive peel stress σ_{zz}^a is determined from a beam on elastic foundation model by considering the two adherends as beams
connected by a deformable interface. The relative transverse dis-
placements \(\bar{w} (= w_1 - w_2) \) of the adherends are related as [17]

\[
\frac{d^4 \bar{w}}{dx^4} = -\left(\frac{1}{D_1} + \frac{1}{D_2} \right) \sigma_{zz}^a
\] (1.7)

where \(\sigma_{zz}^a \) is the adhesive peel stress. Eq. 1.7 can be written as a
function of adhesive peel strain \(\varepsilon_{zz}^a \) via the relationship in Eq. 1.6.

\[
\frac{d^4 \varepsilon_{zz}^a}{dx^4} = -\frac{1}{t_a} \left(\frac{1}{D_1} + \frac{1}{D_2} \right) \sigma_{zz}^a
\] (1.8)

1.2.3 Governing Equation for In-Plane Shear Loading \(N_{xy} \)

The in-plane shear loading \(N_{xy} \) produces an adhesive shear strain
\(\gamma_{yz}^a \) which is defined in terms of the interface-adjacent y-direction
displacements \(v_1 \) and \(v_2 \) in adherends 1 and 2, respectively, and
thickness \(t_a \) of the adhesive.

\[
\gamma_{yz}^a = \frac{1}{t_a} (v_1 - v_2)
\] (1.9)

Differentiating Eq. 1.9 with respect to \(x \) and assuming very small
(negligible) variation of the displacements with respect to \(y \) yields

\[
\frac{d \gamma_{yz}^a}{dx} = \frac{1}{t_a} (\gamma_{xy1} - \gamma_{xy2}) = \frac{1}{t_a} \left(\frac{\tau_{xy1}}{G_1} - \frac{\tau_{xy2}}{G_2} \right)
\] (1.10)

where \(\gamma_{xy1}, \gamma_{xy2} \) and \(\tau_{xy1}, \tau_{xy2} \) are the in-plane (x-y plane) shear strain
and average shear stress components in adherends 1 and 2, respectively. \(G_1 \) and \(G_2 \) are the in-plane (x-y) effective shear moduli of
adherends 1 and 2.

In Figures 1.1 and 1.3, the applied in-plane shear load \(N_{xy} \) is
shown to be continuous through the overlap region and at any
point it must be equal to the sum of the product of each adherend’s
in-plane shear stress with its respective thickness \(t_1 \) and \(t_2 \).

\[
N_{xy} = \tau_{xy1} t_1 + \tau_{xy2} t_2
\] (1.11)

From Eq. 1.11, the shear stress in the adherend 2 can be written as,

\[
\tau_{xy2} = \frac{N_{xy} - \tau_{xy1} t_1}{t_2}
\] (1.12)
Substituting Eq. 1.12 into Eq. 1.10 yields

\[
\frac{d\gamma_{yz}^a}{dx} = \frac{t_1}{t_a} \left(\frac{\tau_{xy1}}{G_1t_1} + \frac{\tau_{xy1}}{G_2t_2} \right) - \frac{N_{xy}}{t_aG_2t_2}
\]

(1.13)

Force equilibrium performed on a differential element of the adherend 1, shown in Figure 1.4, results in relationship between the adhesive shear stress components \(\tau_{yz}^a\) and the adherend 1 in-plane shear stress \(\tau_{xy1}\).

\[
\tau_{yz}^a = t_1 \frac{\partial \tau_{xy1}}{\partial x}
\]

(1.14)

Differentiating Eq. 1.13 with respect to \(x\) one more time yields

\[
\frac{d^2\gamma_{yz}^a}{dx^2} = \frac{t_1}{t_a} \left(\frac{1}{G_1t_1} + \frac{1}{G_2t_2} \right) \frac{\partial \tau_{xy1}}{\partial x}
\]

(1.15)

Substituting Eq. 1.14 into Eq. 1.15 yields the relationship

\[
\frac{d^2\gamma_{yz}^a}{dx^2} = \frac{1}{t_a} \left(\frac{1}{G_1t_1} + \frac{1}{G_2t_2} \right) \tau_{yz}^a = \frac{G_a}{t_a} \left(\frac{1}{G_1t_1} + \frac{1}{G_2t_2} \right) \gamma_{yz}^a
\]

(1.16)

where \(G_a\) is the adhesive shear modulus.

Eqs. 1.5, 1.8 and 1.16 are the adhesive strain governing equations for a generally asymmetric joint, i.e., one with different adherends. The case of a symmetric joint is now considered for design purposes since symmetric joints are generally more used in practice. Due to the geometry and material properties of adherends 1 and 2
being the same for a symmetric joint, Eqs. 1.5, 1.8 and 1.16 can be further simplified to Eqs. 1.17 to 1.19, respectively.

\[
\frac{d^2 \gamma_{xz}^a}{dx^2} = \lambda_1^2 \gamma_{xz}^a
\]

(1.17)

\[
\frac{d^4 \varepsilon_{zz}^a}{dx^4} = -4 \beta^4 \varepsilon_{zz}^a
\]

(1.18)

\[
\frac{d^2 \gamma_{yz}^a}{dx^2} = \lambda_2^2 \gamma_{yz}^a
\]

(1.19)

where

\[
\lambda_1 = \left[\frac{G_a}{t_a} \left(\frac{2}{E_1 t_1} + \frac{t_1^2}{2D_1} \right) \right]^{\frac{1}{2}}
\]

(1.20)

\[
\beta = \frac{1}{\sqrt{2}} \left(\frac{2E_a}{t_a D_1} \right)^{\frac{1}{2}}
\]

(1.21)

\[
\lambda_2 = \left[\frac{2G_a}{t_a G_1 t_1} \right]^{\frac{1}{2}}
\]

(1.22)
1.2.4 Solutions

In order to find the closed-form solutions for the second-order ordinary differential equations (Eqs. 1.17 and 1.19) for shear strains, two boundary conditions are required for each equation. Four boundary conditions are needed to solve the fourth-order ordinary differential equation (Eq. 1.18) for peel strain. With the condition of the adherends being identical, symmetry with respect to the overlap center location at $x = 0$ can be used to reduce by half the number of boundary conditions needed. The boundary conditions for the multi-axially loaded joint are considered as the superposition of the boundary conditions applied separately to the tension loaded joint and to the shear loaded. These boundary conditions are shown in Figures 1.1 and 1.5 and were discussed as the governing equations were derived.

For the adhesive peel governing equation (Eq. 1.18), the assumption is made that the left hand side of the joint is fixed for all degrees of freedom at $x = -c$, and the right hand side at $x = c$ can translate in the z-direction but not rotate with respect to x-axis. Real structures with significant unbonded length, e.g., the thin skin of an aircraft in a single lap splice joint would not have the transverse displacement constraint which exists when testing a lap joint in a test machine. Therefore the transverse displacement was not confined. However, to preserve consistency of the loading direction, the condition of no rotation with respect to x-axis was enforced. This free translation with enforcement of no rotation results in a considerable moment reaction producing larger shear and peel stresses in the joint than the case of fixed translation with free rotation (typically assumed in other works). Thus the internal moment resultant M_1 which is induced through the adherends from the geometric eccentricity of

![Figure 1.5 Boundary conditions for tension loaded joint (D.O.F. = Degrees of Freedom).](image-url)