Contents

Preface vii
Acknowledgments ix

1. Introduction to the Hematology Laboratory 3
2. Composition of Blood 9
3. Blood Volume and Effects of Blood Loss 17
4. Blood Collection and Handling 23
5. Blood Smears and Staining 33
6. Routine Hematology Laboratory Tests 41
7. Automated Laboratory Methods and Instruments 71
8. Leukocyte Cell Types and Functions 83
9. Introduction to the Immune System 99
10. Erythrocyte Form, Function, and Indices 113
11. Erythrocyte Abnormalities 121
12. Anemias and Polycythemias 133
13. Hemostasis and Coagulation 141
14. Hematopoiesis and Bone Marrow Examination 151
15. Collection and Handling of Cytology Samples 159
Glossary 171
Recommended Reading 177
Index 179

This book has a companion website providing review questions, images from the book, and additional images only available online at www.wiley.com/go/voigt.
Preface

The major reason for the preparation of this second edition is to introduce the veterinary technology student to new technology, equipment, and test techniques that are becoming more available in the field of veterinary hematology. The intent of the new edition remains the same as in the previous edition. It is an introductory overview of veterinary hematology and a guide for the student to learn the fundamental concepts of collecting, handling, preparing, and testing blood and other samples in the hematology laboratory. It is not intended as a diagnostic aid, differential disease discussion, or complete atlas of blood cells.

Although changes have been made throughout the text, the basic format of the first edition has been retained for the benefit of those currently using the book in the classroom. The major change is the addition of a new chapter, Automated Laboratory Methods and Instruments, by Dr. S. L. Swist. Since publication of the first edition, automated analyzers specifically designed for the veterinary profession have become more available, affordable, accurate, and easier to operate and are more commonly seen in veterinary clinics. This new chapter describes the various types of automatic analyzers, the basics behind their operating systems, and compares the benefits and drawbacks of their use. Dr. Swist has also added her expertise to other areas of the text.

Other changes made to the new edition include a “Key Concept” area at the beginning of each chapter to inform the reader of the major concepts being presented. Many color photographs and photomicrographs have been added to help new students recognize blood cells, techniques, and equipment of the hematology laboratory. Whenever a new term is used in the text, it is accompanied by a definition or recognizable synonym. In addition, a glossary of terms has been added at the end of the chapters with a brief description or definition of terms.

Although the metric system is the standard throughout the medical field, many students accustomed to the American system have difficulty picturing metric units. In many places in the text where metric units are used that relate to animal size and weight, or blood volumes, the approximate US customary units are also given.

Since the original publication of this book, student use of the Internet has increased markedly and an accompanying website has been prepared by the publishers with further information, photographs, and study questions from the authors.
About the Review Questions

Review questions are provided at the end of each chapter and on the website. These questions are provided to stimulate the student to review the material in the chapter, and in any lecture or laboratory notes, in order to better understand the topic being presented by personal study or discussion groups with fellow students. Since the chapters themselves (with associated subheadings, figures, and diagrams) are the answers, a formalized list of answers is not provided. As the title of the book states, the concepts and techniques of hematology and how blood samples are tested are more important than the individual’s ability to pick a word off a list of possible answers.
Acknowledgments

The authors would like to thank the personnel from the following veterinary clinics for their help in the preparation of this text:

Neel Veterinary Hospital (Oklahoma City, OK), Tina Neel, D.V.M., Karen Anderson, D.V.M., Misty Fox, C.V.T., and Kat Yeatman.

Westfield Animal Hospital (Westfield, NJ), Ronald Swist, D.V.M. and Margaret Swist

The staff at the Wyoming State Veterinary Laboratory (Laramie, WY), Mariah Hall, Katherine Bardsley, Victoria Creager, Kara Robbins, Hank Edwards, Tracy Dunn, and Jessica Prescott
Chapter 1

Introduction to the Hematology Laboratory

Key Concepts

In the hematology laboratory, manual and automated test techniques are used in the study of blood and other body cells and fluids.

Blood tests obtained in the laboratory are used by the clinician for screening the health status of an animal or in making a diagnosis of a disease condition.

Quality control of laboratory procedures is essential to ensure that test results reflect the true status of the patient.
Hematology is the study of blood and the tissues that form, store, or circulate blood cells. Examination of the blood is a very common and useful procedure for several reasons. Blood bathes all the other cells of the body carrying nutrients, oxygen, and waste products, and is exposed to almost all metabolic processes of these cells, often reflecting any alteration from normal function. Blood is essential in water and electrolyte balance, temperature control, and the functioning of the immune system, which is the defense mechanism of the body. Obtaining, studying, and testing a blood sample is a relatively easy way of gathering information on many parts of the body.

Even though the term “hematology” literally means “the study of blood,” many of the techniques of collection, sample preparation, and cell identifications learned by the technician can be applied to other regions of the body, such as joint fluid, cerebrospinal fluid, thoracic and abdominal fluids, aspirants from abnormal growths or swellings, and cells collected from mucous membranes (e.g., the oral cavity, trachea, or vagina).

Veterinary technicians should expect to encounter a wide range of laboratory facilities and instrumentation in various veterinary clinics. This can vary from a separate room fully equipped with the latest automated analyzers to a small area on one counter with a microscope, slides, and stains in smaller clinics (Figs. 1.1, 1.2, and 1.3). Even if the clinic sends out all of its hematology tests to a commercial lab, or to the local human hospital, the technician is still usually responsible for correctly collecting, preparing, and mailing or delivering the sample as well as reporting and recording the results.

Hematology is one of several specialties in the field of clinical pathology, a field that encompasses any manual or automated laboratory procedure used on the animal to aid in diagnosing a clinical condition. Clinical chemistry, parasitology, and urinalysis

Figure 1.1 Some clinics may have limited laboratory equipment and may routinely send samples to hospital or commercial laboratories.
Figure 1.2 Technicians will find clinics with an area dedicated to laboratory work with some of the latest automated equipment.

Figure 1.3 Larger veterinary hospitals often have a complete laboratory room that may be staffed by one or more full-time laboratory technicians.
are additional classical aspects of clinical pathology. Other diagnostic tools used by the veterinarian that qualify as clinical pathology under this definition are microbiology, diagnostic imaging (radiology and ultrasound), and the microscopic interpretation of biopsies (tissue samples).

Uses and Benefits of Hematology Results

The most common use of the hematology laboratory is to screen the general health of an animal and to assess its overall ability to transport oxygen and defend against infectious agents. Hematology results provided by the technician are also used by the veterinarian as tools that, when combined with the history, physical examination, and other laboratory findings, help to form a diagnosis. Although occasionally a blood test will yield a definitive diagnosis (e.g., blood parasites), most laboratory results should be viewed as large or small pieces of a diagnostic puzzle that must be assembled.

Hematology results may also indicate a course of treatment for the animal. An example of this is the use of hematology to differentiate between anemia caused by internal hemorrhage and that caused by bone marrow depression. Another example is finding specific infectious organisms within blood cells. Laboratory findings may also suggest other beneficial tests, such as a bone marrow biopsy.

Serial sampling, which is the collection and testing of a series of blood samples over a period of time (hours, days, or even weeks), can demonstrate the severity of a disease process and the ability of the animal to respond. By combining these results with clinical evaluation, the veterinarian will be better able to understand the disease process and make a prognosis for the patient.

It has been said that a clinician who relies entirely on laboratory results to make a diagnosis is probably inexperienced and a clinician who claims not to need a laboratory is uninformed.

Limitations of Laboratory Findings

The validity and usefulness of both manual and automated laboratory results can be influenced by many factors that should be understood by the technician, so they may be eliminated or minimized as much as possible. Technical errors associated with individual tests are discussed in later chapters, but those of general laboratory procedures are addressed in this section.

The first potential problems arise in the collection and handling of the sample. The blood sample, or any other tissue sample, should not be subjected to traumatic physical forces, such as being forced rapidly through a small needle or violently shaken, or to extreme temperatures of heating or freezing. Care must be taken to avoid contaminating the sample with foreign material such as dirt, infectious agents, chemicals, or even water. Test results are always more meaningful with fresh samples, but when this is not possible samples should be refrigerated since blood, like other organic material, begins to degenerate after removal from the body. A more extensive list of sample handling errors is found in Chapter 4.
Quality control, or more accurately “quality assurance,” should be considered a laboratory commitment, rather than a laboratory problem. Whether the test procedures are performed manually, carried out by automated equipment, or even sent to a local hospital or a commercial or state laboratory, it is essential to know that the results reflect the patient’s status and not a difference in machines, technicians, or techniques.

Test results often vary with different test conditions, and the “normal” animal may routinely test higher or lower than published “normal” ranges. Commercial and state laboratories usually provide their established reference values for each test being performed on each species with the laboratory report. Clinical laboratories should establish reference values for any manual or automated test procedure performed in the clinic. For reference values to be statistically valid, a large number of tests must be performed, which may be difficult in a small clinical setting. By keeping a record of all tests run (and data on the patients), plus checking medical records for other similar test results, clinics can establish a database to compare with published values. At a minimum, tests on several known normal or control samples should be run for each procedure by each technician who will be performing the tests. These control samples can also be sent to the outside laboratory being routinely used and the results compared with the in-house results. Some slight variation in results should be expected, but they should fall within the established range for that procedure. Paired samples, half sent to an outside source and half run in-house for comparison, can also be quite instructive. Running such tests will ensure that current test procedures and results are reliable, or the tests can be used to establish reference readings for a new technique, technician, or a piece of equipment. The frequency of checking in-house tests will vary with the type and a number of tests performed and often varies from daily to weekly to monthly but should never be overlooked.

Another area of quality control that must not be overlooked is the variation in skill levels, accuracy, and care of the technician, especially in manual procedures. While the decision about which laboratory test to perform in the clinic or hospital and which to send out depends a great deal on the cost-effectiveness and timely availability of outside services, the number of tests being performed should also be considered. Routinely, if a test is not being done at least a few times per week, it does not provide the laboratory personnel with adequate opportunities to become skilled at, and comfortable with, the procedure or the equipment.

The veterinary technician is often responsible for collecting, preparing, and examining the sample and reporting the results. All counts or measurements should be done on a “blind” basis, that is, with no comparisons to normals or expectations of changes that could lead to bias in reported results. Since the technician may be the only person to actually see the sample, it is imperative that all observations, whether normal or abnormal, be recorded. Often the “comments” section of a lab report is as informative as the recorded results.

Laboratory Safety

Although most diseases of domestic animals routinely handled by the technician are not communicable to humans (zoonotic), the ones that tend to be quite severe, possibly fatal. All biological samples, whether blood or other body tissues and fluids, should be handled as if potentially infectious. Routine handwashing and disinfection of glassware and
A laboratory smock should be worn at all times, and protective gloves, eyewear, and confining of long hair are important when working around potentially infectious or hazardous conditions.

Working areas is essential. There should be no drinking, eating, use of tobacco products, or other hand-to-mouth activities, nor any storage of food or beverages in the laboratory area. A laboratory coat should be worn at all times, long hair confined (especially around Bunsen burners and centrifuges!), and sandals, open-toed shoes, or canvas shoes should be avoided. Laboratory gloves should be worn whenever potentially infectious samples are being handled (Fig. 1.4). All disposable pointed or cutting instruments (e.g., needles and scalpel blades) should be placed in an appropriate “sharps” container, such as an empty gallon jug or commercial container, prior to disposal. Laboratory safety policies should not only be posted in the laboratory area but also be read and followed.

Review Questions

1. What is the major function of the hematology laboratory?
2. Compare the benefits and limitations of the hematology laboratory.
3. What is meant by the term “quality control” in relation to reporting test results?
4. Why is laboratory safety important to the hematology technician?