The ABC series contains a wealth of indispensable resources for GPs, GP registrars, junior doctors, doctors in training and specialised healthcare professionals

- Highly illustrated, informative and a practical source of knowledge
- An easy-to-use resource, covering the symptoms, investigations, treatment and management of conditions presenting in day-to-day practice and patient support
- Full colour photographs and illustrations aid diagnosis and patient understanding of a condition

For more information on all books in the ABC series, including links to further information, references and links to the latest official guidelines, please visit:

www.abcbookseries.com

BMJ Books WILEY Blackwell
Contents

Contributor list, vii
Foreword, xi
Preface, xiii
1 Prehospital Emergency Medicine, 1
 Matthew Boylan and Tim Nutbeam
2 Activation and Deployment, 3
 Andrew Thurgood and Matthew Boylan
3 Personal Protective Equipment, 7
 Clare Bosanko and Matthew Boylan
4 Scene Safety and Assessment, 13
 Vic Calland and Pete Williams
5 The Primary Survey, 18
 Tim Nutbeam and Matthew Boylan
6 Airway Assessment and Management, 20
 Märten Sandberg, Anders Rostrup Nakstad, Peter Anthony Berlac, Per Kristian Hyldmo, and Matthew Boylan
7 Breathing Assessment and Management, 27
 Per Kristian Hyldmo, Peter Anthony Berlac, Anders Rostrup Nakstad, Märten Sandberg, and Matthew Boylan
8 Circulation Assessment and Management, 35
 R. J. Dawes and Matthew Boylan
9 Prehospital Anaesthesia, 44
 Tim Hooper and David Lockey
10 Prehospital Analgesia and Sedation, 51
 Jonathan Hulme
11 Prehospital Monitoring, 57
 Tim Harris and Peter Shirley
12 Prehospital Ultrasound, 63
 Tim Harris, Adam Bystrzycki, and Stefan Mazur
13 Trauma: Head Injury, 70
 Jeremy Henning and Clare Hammell
14 Trauma: Spinal Injuries, 75
 Lucas A. Myers, Christopher S. Russi, Matthew Boylan, and Tim Nutbeam
15 Trauma: Abdominal Injury, 81
 Keith Roberts
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Trauma: Pelvic Injury, 84</td>
</tr>
<tr>
<td></td>
<td>Matt O’Meara, Keith Porter, and Tim Nutbeam</td>
</tr>
<tr>
<td>17</td>
<td>Trauma: Extremity Injury, 87</td>
</tr>
<tr>
<td></td>
<td>Matt O’Meara, Keith Porter, and Tim Nutbeam</td>
</tr>
<tr>
<td>18</td>
<td>Trauma: Burns, 90</td>
</tr>
<tr>
<td></td>
<td>Alex Jones, Anna Barnard, and Keith Allison</td>
</tr>
<tr>
<td>19</td>
<td>Trauma: Suspension and Crush, 98</td>
</tr>
<tr>
<td></td>
<td>Jason van der Velde</td>
</tr>
<tr>
<td>20</td>
<td>Trauma: Ballistic and Blast, 103</td>
</tr>
<tr>
<td></td>
<td>Matthew Boylan</td>
</tr>
<tr>
<td>21</td>
<td>Trauma: Extrication of the Trapped Patient, 110</td>
</tr>
<tr>
<td></td>
<td>Malcolm Q. Russell</td>
</tr>
<tr>
<td>22</td>
<td>Cardiac Arrest, 118</td>
</tr>
<tr>
<td></td>
<td>Walter Kloeck, Efraim Kramer, Martin Botha, and David Kloeck</td>
</tr>
<tr>
<td>23</td>
<td>Acute Medical Emergencies, 126</td>
</tr>
<tr>
<td></td>
<td>Adam Low and Tim Nutbeam</td>
</tr>
<tr>
<td>24</td>
<td>Environmental Injuries, 134</td>
</tr>
<tr>
<td></td>
<td>Peter Aitken, Mark Little, Ian Norton, and Andrew Pearce</td>
</tr>
<tr>
<td>25</td>
<td>Environmental: Altitude Injury, 141</td>
</tr>
<tr>
<td></td>
<td>Harvey Pyns</td>
</tr>
<tr>
<td>26</td>
<td>Environmental: Drowning and Near Drowning, 144</td>
</tr>
<tr>
<td></td>
<td>Tim Nutbeam</td>
</tr>
<tr>
<td>27</td>
<td>Environmental: Diving Emergencies, 146</td>
</tr>
<tr>
<td></td>
<td>Tudor A. Codreanu</td>
</tr>
<tr>
<td>28</td>
<td>Care of Special Groups: The Obstetric Patient, 150</td>
</tr>
<tr>
<td></td>
<td>Kristyn Manley, Tracy-Louise Appleyard, Tim Draycott, and Matthew Boylan</td>
</tr>
<tr>
<td>29</td>
<td>Care of Special Groups: The Paediatric Patient, 159</td>
</tr>
<tr>
<td></td>
<td>Fiona Jewkes and Julian Sandell</td>
</tr>
<tr>
<td>30</td>
<td>Care of Special Groups: The Elderly Patient, 165</td>
</tr>
<tr>
<td></td>
<td>Tim Nutbeam</td>
</tr>
<tr>
<td>31</td>
<td>Care of Special Groups: The Bariatric Patient, 168</td>
</tr>
<tr>
<td></td>
<td>Lynn Gerber Smith, Suzanne Sherwood, Anna Fergusson, and Dennis Jones</td>
</tr>
<tr>
<td>32</td>
<td>Retrieval and Transport, 172</td>
</tr>
<tr>
<td></td>
<td>Peter Aitken, Mark Elcock, Neil Ballard, and Matt Hooper</td>
</tr>
<tr>
<td>33</td>
<td>Emergency Preparedness: Major Incident Management, 179</td>
</tr>
<tr>
<td></td>
<td>Damian Keene, Tim Nutbeam, and Clare Scanlon</td>
</tr>
<tr>
<td>34</td>
<td>Emergency Preparedness: Chemical, Biological, Radiation and Nuclear Incidents, 185</td>
</tr>
<tr>
<td></td>
<td>Christopher A. Kahn, Kristi L. Koeng, and Matthew Boylan</td>
</tr>
<tr>
<td>35</td>
<td>Emergency Preparedness: Mass Gatherings, 190</td>
</tr>
<tr>
<td></td>
<td>Lee Wallis and Wayne Smith</td>
</tr>
<tr>
<td>36</td>
<td>Clinical Governance, 195</td>
</tr>
<tr>
<td></td>
<td>Assiah Mahmood and Rod Mackenzie</td>
</tr>
<tr>
<td>37</td>
<td>Medicolegal and Ethical Aspects of Prehospital Emergency Medicine, 201</td>
</tr>
<tr>
<td></td>
<td>Craig M. Klugman and Jennifer Bard</td>
</tr>
<tr>
<td>38</td>
<td>Research and Development in Prehospital Emergency Medicine, 206</td>
</tr>
<tr>
<td></td>
<td>Suzanne Mason and A. Niroshan Siriwardena</td>
</tr>
<tr>
<td></td>
<td>Index, 209</td>
</tr>
</tbody>
</table>
Contributor list

Peter Aitken
Associate Professor, Anton Breinl Centre for Public Health and Tropical Medicine, James Cook University;
Senior Staff Specialist, Emergency Department, The Townsville Hospital, Townsville, QLD;
Acting Clinical Director Counter Disaster, Retrieval Services Queensland, QLD, Australia

Keith Allison
Consultant Plastic Surgeon, The James Cook University Hospital, Middlesbrough, UK

Peter Anthony Berlac
Medical Director of Prehospital Emergency Medicine, University of Copenhagen, Copenhagen, Denmark

Tracy-Louise Appleyard
Consultant in Obstetrics and Gynaecology, Southmead Hospital, Bristol, UK

Neil Ballard
Senior Staff Specialist, Aeromedical and Retrieval Services, Ambulance Service of New South Wales;
Senior Staff Specialist, Emergency Medicine, Prince of Wales Hospital, Randwick, NSW;
Medical Coordinator, Careflight Queensland, Robina, QLD;
Senior Lecturer, School of Public Health, James Cook University, Townsville, QLD, Australia

Jennifer Bard
Professor of Law and Director, Health Law Program and J.D./M.D. Dual Degree Program, Texas Tech University School of Law;
Professor (Adjunct), Department of Psychiatry, Texas Tech University School of Medicine, Lubbock, TX, USA

Anna Barnard
Plastic Surgery Specialist Trainee, The James Cook University Hospital, Middlesbrough, UK

Clare Bosanko
Speciality Doctor Emergency Medicine, University Hospital of North Staffordshire, Stoke-On-Trent;
Midlands Air Ambulance, Cosford;
West Midlands Ambulance Service Medical Emergency Response Incident Team (MERIT), UK

Martin Botha
Chairman, Resuscitation Council of Southern Africa, Regional Training Manager and part-time Lecturer, International SOS and University of the Witwatersrand, Johannesburg, South Africa

Matthew Boylan
Consultant in Military Emergency Medicine and Prehospital Care, Royal Centre for Defence Medicine, University Hospitals Birmingham, Birmingham;
Midlands Air Ambulance, Cosford;
West Midlands Ambulance Service Medical Emergency Response Incident Team (MERIT), UK;
Mercia Accident Rescue Service (MARS) BASICS, UK.

Adam Bystrzycki
Emergency Physician, Alfred Hospital;
Senior Lecturer, Monash University, Melbourne, VIC, Australia

Vic Calland
Independent General and Prehospital Practitioner;
Honorary Secretary, British Association for Immediate Care (BASICS), UK

Tudor A. Codreanu
Senior Medical Practitioner, Critical Care Directorate, Emergency Department, Bunbury and Busselton Hospitals, South West Health Campus, Bunbury, WA, Australia;
Professor of Disaster Medicine, Vrije Universiteit Brussels, Belgium

MAJOR R. J. Dawes
Specialist Registrar in Anaesthetics and Intensive Care, Defence Medical Services, UK

Tim Draycott
Consultant Obstetrician and Gynaecologist, Research into Safety & Quality Group, Southmead Hospital, Bristol, UK

Mark Elcock
State Medical Director, Retrieval Services, Queensland, Brisbane, QLD;
Associate Professor, Anton Breinl Centre for Public Health and Tropical Medicine, James Cook University, Townsville, QLD, Australia

Anna Fergusson
Specialist Trainee in Anaesthetics, Birmingham School of Anaesthesia, Birmingham, UK
Lynn Gerber Smith
Clinical Nurse, Trauma Resuscitation Unit, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA

Clare Hammell
Consultant Anaesthetist, Leighton Hospital, Crewe, UK

Tim Harris
Consultant in Emergency Medicine and Prehospital Care, Royal London Hospital;
Consultant in Intensive Care Medicine, Newham University Hospital, London, UK

LT COL Jeremy Henning
Consultant in Anaesthesia & ICU, The James Cook University Hospital, Middlesbrough;
Defence Lecturer in Critical Care, Royal Centre for Defence Medicine, University Hospitals Birmingham, Birmingham, UK

Per Kristian Hylldmo
Consultant in Anaesthesiology, Air Ambulance Department, Sorlandet Hospital, Kristiansand, Norway

Matt Hooper
Executive Director, MedSTAR Emergency Medical Retrieval Service;
Associate Professor, Anton Breinl Centre for Public Health and Tropical Medicine, James Cook University, Townsville, QLD, Australia

Tim Hooper
Specialist Registrar, London HEMS & Defence Medical Services, London, UK

Jonathan Hulme
Consultant in Anaesthesia & Intensive Care Medicine, Sandwell & West Birmingham Hospitals NHS Trust, City Hospital, Birmingham;
Medical Director, West Midlands Central Accident Resuscitation & Emergency (CARE) Team, Birmingham;
West Midlands Ambulance Service Medical Emergency Response Incident Team (MERIT);
Midlands Air Ambulance, Cosford, UK

Fiona Jewkes
Clinical Author, NHS Pathways Connecting for Health, Leeds, UK

Alex Jones
Plastic Surgery Specialist Trainee, The James Cook University Hospital, Middlesbrough, UK

Dennis Jones
Critical Care Flight Nurse, The Johns Hopkins Hospital, Baltimore, MD, USA

Christopher A. Kahn
Assistant Professor of Clinical Emergency Medicine,
Director, Emergency Medical Services and Disaster Medicine Fellowship
Base Hospital Medical Director
Emergency Preparedness and Response Medical Co-Director
Department of Emergency Medicine
University of California, San Diego, CA, USA

Damian Keene
Specialist Trainee, Department of Anaesthetics, Royal Centre For Defence Medicine, University Hospitals Birmingham, Birmingham, UK;
West Midlands Ambulance Service Medical Emergency Response Incident Team (MERIT);
Midlands Air Ambulance, Cosford, UK

David Kloeck
Paediatric Intensive Care Fellow, Paediatric Intensive Care, Chris Hani Baragwanath Academic Hospital, Soweto;
University of the Witwatersrand, Johannesburg, South Africa

Walter Kloeck
President Emeritus, College of Emergency Medicine of South Africa, Rondebosch, South Africa

Craig M. Klugman
Professor and Chair, Department of Health Sciences, DePaul University, Chicago, IL, USA

Kristi L. Koenig
Professor of Emergency Medicine, Director, Centre for Disaster Medicine, Director of Public Health Preparedness, Director, International Disaster Medical Sciences Fellowship, University of California at Irvine, Orange, CA, USA

Efraim Kramer
Adjunct Professor and Head, Division of Emergency Medicine, University of the Witwatersrand, Johannesburg, South Africa

Mark Little
Emergency Physician and Clinical Toxicologist, Cairns Base Hospital, Cairns, QLD;
Associate Professor, Anton Breinl Centre for Public Health and Tropical Medicine, James Cook University, Townsville, QLD, Australia

David Lockey
Consultant, North Bristol NHS Trust and London’s Air Ambulance, Hon Professor, University of Bristol, Bristol, UK

Adam Low
Specialist Registrar in Anaesthetics, West Midlands Deanery, Birmingham;
West Midlands Ambulance Service Medical Emergency Response Incident Team (MERIT), UK

Rod Mackenzie
Consultant in Emergency Medicine and Prehospital Emergency Medicine,
Clinical Director, Major Trauma Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

Assiah Mahmood
Clinical Governance Manager, Magpas Helimedix, St. Ives, UK

Kristyn Manley
Registrar Obstetrics and Gynaecology, Southmead Hospital, Bristol, UK

Suzanne Mason
Professor of Emergency Medicine, Health Services Research, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
Stefan Mazur
Prehospital and Retrieval Physician and Operations Lead Consultant, MedSTAR, South Australian Emergency Medical Retrieval Service; Emergency Physician, Royal Adelaide Hospital, Adelaide, QLD; Associate Professor, School of Public Health and Tropical Medicine, James Cook University, Townsville, QLD, Australia

Lucas A. Myers
Assistant Professor of Emergency Medicine, Mayo Clinic Medical Transport, Mayo Clinic, Rochester, MN, USA

Ian Norton
Director, Disaster Preparedness and Response, National Critical Care and Trauma Response Centre (NCCTRC), Royal Darwin Hospital; Emergency Physician, Emergency Department, Royal Darwin Hospital, Darwin, NT, Australia

Tim Nutbeam
Consultant in Emergency Medicine, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth; Midlands Air Ambulance, Cosford; West Midlands Ambulance Service Medical Emergency Response Incident Team (MERIT), UK

Matt O’Meara
Registrar in Critical Care, Queens Medical Centre, Nottingham; Honorary Lecturer, Academic Department of Traumatology, University of Birmingham, Birmingham, UK

Andrew Pearce
Clinical Director Training and Standards South Australian Statewide Retrieval Service, Royal Adelaide Hospital, Adelaide, SA, Australia

Keith Porter
Professor of Clinical Traumatology, University of Birmingham, Birmingham, UK

Harvey Pynn
Military Consultant in Emergency Medicine, Bristol Royal Infirmary; Honorary Consultant in Prehospital Emergency Care, Great Western Air Ambulance; Senior Medical Instructor, Wilderness Medical Training, Kendal, UK

Keith Roberts
Specialist Registrar, Hepatobiliary Surgery, University Hospitals Birmingham, Birmingham, UK

Anders Rostrup Nakstad
Consultant in Anaesthesiology, Air Ambulance Department, Oslo University Hospital, Oslo, Norway

Christopher S. Russi
Assistant Professor of Emergency Medicine, Mayo Clinic Medical Transport, Mayo Clinic, Rochester, MN, USA

Malcolm Q. Russell
Medical Director, Kent Surrey & Sussex Air Ambulance Trust; Emeritus Helicopter Physician, London’s Air Ambulance; Mercia Accident Rescue Service (MARS); West Midlands Ambulance Service NHS Trust; United Kingdom International Search and Rescue (UK ISAR)

Mårten Sandberg
Professor in Prehospital and Emergency Medicine, University of Oslo, Oslo, Norway

Claire Scanlon
Specialist Trainee, Anaesthetics, City Hospital Birmingham, Birmingham, UK

Suzanne Sherwood
Clinical Nurse, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA

Peter Shirley
Consultant, Intensive Care and Anaesthesia, Royal London Hospital, London, UK

A. Niroshan Siriwardena
Professor of Primary and Prehospital Health Care, University of Lincoln, Lincoln, UK

Julian Sandell
Consultant in Paediatric Emergency Medicine, Poole Hospital NHS Foundation Trust, Poole, UK

Wayne Smith
Head Disaster Medicine – Provincial Government Western Cape; Senior Honorary Lecturer, Division of Emergency Medicine, University of Cape Town, Cape Town, South Africa

Andrew Thurgood
Consultant Nurse & Immediate Care Practitioner, Mercia Accident Rescue Service (MARS), UK

Jason van der Velde
Prehospital Physician, MEDICO Cork Research Fellow, Cork University Hospital, Cork, Ireland

Lee Wallis
Professor and Head, Division of Emergency Medicine, University of Cape Town, Cape Town, South Africa

Pete Williams
Consultant in Emergency & Paediatric Emergency Medicine, Dr Gray’s Hospital, Elgin, UK
Foreword

Until recently, training in advanced prehospital care relied on seeking out experts and hassling them for snippets of wisdom, and applying for a post on one of the few existing helicopter emergency medical services. No single written resource was available for study, and the preparation for the Diploma in Immediate Medical Care required assimilation of several disparate texts.

Recent years have seen the modernization and some standardization of practice, an explosion of services able to provide prehospital critical care, and the hard won recognition of the subspecialty of Prehospital Emergency Medicine (PHEM), with dedicated training schemes for PHEM practitioners. The need is greater than ever to collate an overview of recommended practice into a single publication.

This book covers a comprehensive spectrum of prehospital topics written by the 'hard-hitters' in the field: specialists at the forefront of civilian and military practice. It will guide PHEM trainees, help in postgraduate immediate care exam preparation, and assist any prehospital provider wanting an update in the current state of the art.

This is the book I wanted as a trainee but never had. I am thrilled at its publication, and am heartened that I now have the pleasure of recommending it to my own trainees.

Dr Cliff Reid
Senior Staff Specialist and Director of Training
Greater Sydney Area Helicopter Emergency Medical Service
Ambulance Service New South Wales;
Clinical Associate Professor in Emergency Medicine
University of Sydney
Sydney, NSW, Australia
The *ABC of Prehospital Emergency Medicine* began life in 2009 as a collaborative project in response to joint frustrations over the lack of a concise, single resource capable of delivering the essential knowledge and key practical techniques required for effective Prehospital Emergency Medicine (PHEM) practice.

We began the project with two clear aims:

- to present accessible, cutting edge, expert opinion on core PHEM topics
- to provide the reader with the practical knowledge and resources to put this knowledge into clinical practice.

Throughout our own training and ongoing practice in PHEM we have been inspired and informed by a number of experienced prehospital practitioners both in the UK and abroad. We are grateful that many of these individuals have agreed to share their knowledge and experience more widely by contributing to this text. Our expert authors represent the wide range of healthcare practitioners to which we hope this text is both accessible and useful.

Over the last 4 years the project has been forced to evolve and grow in response to exciting developments in clinical care and prehospital governance. The most welcome of these has been the formal recognition of PHEM as a subspecialty within the UK and the development of a comprehensive PHEM curriculum. It is our hope that this text will serve as a useful educational tool for PHEM trainees, as well as a useful revision aid for the seasoned prehospital practitioner.

We must thank the team at Wiley Blackwell, our supportive (and tolerant) families and our expert team of authors without all of whom this project would never have happened. Finally we would like to dedicate this text to the hundreds of prehospital practitioners who have dedicated many hundreds of thousands of hours of their own time to make the speciality what it is today.

Tim Nutbeam
Matthew Boylan
CHAPTER 1

Prehospital Emergency Medicine

Matthew Boylan1 and Tim Nutbeam2

1Royal Centre for Defence Medicine, University Hospitals Birmingham, Birmingham, UK
2Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth, UK

Introduction

‘Prehospital care’ is the term given to the provision of medical care outside of the hospital or alternative fixed healthcare setting. In the developed world, the provision of prehospital care is usually the responsibility of a regional ambulance or emergency medical service (EMS). A number of agencies may operate in support of the ambulance service including private ambulance companies, rescue organizations (e.g. mountain rescue, air ambulance services), the voluntary aid societies (e.g. Red Cross) and immediate care practitioners (e.g. British Association of Immediate Medical Care, BASICS).

Prehospital emergency medicine

Prehospital emergency medicine (PHEM) is a field within prehospital Care (Figure 1.1). PHEM’s evolution has been triggered by the demand to meet new challenges imposed by the regionalization of specialist medical and trauma services. Many of the critically injured or unwell patients that prove to benefit most from these new systems of care are paradoxically those less likely to tolerate extended transfer without advanced critical care support. As a result, there is a need to provide a body of prehospital practitioners capable of providing advanced clinical assessment and critical care intervention at the scene of an incident, together with safe critical care retrieval to an appropriate centre of care. In most continents the enhanced skill set required to provide this level of care falls outside that deliverable by the ambulance service or its supporting bodies, and therefore requires the deployment of specially trained physician-led teams.

The role of the PHEM practitioner or team is to augment the existing prehospital response, not replace it. Their function is to provide an additional level of support for those patients with higher acuity illness and injury, both on scene and during transfer. In doing so they are also well placed to educate and enhance the skills of the prehospital providers they work alongside.

Training in PHEM

An important move forward in the evolution of the field of PHEM in the UK has been its recognition as a new medical subspecialty led by the Intercollegiate Board for Training in prehospital Emergency Medicine (IBTPHEM). IBTPHEM has produced a curriculum that outlines the knowledge, technical skills and non-technical (behavioural) skills required to provide safe prehospital critical care and safe transfer. Links to the IBTPHEM and their curriculum can be found in the further reading section. The key themes of the curriculum are shown in Figure 1.2.

Similar prehospital training programmes exist across Europe (e.g. Germany) where they are firmly integrated into medical training and the emergency medical services (EMS). In Australasia, geography has been the driving force behind the development of retrieval medicine as a specialization. A number of retrieval services (e.g. Greater Sydney Area HEMS) have recognized the commonality between PHEM and retrieval medicine and have
moved towards delivering a combined model that provides both
interfacility secondary transfer and primary prehospital retrieval.
The experiences of many of these systems has helped mould the
new PHEM subspeciality within the UK.

Summary

PHEM is a challenging and exciting development within the area
of prehospital care. This book aims to provide some of the under-
pinning knowledge required for effective PHEM practice.

Further reading

IBTPHEM website: www.ibtphem.org.uk.

Figure 1.2 Prehospital emergency medicine curriculum themes (Courtesy of IBTPHEM).
CHAPTER 2

Activation and Deployment

Andrew Thurgood¹ and Matthew Boylan²

¹Mercia Accident Rescue Service (MARS), UK
²Royal Centre for Defence Medicine, University Hospitals Birmingham, Birmingham, UK

OVERVIEW

By the end of this chapter you should:

• Understand how emergency calls are handled and prioritized
• Understand the different types of dispatch
• Understand the risks and benefits of deployment by road
• Understand the risks and benefits of deployment by air.

Introduction

The first step in delivering high-quality prehospital care is the timely activation and deployment of prehospital resources. The initial aim is to get the right resource to the right patient in the right time frame. This process requires efficient call handling, robust call prioritization and intelligent tasking of resources. Prehospital practitioners may deploy to scene using a variety of different transport modalities. The choice of modality will be determined by the system in which they work and by the nature and location of the incident.

Activation of prehospital services

It is important for the prehospital practitioner to have an understanding of how emergency calls are processed and resources dispatched.

Call handling

In most developed countries there is a single emergency telephone number that members of the public may dial to contact the emergency services. The emergency number differs from country to country but is typically a three-digit number that can be easily remembered and dialled quickly, e.g. 911 in the USA, 999 in the UK and 000 in Australia. In the 1990s the European Union added 112 as the Global System for Mobile Communications (GSM)-approved common emergency telephone number.

Emergency calls from telephone and mobile phones pass to operators within designated Operator Assistance Centres (OACs) run by phone providers. Their function is to determine which emergency service is required and forward the caller details to the appropriate Police, Fire or Ambulance Emergency Control Centre (ECC). In the UK this information is passed electronically in the form of Caller Line Identification (CLI) via a system called Enhanced Information Service for Emergency Calls (EISEC). The data then appears automatically as an incident on the dispatchers’ computer-aided dispatch (CAD) screen in the ECC (Figure 2.1). While this automatic data transfer occurs, the caller is connected to a call taker at the ECC who will begin the process of call prioritization.

Call prioritization

There are a number of systems by which calls can be prioritized. The most common system used within the UK ambulance service is the Advanced Medical Priority Despatch System (AMPDS). Similar systems of Medical Priority Dispatch are in use within the USA and Australia. AMPDS uses a structured question–answer logic tree to allocate a dispatch priority: Red – Category A (immediately life threatening), Amber - Category B (urgent call), or Green – Category C (routine call). This mode of caller interrogation is known as systematized caller interrogation. AMPDS incorporates protocalized pre-arrival first aid instructions that are relayed by the call taker to the caller while they await the emergency response.
In addition, each injury and injury mechanism is allocated a unique AMPDS code for audit purposes.

Although effective in prioritizing an ambulance service response, AMPDS has been shown to lack the sensitivity and specificity required to select calls that would benefit from enhanced prehospital emergency medicine (PHEM) intervention. In order to identify these cases, an additional tier of enhanced caller interrogation and dispatch criterion is required. For maximum efficiency this tier should be delivered by active PHEM practitioners (e.g., critical care paramedics or doctors) as they are in the best position to make accurate judgements about the likely need for advanced interventions. The use of non-clinical dispatchers in this role is associated with high rates of over-triage.

The model operated by London Helicopter Emergency Medical Service (HEMS) in the UK represents current best practice for enhanced call prioritization and dispatch. A dedicated HEMS dispatch desk within the Ambulance Control Centre is manned by an operational HEMS paramedic. They are responsible for scanning all the incoming cases and identifying those that would benefit from enhanced intervention. A set of evidence-based criteria known to be associated with severe injury are used to trigger the ‘immediate dispatch’ of the helicopter or car-based team (Box 2.1). Certain other cases undergo direct caller interrogation by the paramedic to assess whether enhanced intervention would be beneficial (Box 2.2). This is termed ‘delayed dispatch’. The clinical knowledge and experience of the HEMS paramedic is critical in ensuring rapid and accurate identification and prioritization of these cases. The third form of dispatch is the crew request, which is treated as an immediate dispatch.

<table>
<thead>
<tr>
<th>Box 2.1 Immediate dispatch criteria (London HEMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall from greater than 2 floors (>20 feet)</td>
</tr>
<tr>
<td>‘One under’ (fall or jumped in front of a train)</td>
</tr>
<tr>
<td>Ejected from vehicle</td>
</tr>
<tr>
<td>Death of a same vehicle occupant</td>
</tr>
<tr>
<td>Amputation above wrist or ankle</td>
</tr>
<tr>
<td>Trapped under vehicle (not motorcycle)</td>
</tr>
<tr>
<td>Request from any other emergency service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box 2.2 Incident categories for interrogation (London HEMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shooting</td>
</tr>
<tr>
<td>Stabbing</td>
</tr>
<tr>
<td>Explosions</td>
</tr>
<tr>
<td>Road traffic collisions</td>
</tr>
<tr>
<td>Industrial accidents/incidents</td>
</tr>
<tr>
<td>Hanging</td>
</tr>
<tr>
<td>Drowning</td>
</tr>
<tr>
<td>Entrapments</td>
</tr>
<tr>
<td>Amputations</td>
</tr>
<tr>
<td>Burns/scalds</td>
</tr>
<tr>
<td>Building site accidents</td>
</tr>
<tr>
<td>Falls from height less than two floors Impalement</td>
</tr>
</tbody>
</table>

Dispatch

While the call is being prioritized by the call taker, the dispatcher is responsible for allocating an appropriate resource(s) to the incident. Most modern CAD systems have an integral automatic vehicle location system (AVLS) which will automatically populate a list of the nearest available resources. The choice of resource will depend on the location, mechanism of injury, number of patients involved and the perceived severity of injury. Most ambulance services have now moved from VHF radio to digital data transmission (e.g., Airwave in the UK) as their primary mode of communication. Incident details are sent directly to vehicle-mounted data terminals with integrated satellite navigation systems that will automatically plot the route to the incident. Alternative modes of dispatch include activation via a base telephone landline, mobile phone or pager system. The activation and dispatch process is summarized in Figure 2.2.

Deployment of prehospital services

The ambulance service may deploy its resources to the scene of an incident in a number of different ways: foot, bicycle, motorbike, car, ambulance, helicopter or fixed wing aircraft. The decision to deploy a particular asset will be determined by the distance the asset is from the incident, the accessibility by road, known congestion and the required skill set of the responders. PHEM practitioners deployed to augment the ambulance service response will usually deploy by land vehicle or by helicopter.

Figure 2.2 Overview of activation and dispatch process.
Deployment by land vehicle

Many systems deploy their prehospital practitioners by rapid response vehicle (Figure 2.3). Land-based deployment is not restricted by weather or daylight hours in the same way that helicopter deployment is. They are ideal for operations in built-up urban areas as they are not limited by the need for an appropriately sized landing site. Over short distances they also offer similar response times to helicopters because of the additional time taken by helicopters for take-off and landing.

Response vehicles must be roadworthy. A daily vehicle check is important and should include fuel and oil levels, water coolant, screen wash, electrics, lights and tyres (tread depth, inflation and damage). Medical equipment should be appropriately restrained and a lockable box available for CD storage. The vehicle should have visual and audible warning devices, as well as high-visibility markings. Drivers must be appropriately trained and insured for emergency response driving.

Activation may be via radio or mobile phone. If activation occurs while the vehicle is mobile, the driver should pull over at the next safe opportunity before further details of the incident are taken. Appropriate personal protective equipment should be donned at this point. Progression to scene should be made rapidly but safely with the full use of visible and audible warning devices. Parking at scene will usually be under the direction of the police. If the prehospital practitioner is first on scene at a road traffic accident, the fend-off position may be used to protect the incident scene (Figure 2.4). The vehicle should be positioned approximately 50 meters back from the incident and positioned to afford maximum use of rear visual devices and reflective high-visibility markings. The front wheels should be turned in a safe direction to reduce the risk of the vehicle being pushed into the incident if another vehicle collides with it. Keys should left in the ignition and the engine left running to prevent the battery draining flat. Once parked in a fend-off position, no one should return to the vehicle unless absolutely necessary.

Deployment by helicopter

In remote and rural areas, helicopters increase both the range and speed of PHEM team deployment and allow a single team to cover a large geographical area. Helicopters have also shown proven benefit in the urban setting where congestion may limit rapid deployment by road (Figure 2.5). Their use may be restricted by poor weather conditions, onset of darkness or the lack of an appropriate landing site.

Helicopter operations within Europe are regulated by the Joint Aviation Regulations Operations Specifications (JAR-OPS). Similar national regulations are in place in the USA and Australasia. JAR-OPS define a HEMS flight as a flight to facilitate emergency medical assistance, where immediate and rapid transportation is essential, by carrying either:

- medical personnel
- medical supplies (equipment, blood, organs, and drugs)
- ill or injured persons and other persons directly involved.

The HEMS designation is important as it carries with it alleviation from normal weather limits and exemption from certain Rules of
Incidents that do not meet the JAR-OPS definition of HEMS are classified as air ambulance missions and cannot employ the same exemptions.

Deployment by helicopter provides a unique bird’s-eye view of the incident scene on approach which may prove beneficial at large or major incidents. A landing site twice the diameter of the rotor blades is required and should be flat, free of debris and clear of any wires. Take-off and landing are the most hazardous periods of a HEMS flight therefore talking should be kept to a minimum during these phases unless a hazard is being noted. Once landing is complete, exit from the aircraft between the 2 and 10 o’clock position after gaining the pilots permission by a thumb up signal (Figure 2.6). This ensures avoidance of the aircrafts main hazard areas, i.e. engine exhausts and rotor blades. Care should be taken on sloping ground to avoid walking into the rotor disc by exiting downhill from the aircraft.

Tips from the field

- Use of PHEM practitioners for enhanced prioritization of emergency calls minimizes over-triage
- Always pull over safely before taking incident details or programming the sat-nav
- Always carry a set of maps as a back-up in case of sat-nav failure
- Take advantage of the bird’s-eye view of the scene afforded by helicopter deployment – assess for hazards, mechanism and casualty locations.

Further reading

CHAPTER 3

Personal Protective Equipment

Clare Bosanko1 and Matthew Boylan2

1University Hospital of North Staffordshire, Stoke-On-Trent, UK
2Royal Centre for Defence Medicine, University Hospitals Birmingham, Birmingham, UK

OVERVIEW

By the end of the chapter you should be able to:
• Identify which items of personal protective equipment (PPE) should be part of the prehospital providers kit
• Describe what features (PPE) should have
• Describe what legislation and standards exist to define PPE.

Introduction

Is it safe to approach? First aid and basic life support training always starts with the premise that the rescuer should only approach a casualty if it is safe to do so. Healthcare providers working in the prehospital environment have an obligation to treat patients and if the risk cannot be completely removed it must be mitigated. Personal protective equipment (PPE) is the term used to describe those items worn or used to reduce risk where it cannot be entirely avoided. In recent years, healthcare-associated infections and chemical, biological, radiation and nuclear (CBRN) hazards have highlighted the importance of PPE for the safety of both the patient and the practitioner.

Legislation

Many countries have legislation defining the role of PPE in the workplace and the responsibilities of employers and employees. The primary need to control hazards and reduce risks to health and safety are highlighted in all these documents. Where changes to working practices alone are insufficient to protect employees from exposure to the hazard, PPE should be provided to lessen the risk.

In the UK, PPE provision is controlled by the Health and Safety Executive in the Personal Protective Equipment at Work Regulations, 1992. These define PPE as ‘all equipment which is intended to be worn or held by a person at work and which protects him against one or more risks to his health or safety’. The regulations also govern assessment of suitability, maintenance, storage, instruction in and use of PPE. In the USA, the Occupational Health and Safety Administration publish similar guidelines (Table 3.1).

Table 3.1 International legislation pertaining to personal protective equipment provision

<table>
<thead>
<tr>
<th>Title of legislation</th>
<th>What it covers</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK HSE: Personal Protective Equipment at Work Regulations 1992</td>
<td>Responsibilities for provision of PPE</td>
</tr>
<tr>
<td>Personal Protective Equipment Regulations 2002</td>
<td>Quality assurance, CE marking</td>
</tr>
<tr>
<td>USA NFPA 1999 - 2008</td>
<td>Quality assurance</td>
</tr>
</tbody>
</table>

EEC, European Economic Community; HSE, Health and Safety Executive; NFPA, National Fire Protection Agency.

PPE for prehospital providers is covered by the generic guidance for all industries but specific details regarding the requirements are not nationally or internationally defined. In the UK, responsibility is devolved to NHS trusts, and in the USA, Emergency Medical Services Authorities for each state produce guidance documents. The US Food and Drug Administration regulates the safety and efficacy of some forms of PPE, and the UK Health and Safety Executive provides quality assurance via the CE marking system (Table 3.2).

Table 3.2 International standards relating to items of personal protective equipment

<table>
<thead>
<tr>
<th>UK/Europe</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloves</td>
<td>BS EN 455–2: 2009</td>
</tr>
<tr>
<td>Work gloves</td>
<td>NFPA 1999</td>
</tr>
<tr>
<td>High-visibility clothing</td>
<td>EN 471 89/686/EEC</td>
</tr>
<tr>
<td>Footwear</td>
<td>EN 345</td>
</tr>
<tr>
<td>Hard hat</td>
<td>EN 397 EN 443</td>
</tr>
<tr>
<td>Eye protection</td>
<td>BS EN 166: 2002</td>
</tr>
<tr>
<td>Respirator</td>
<td>EN 12941</td>
</tr>
</tbody>
</table>

The role of PPE

Prehospital providers work in an environment with risks from multiple sources; therefore, different items of personal protective equipment are required. Gloves, masks, eye protection, sleeve protectors and aprons guard against blood-borne pathogens and reduce transmission of infection to and from patients. In contrast, helmets, boots and high-visibility clothing protect the wearer from injury, e.g. at the scene of a road traffic collision (RTC).

The PPE must be designed to allow the wearer to perform the risk-related activity without limitation, but with maximum protection. Clearly, for PPE to function properly the user must be trained in how to don, wear, remove and adjust their PPE, in addition to knowledge of its limitations, how it should be stored, cared for, maintained and disposed of.

There are also a number of specialist items of PPE, used by groups of providers with unique risks.

Essential personal protective equipment for prehospital practitioners

Helmet

Prehospital practitioners should wear head protection for all RTCs involving extrication, when working at height, during civil unrest, working on industrial sites and in any other designated ‘hard hat’ area. Increasingly, helmets are certified to fire fighting standards (e.g. EN443). They should have clear labelling of the wearer’s job title and an integrated visor, the standard of which is separately regulated. Modern helmets are lightweight for comfort, with an adjustable headband and chin strap to ensure good fit (Figure 3.1).

Eye protection

Eye protection should be worn when there is a risk of injury to the eye from debris, such as during cutting glass or metal at an RTC. Eye protection also protects against the risk of infection from splashes of body fluid or blood and respiratory secretions during airway management. Goggles, protective glasses (Figure 3.2), visors and full face splash guards are all available. Eyewear should include side protection and should fit over prescription glasses if necessary.

Ear protection

Hearing protection should be considered for noisy environments, e.g. helicopter emergency medical services (HEMS), motorsports, pop concerts, etc. Ear defenders provide the best attenuation of noise but are cumbersome and may not fit with the type of helmet worn. Ear plugs are a more practical alternative and can be easily stowed in a pocket of a jump suit when not in use.

Face masks

Masks provide respiratory protection against dust and fibres in the air and also prevent splashing of blood or body fluids onto the face. Specialist masks (e.g. the FFP3 mask) can be used to reduce transmission of airborne pathogens when caring for patients with known infectious diseases such as pandemic flu or TB (Figure 3.2). Masks are single patient use and should be replaced once moist or soiled. The manufacturer’s instructions should be followed for maximum length of wear.

Clinical gloves

Clinical gloves are designed to protect the wearer from contaminants and reduce transmission of infection. They are manufactured from a range of materials including latex, nitrile and vinyl. Proteins