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Preface

Life is probably the most complex phenomenon in the universe. We see kids
growing, people aging, plants blooming, and microbes degrading their remains.
We use yeast for brewery and bakery, and doctors prescribe drugs to cure diseases.
But can we understand how life works? Since the 19th century, the processes of life
have no longer been explained by special ‘‘living forces,’’ but by the laws of physics
and chemistry. By studying the structure and physiology of living systems more and
more in detail, researchers from different disciplines have revealed how the mystery
of life arises from the structural and functional organization of cells and from the
continuous refinement by mutation and selection.
In recent years, new imaging techniques have opened a completely new percep-

tion of the cellular microcosm. If we zoom into the cell, we can observe how
structures are built, maintained, and reproduced while various sensing and regula-
tion systems help the cell to respond appropriately to environmental changes. But
along with all these fascinating observations, many open questions remain. Why do
we age? How does a cell know when to divide? How can severe diseases such as
cancer or genetic disorders be cured? How can we convince – i.e., manipulate –

microbes to produce a desirable substance? How can the life sciences contribute to
environmental safety and sustainable technologies?
This book provides you with a number of tools and approaches that can help you to

think in more detail about such questions from a theoretical point of view. A key to
tackle such questions is to combine biological experiments with computational
modeling in an approach called systems biology: it is the combined study of
biological systems through (i) investigating the components of cellular networks
and their interactions, (ii) applying experimental high-throughput and whole-
genome techniques, and (iii) integrating computational methods with experimental
efforts.
The systemic approach in biology is not new, but it recently gained new thrust due

to the emergence of powerful experimental and computational methods. It is based
on the accumulation of an increasingly detailed biological knowledge, on the
emergence of new experimental techniques in genomics and proteomics, on a
tradition of mathematical modeling of biological processes, on the exponentially
growing computer power (as prerequisite for databases and the calculation of large
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systems), and on the Internet as the central medium for a quick and comprehensive
exchange of information.
Systems Biology has influenced modern biology in two major ways: on the one

hand, it offers computational tools for analyzing, integrating and interpreting biolo-
gical data and hypotheses. On the other hand, it has induced the formulation of new
theoretical concepts and the application of existing ones to new questions. Such
concepts are, for example, the theory of dynamical systems, control theory, the analysis
of molecular noise, robustness and fragility of dynamic systems, and statistical net-
work analysis. As systems biology is still evolving as a scientific field, a central issue is
the standardization of experiments, of data exchange, and of mathematical models.
In this book, we attempt to give a survey of this rapidly developing field. We will

show you how to formulate your own model of biological processes, how to analyze
such models, how to use data and other available information for making your
model more precise – and how to interpret the results. This book is designed as an
introductory course for students of biology, biophysics and bioinformatics, and for
senior scientists approaching Systems Biology from a different discipline. Its nine
chapters contain material for about 30 lectures and are organized as follows.

Chapter 1 – Introduction (E. Klipp, W. Liebermeister, A. Kowald, 1 lecture)

Introduction to the subject. Elementary concepts and definitions are presented.
Read this if you want to start right from the beginning.

Chapter 2 – Modeling of Biochemical Systems (E. Klipp, C. Wierling, 4 lectures)

This chapter describes kinetic models for biochemical reaction networks, the most
common computational technique in Systems Biology. It includes kinetic laws,
stoichiometric analysis, elementary flux modes, and metabolic control analysis.
Introduces tools and data formats necessary for modeling.

Chapter 3 – Specific Biochemical Systems (E. Klipp, C. Wierling, W. Liebermeister,
5 lectures)

Using specific examples from metabolism, signaling, and cell cycle, a number of
popular modeling techniques are discussed. The aim of this chapter is to make the
reader familiar with both modeling techniques and biological phenomena.

Chapter 4 – Model Fitting (W. Liebermeister, A. Kowald, 4 lectures)

Models in systems biology usually contain a large number of parameters. Assigning
appropriate numerical values to these parameters is an important step in the
creation of a quantitative model. This chapter shows how numerical values can be
obtained from the literature or by fitting a model to experimental data. It also
discusses how model structures can be simplified and how they can be chosen if
several different models can potentially describe the experimental observations.
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Chapter 5 – Analysis of High-Throughput Data (R. Herwig, 2 lectures)

Several techniques that have been developed in recent years produce large quantities
of data (e.g., DNA and protein chips, yeast two-hybrid, mass spectrometry). But such
large quantities often go together with a reduced quality of the individual measure-
ment. This chapter describes techniques that can be used to handle this type of data
appropriately.

Chapter 6 –Gene ExpressionModels (R. Herwig, W. Liebermeister, E. Klipp, 3 lectures)

Thousands of gene products are necessary to create a living cell, and the regulation
of gene expression is a very complex and important task to keep a cell alive. This
chapter discusses how the regulation of gene expression can be modeled, how
different input signals can be integrated, and how the structure of gene networks
can be inferred from experimental data.

Chapter 7 – Stochastic Systems and Variability (W. Liebermeister, 4 lectures)

Random fluctuations in transcription, translation and metabolic reactions make
mathematics complicated, computation costly and interpretation of results not
straight forward. But since experimentalists find intriguing examples for macro-
scopic consequences of random fluctuation at the molecular level, the incorporation
of these effects into the simulations becomes more and more important. This
chapter gives an overview where and how stochasticity enters cellular life.

Chapter 8 –Network Structures, Dynamics and Function (W. Liebermeister, 3 lectures)

Many complex systems in biology can be represented as networks (reaction net-
works, interaction networks, regulatory networks). Studying the structure, dynamics,
and function of such networks helps to understand design principles of living cells.
In this chapter, important network structures such as motifs and modules as well as
the dynamics resulting from them are discussed.

Chapter 9 – Optimality and Evolution (W. Liebermeister, E. Klipp, 3 lectures)

Theoretical research suggests that constraints of the evolutionary process should
have left their marks in the construction and regulation of genes and metabolic
pathways. In some cases, the function of biological systems can be well understood
by models based on an optimality hypothesis. This chapter discusses the merits and
limitations of such optimality approaches.

Various aspects of systems biology – the biological systems themselves, types of
mathematicalmodels to describe them, andpractical techniques– reappear indifferent
contexts in various parts of the book. The following diagram,which shows the contents
of the book sorted by a number of different aspects, may serve as an orientation.
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Mathematical frameworks to 
describe cell states

Topological (8.1)
Structural stoichiometric (2.2)
Deterministic linear (15)
Deterministic kinetic (2.1, 2.3)
Spatial (3.4)
Discrete (6.3, 6.4)
Stochastic dynamics (7.1, 7.2, 14)
Uncertain parameters (7.3)

Biological systems

Metabolism (3.1, 8.1, 9.1)
Transcription (6.1, 6.2, 8.2)
Genetic network (6.3, 6.4, 8.1, 8.2)
Signaling systems (3.2, 7.4, 8.2)
Cell cycle (3.3)
Development (3.4)
Apoptosis (3.5)

Perspectives on biological function

Qualitative behavior (2.3, 3.3)
Parameter sensitivity/robustness (7.3, 7.4)
Robustness against failure (7.4)
Modularity (8.3)
Optimality (9.1, 9.2)
Evolution (9.3)
Game-theoretical requirements (9.3)

Model types with different
levels of abstraction

Thermodynymic/many particles (7.1)
Kinetic models (2.1, 2.3)
Dynamical systems (2.3)
Optimization/control theory (2.3, 9.1, 9.2)

Modeling skills

Model building (2.1 – 2.4)
Model reduction and combination (4.3)
Data collection (4.1, 5.1)
Statistical data analysis (5.2)
Parameter estimation (4.2)
Model testing and selection (4.4)
Local sensitivity/control theory (2.3, 7.3)
Global sensitivity/uncertainty analysis (7.3)
Parameter optimization (9.1, 9.2)
Optimal control (9.2)

Practical issues in modeling

Data formats (2.4)
Data sources (2.4, 16)
Modeling software (2.4, 17)
Experimental techniques (11)
Statistical methods (4.2, 4.4, 13)
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At the end of the regular course material, you will find a number of additional
chapters that summarize important biological and mathematical methods. The first
chapters deal with to cell biology (chapter 10, C. Wierling) and molecular biological
methods (chapter 11, A. Kowald). For looking up mathematical and statistical
definitions and methods, turn to chapters 12 and 13 (R. Herwig, A. Kowald).
Chapters 14 and 15 (W. Liebermeister) concentrate on randomprocesses and control
theory. The final chapters provide an overview over useful databases (chapter 16,
C. Wierling) as well as a huge list of available software tools including a short
description of their purposes (chapter 17, A. Kowald).
Further material is available on an accompanying website
(www.wiley-vch.de/home/systemsbiology)
Beside additional and more specialized topics, the website also contains solutions

to the exercises and problems presented in the book.
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1
Introduction

1.1
Biology in Time and Space

Biological systems like organisms, cells, or biomolecules are highly organized in
their structure and function. They have developed during evolution and can only be
fully understood in this context. To study them and to apply mathematical,
computational, or theoretical concepts, we have to be aware of the following
circumstances.
The continuous reproduction of cell compounds necessary for living and the

respective flow of information is captured by the central dogma ofmolecular biology,
which can be summarized as follows: genes code for mRNA, mRNA serves as
template for proteins, and proteins perform cellular work. Although information is
stored in the genes in form of DNA sequence, it is made available only through the
cellular machinery that can decode this sequence and can translate it into structure
and function. In this book, this will be explained from various perspectives.
A description of biological entities and their properties encompasses different

levels of organization and different time scales. We can study biological phenomena
at the level of populations, individuals, tissues, organs, cells, and compartments
down to molecules and atoms. Length scales range from the order of meter (e.g., the
size of whale or human) to micrometer for many cell types, down to picometer for
atom sizes. Time scales include millions of years for evolutionary processes, annual
and daily cycles, seconds for many biochemical reactions, and femtoseconds for
molecular vibrations. Figure 1.1 gives an overview about scales.
In a unified view of cellular networks, each action of a cell involves different levels

of cellular organization, including genes, proteins, metabolism, or signaling path-
ways. Therefore, the current description of the individual networks must be inte-
grated into a larger framework.
Many current approaches pay tribute to the fact that biological items are subject to

evolution. The structure and organization of organisms and their cellular machinery
has developed during evolution to fulfill major functions such as growth, prolifera-
tion, and survival under changing conditions. If parts of the organism or of the cell
fail to perform their function, the individual might become unable to survive or
replicate.
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One consequence of evolution is the similarity of biological organisms from
different species. This similarity allows for the use of model organisms and for the
critical transfer of insights gained from one cell type to other cell types. Applications
include, e.g., prediction of protein function from similarity, prediction of network
properties from optimality principles, reconstruction of phylogenetic trees, or the
identification of regulatory DNA sequences through cross-species comparisons. But
the evolutionary process also leads to genetic variations within species. Therefore,
personalized medicine and research is an important new challenge for biomedical
research.

1.2
Models and Modeling

If we observe biological processes, we are confronted with various complex processes
that cannot be explained from first principles and the outcome of which cannot
reliably be foreseen from intuition. Even if general biochemical principles are well
established (e.g., the central dogma of transcription and translation, the biochemistry
of enzyme-catalyzed reactions), the biochemistry of individual molecules and
systems is often unknown and can vary considerably between species. Experiments
lead to biological hypotheses about individual processes, but it often remains unclear
if these hypotheses can be combined into a larger coherent picture because it is often
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Figure 1.1 Length and time scales in biology. Data from the
BioNumbers database http://bionumbers.hms.harvard.edu.

4j 1 Introduction



difficult to foresee the global behavior of a complex system from knowledge of its
parts.Mathematicalmodeling and computer simulations can help us understand the
internal nature and dynamics of these processes and to arrive at predictions about
their future development and the effect of interactions with the environment.

1.2.1
What is a Model?

The answer to this questionwill differ among communities of researchers. In a broad
sense, a model is an abstract representation of objects or processes that explains
features of these objects or processes (Figure 1.2). A biochemical reaction network
can be represented by a graphical sketch showing dots formetabolites and arrows for
reactions; the same network could also be described by a system of differential
equations, which allows simulating and predicting the dynamic behavior of that
network. If a model is used for simulations, it needs to be ensured that it faithfully
predicts the system�s behavior– at least those aspects that are supposed to be covered
by the model. Systems biology models are often based on well-established physical
laws that justify their general form, for instance, the thermodynamics of chemical
reactions; besides this, a computational model needs to make specific statements
about a system of interest – which are partially justified by experiments and
biochemical knowledge, and partially by mere extrapolation from other systems.
Such a model can summarize established knowledge about a system in a coherent
mathematical formulation. In experimental biology, the term �model� is also used to
denote a species that is especially suitable for experiments, for example, a genetically
modified mouse may serve as a model for human genetic disorders.

1.2.2
Purpose and Adequateness of Models

Modeling is a subjective and selective procedure. A model represents only specific
aspects of reality but, if done properly, this is sufficient since the intention of
modeling is to answer particular questions. If the only aim is to predict system
outputs from given input signals, a model should display the correct input–output
relation, while its interior can be regarded as a black box. But if instead a detailed
biological mechanism has to be elucidated, then the system�s structure and the
relations between its parts must be described realistically. Somemodels aremeant to
be generally applicable to many similar objects (e.g., Michaelis–Menten kinetics
holds formany enzymes, the promoter–operator concept is applicable tomany genes,
and gene regulatorymotifs are common), while others are specifically tailored to one
particular object (e.g., the 3D structure of a protein, the sequence of a gene, or amodel
of deteriorating mitochondria during aging). The mathematical part can be kept as
simple as possible to allow for easy implementation and comprehensible results.Or it
can be modeled very realistically and be much more complicated. None of the
characteristics mentioned above makes a model wrong or right, but they determine
whether a model is appropriate to the problem to be solved. The phrase �essentially,
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all models are wrong, but some are useful� coined by the statistician George Box is
indeed an appropriate guideline for model building.

1.2.3
Advantages of Computational Modeling

Models gain their reference to reality from comparison with experiments, and their
benefits therefore depend on the quality of the experiments used. Nevertheless,
modeling combinedwith experimentation has a lot of advantages compared to purely
experimental studies:

. Modeling drives conceptual clarification. It requires verbal hypotheses to be made
specific and conceptually rigorous.

. Modeling highlights gaps in knowledge or understanding. During the process
of model formulation, unspecified components or interactions have to be
determined.

Figure 1.2 Typical abstraction steps in
mathematical modeling. (a) Escherichia coli
bacteria produce thousandsof different proteins.
If a specific protein type is fluorescently labeled,
cells glow under themicroscope according to the
concentration of this enzyme (Courtesy of
M. Elowitz). (b) In a simplified mental model,
we assume that cells contain two enzymes of
interest, X (red) and Y (blue) and that the
molecules (dots) can freely diffusewithin the cell.
All other substances are disregarded for the
sake of simplicity. (c) The interactions between
the two protein types can be drawn in a wiring
scheme: each protein can be produced or
degraded (black arrows). In addition, we
assume that proteins of type X can increase

the production of protein Y. (d) All individual
processes to be considered are listed together
with their rates a (occurrence per time). The
mathematical expressions for the rates are
based on a simplified picture of the actual
chemical processes. (e) The list of processes
can be translated into different sorts of
dynamic models; in this case, deterministic
rate equations for the protein concentrations
x and y. (f) By solving the model equations,
predictions for the time-dependent
concentrations can be obtained. If these
predictions do not agree with experimental
data, it indicates that the model is wrong or
too much simplified. In both cases, it has to be
refined.

6j 1 Introduction


