Multi-storey Precast Concrete Framed Structures

Kim S. Elliott
B Tech, PhD, CEng, MICE

Colin K. Jolly
MSc, PhD, CEng, MICE, FIstructE
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Notation</td>
<td>xi</td>
</tr>
<tr>
<td>1 Precast Concepts, History and Design Philosophy</td>
<td>1</td>
</tr>
<tr>
<td>1.1 A Historical Note on the Development of Precast Frames</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The Scope for Prefabricated Buildings</td>
<td>11</td>
</tr>
<tr>
<td>1.2.1 Modularisation and standardisation</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Current Attitudes towards Precast Concrete Structures</td>
<td>17</td>
</tr>
<tr>
<td>1.4 Recent Trends in Design, and a New Definition for Precast Concrete</td>
<td>21</td>
</tr>
<tr>
<td>1.5 Precast Superstructure Simply Explained</td>
<td>23</td>
</tr>
<tr>
<td>1.5.1 Differences in precast and cast-in situ concrete structures</td>
<td>23</td>
</tr>
<tr>
<td>1.5.2 Structural stability</td>
<td>26</td>
</tr>
<tr>
<td>1.5.3 Floor plate action</td>
<td>29</td>
</tr>
<tr>
<td>1.5.4 Connections and joints</td>
<td>30</td>
</tr>
<tr>
<td>1.5.5 Foundations</td>
<td>32</td>
</tr>
<tr>
<td>1.6 Precast Design Concepts</td>
<td>32</td>
</tr>
<tr>
<td>1.6.1 Devising a precast solution</td>
<td>32</td>
</tr>
<tr>
<td>1.6.2 Construction methods</td>
<td>36</td>
</tr>
<tr>
<td>2 Procurement and Documentation</td>
<td>43</td>
</tr>
<tr>
<td>2.1 Initial Considerations for the Design Team</td>
<td>43</td>
</tr>
<tr>
<td>2.2 Design Procurement</td>
<td>45</td>
</tr>
<tr>
<td>2.2.1 Definitions</td>
<td>45</td>
</tr>
<tr>
<td>2.2.2 Responsibilities</td>
<td>45</td>
</tr>
<tr>
<td>2.2.3 Routes to procurement</td>
<td>46</td>
</tr>
<tr>
<td>2.2.4 Design office practice</td>
<td>46</td>
</tr>
<tr>
<td>2.2.5 Project design stages</td>
<td>48</td>
</tr>
<tr>
<td>2.2.6 Structural design calculations</td>
<td>49</td>
</tr>
<tr>
<td>2.2.7 Layout drawings</td>
<td>50</td>
</tr>
<tr>
<td>2.2.8 Component schedules and the engineer’s instructions to factory and site</td>
<td>54</td>
</tr>
<tr>
<td>2.3 Construction Matters</td>
<td>58</td>
</tr>
<tr>
<td>2.3.1 Design implications</td>
<td>58</td>
</tr>
<tr>
<td>2.4 Codes of Practice, Design Manuals, Textbooks and Technical Literature</td>
<td>60</td>
</tr>
<tr>
<td>2.4.1 Codes and Building Regulations</td>
<td>60</td>
</tr>
<tr>
<td>2.4.2 Non-mandatory design documents</td>
<td>64</td>
</tr>
<tr>
<td>2.4.3 Other literature on precast structures</td>
<td>67</td>
</tr>
<tr>
<td>2.5 Definitions</td>
<td>68</td>
</tr>
<tr>
<td>2.5.1 General structural definitions</td>
<td>68</td>
</tr>
<tr>
<td>2.5.2 Components</td>
<td>68</td>
</tr>
<tr>
<td>2.5.3 Connections and jointing materials</td>
<td>69</td>
</tr>
</tbody>
</table>
3 Architectural and Framing Considerations
 3.1 Frame and Component Selection 71
 3.2 Component Selection 75
 3.2.1 General principles 75
 3.2.2 Roof and floor slabs 76
 3.2.3 Staircases 96
 3.2.4 Roof and floor beams 101
 3.2.5 Beam-to-column connections 106
 3.2.6 Columns 107
 3.2.7 Bracing walls 111
 3.3 Special Features 113
 3.3.1 Hybrid and mixed construction 113
 3.3.2 Precast–in situ concrete structures 118
 3.3.3 Structural steelwork and precast concrete in skeletal frames 123
 3.3.4 Precast concrete with structural and glue-laminated timber 127
 3.3.5 Precast concrete–masonry structures 131
 3.3.6 The future of mixed construction 131
 3.4 Balconies 136

4 Design of Skeletal Structures 145
 4.1 Basis for the Design 145
 4.2 Materials 148
 4.2.1 Concrete 149
 4.2.2 Concrete admixtures 150
 4.2.3 Reinforcement 151
 4.2.4 Prestressing steel 152
 4.2.5 Structural steel and bolts 152
 4.2.6 Non-cementitious materials 153
 4.3 Structural Design 153
 4.3.1 Terminology 153
 4.3.2(a) Design methods 154
 4.3.2(b) Reduced partial safety factors for precast design 157
 4.3.3 Design of beams 162
 4.3.4 Non-composite reinforced concrete beams 163
 4.3.5 Beam boot design 167
 4.3.6 Upstand design 172
 4.3.7 Non-composite prestressed beams 183
 4.3.8 Beam end shear design 198
 4.3.9 Recessed beam ends 199
 4.3.10 Design methods for end shear 205
 4.3.11 Hanging shear cages for wide beams 211
 4.3.12 Prefabricated shear boxes 217
 4.4 Columns Subjected to Gravity Loads 226
 4.4.1 General design 226
 4.4.2 Columns in braced structures 230
 4.4.3 Columns in unbraced structures 230
 4.4.4 Columns in partially braced structures 230
 4.5 Staircases 237
 4.5.1 Reinforced concrete staircases 237
 4.5.2 Prestressed concrete staircases 238
 4.5.3 Staircase and landing end reinforcement 239
5 Design of Precast Floors Used in Precast Frames

5.1 Flooring Options 245

5.2 Hollow-core Slabs 249
 5.2.1 General 249
 5.2.2 Design 253
 5.2.3 Design of cross section 257
 5.2.4 Web thickness 257
 5.2.5 Edge profiles 258
 5.2.6 Reinforcement 260
 5.2.7 Lateral load distribution 260
 5.2.8 Flexural capacity 267
 5.2.9 Precamber and deflections 272
 5.2.10 Shear capacity 275
 5.2.11 Anchorage and bond development lengths 288
 5.2.12 Slippage of tendons 291
 5.2.13 Calculation of crack width 295
 5.2.14 Cantilever design using hollow-core slabs 298
 5.2.15 Bearing capacity 300
 5.2.16 Wet cast hollow-core flooring 301
 5.2.17 Summary examples of product design data 305

5.3 Double-Tee Slabs 309
 5.3.1 General 309
 5.3.2 Design 312
 5.3.3 Flexural and shear capacity, precamber and deflections 314
 5.3.4 Special design situations 315

5.4 Composite Plank Floor 315
 5.4.1 General 315
 5.4.2 Design 316
 5.4.3 Voided composite slab 320

5.5 Precast Beam-and-Plank Flooring 324
 5.5.1 General 324
 5.5.2 Design of prestressed beams in the beam-and-plank flooring system 325

5.6 Design Calculations 325
 5.6.1 Hollow-core unit 325

6 Composite Construction 335

6.1 Introduction 335

6.2 Texture of Precast Concrete Surfaces 339
 6.2.1 Classification of surface textures 339
 6.2.2 Surface treatment and roughness 340
 6.2.3 Effects of surface preparation 341

6.3 Calculation of Stresses at the Interface 344

6.4 Losses and Differential Shrinkage Effects 346
 6.4.1 Losses in prestressed composite sections 346
 6.4.2 Design method for differential shrinkage 347
 6.4.3 Cracking in the precast and in situ concrete 351

6.5 Composite Floors 352
 6.5.1 General considerations 352
 6.5.2 Flexural analysis for prestressed concrete elements 354
 6.5.3 Propping 356
 6.5.4 Design calculations 358
 6.5.5 Ultimate limit state of shear 360
6.6 Economic Comparison of Composite and Non-composite Hollow-core Floors 364
6.7 Composite Beams 365
6.7.1 Flexural design 365
6.7.2 Propping 370
6.7.3 Horizontal interface shear 370
6.7.4 Shear check 370
6.7.5 Deflections 371

7 Design of Connections and Joints 375
7.1 Development of Connections 375
7.2 Design Brief 377
7.3 Joints and Connections 383
7.4 Criteria for Joints and Connections 384
7.4.1 Design criteria 384
7.5 Types of Joint 386
7.5.1 Compression joints 386
7.5.2 Tensile joints 395
7.5.3 Shear joints 396
7.5.4 Flexural and torsional joints 404
7.6 Bearings and Bearing Stresses 405
7.6.1 Average bearing stresses 405
7.6.2 Localised bearing stresses 412
7.7 Connections 413
7.7.1 Pinned connections 413
7.7.2 Moment-resisting connections 413
7.8 Design of Specific Connections in Skeletal Frames 425
7.8.1 Floor slab to beam connections 425
7.8.2 Connections at supports 426
7.8.3 Connections at longitudinal joints 430
7.8.4 Floor connections at load-bearing walls – load-bearing components 431
7.9 Beam-to-Column and Beam-to-Wall Connections 435
7.9.1 Definitions for different assemblies 435
7.9.2 Connections to continuous columns using hidden steel inserts 436
7.9.3 Beam-to-column inserts 436
7.10 Column Insert Design 438
7.10.1 General considerations 438
7.10.2 Single-sided wide-section insert connections 442
7.10.3 Addition of welded reinforcement to wide-section inserts 453
7.10.4 Double-sided wide-section inserts 457
7.10.5 Three- and four-way wide-section connections 462
7.10.6 Narrow-plate column inserts 467
7.10.7 Cast-in sockets 468
7.10.8 Bolts in sleeves 468
7.11 Connections to Columns on Concrete Ledges 470
7.11.1 Corbels 470
7.11.2 Haunched columns 485
7.11.3 Connections to the tops of columns 491
7.12 Beam-to-Beam Connections 493
7.13 Column Splices 503
7.13.1 Types of splice 503
7.13.2 Column-to-column splices 504
7.13.3 Coupled joint splice 505
7.13.4 Welded plate splice 507
7.13.5 Grouted sleeve splice 509
7.13.6 Welded lap splice 509
7.13.7 Grouted sleeve coupler splice 510
7.13.8 Steel shoe splices 510
7.13.9 Columns spliced onto beams or other precast components 516
7.14 Column Base Connections 517
7.14.1 Columns in pockets 518
7.14.2 Columns on base plates 535
7.14.3 Columns on grouted sleeves 545

8 Designing for Horizontal Load 547
8.1 Introduction 547
8.2 Distribution of Horizontal Load 549
8.3 Horizontal Diaphragm Action in Precast Concrete Floors without Structural Toppings 558
8.3.1 Background 558
8.3.2 Details 559
8.3.3 Structural models for diaphragm action 561
8.3.4 Diaphragm reinforcement 567
8.3.5 Design by testing 570
8.3.6 Finite element analysis of the floor plate 574
8.4 Diaphragm Action in Composite Floors with Structural Toppings 576
8.5 Horizontal Forces due to Volumetric Changes in Precast Concrete 577
8.6 Vertical Load Transfer 581
8.6.1 Introduction 581
8.6.2 Unbraced structures 583
8.6.3 Deep spandrel beams in unbraced structures 586
8.6.4 Braced structures 586
8.6.5 Uni-directionally braced structures 590
8.6.6 Partially braced structures 590
8.7 Methods of Bracing Structures 593
8.7.1 Infill shear walls 593
8.7.2 Design methods for infill concrete walls 598
8.7.3 Design method for brickwork infill panels 603
8.7.4 Infill walls without beam framing elements 605
8.7.5 Use of slip-formed or extruded hollow-core walls as infill walls 606
8.7.6 Cantilever shear walls and shear boxes 614
8.7.7 Hollow-core cantilever shear walls 616
8.7.8 Solid cantilever shear walls 620

9 Structural Integrity and the Design for Accidental Loading 627
9.1 Precast Frame Integrity – The Vital Issue 627
9.2 Ductile Frame Design 628
9.2.1 Structural continuity in precast skeletal frames 628
9.3 Background to the Present Requirements 634
9.4 Categorisation of Buildings 643
9.5 The Fully Tied Solution 643
9.5.1 Horizontal ties 643
9.5.2 Calculation of tie forces 649
9.5.3 Horizontal ties to columns 654
9.5.4 Ties at balconies 659
9.5.5 Vertical ties 659
9.6 Catenary Systems in Precast Construction 662

10 Site Practice and Temporary Stability 667
10.1 The Effects of Construction Techniques on Design 667
10.2 Designing for Pitching and Lifting 672
 10.2.1 Early lifting strengths 672
 10.2.2 Lifting points 672
 10.2.3 Handling 685
 10.2.4 Cracks 685
10.3 Temporary Frame Stability 690
 10.3.1 Propping 690
 10.3.2 The effect of erection sequence 691
 10.3.3 Special consideration for braced frames 692
 10.3.4 Special considerations for unbraced frames 694
 10.3.5 Temporary loads 696
10.4 On-Site Connections 697
 10.4.1 Effect of fixing types 697
 10.4.2 Strength and maturity of connections 699
10.5 Erection Procedure 699
 10.5.1 Site preparation 699
 10.5.2 Erection of precast superstructure 700
10.6 In situ Concrete 709
 10.6.1 General specification 709
 10.6.2 Concrete screeds and joint infill in floors 711
 10.6.3 Grouting 712
10.7 Handover 714

References 715
Index 729
Of all the major forms of multi-storey building construction, structural precast concrete is perhaps understood by the fewest practitioners. This is a significant ‘blind spot’ in that part of the building profession associated with the design and construction of large or small multi-storey precast and prestressed concrete frames. This is due mainly to two particular factors:

- The notion of using a modular form of construction, such as precast concrete, is not widely taught at undergraduate level because it is thought of as being too restrictive in the wider application of theory and design instruction.
- Precast concrete design is usually carried out in-house by the small number of specialist engineers employed by the precast manufacturing companies.

Consequently, the trainee structural designer is rarely exposed to the virtues of using precast concrete in this way. Opportunities to study the basic concepts adopted in the design, manufacturing and site erection stages are not often made available to the vast majority of trainees.

Even where precast concrete is accepted as a viable alternative form of construction to e.g. steelwork for medium to high-rise structures, or to insitu concrete for some of the more complex shaped buildings, or to masonry for low-rise work, it is often considered only at a late stage in the planning process. In these situations, precast concrete is then often restricted to the substitution of components carrying their own locally-induced stresses. The economic advantage of the precast components also carrying global stresses is lost in the urgency to commence construction. Indeed, precast component design has long been considered as having a secondary role to the main structural work. Only more recently have precast designers been challenged to validate the fundamental principles they are using, and to give clients confidence in precast concrete design solutions for entire structures.

To meet ever-increasing building specifications, precast manufacturing companies have considerably refined the design of their product. They have formed highly effective product associations dealing with not only the marketing and manufacturing of the product, but also with technical matters. These include common design solutions, research initiatives, education, unified design approaches, and, importantly, the encouragement of a wider appreciation of precast structures in the professional design office. Even so, the structural and architectural complexity of some of the more recent precast frames has widened the gap between precast designers and the rest of the profession. The latter have limited sources for guidance on how the former are working. Satisfying codes of practice and the building regulations plays only a minor role in the total package; there is so much more, as this book shows.

Nowadays, the use of precast reinforced and prestressed concrete for multi-storey framed buildings is widely regarded as an economic, structurally sound and architecturally versatile building method. Design concepts have evolved to satisfy a wide range of commercial and industrial building needs. ‘Precast concrete frames’ is a term which is now synonymous with high quality, strength, stability, durability and robustness. Design is carried out to the highest standard of exactness within the concrete industry and yet the knowhow, for the reasons given above, remains essentially within the precast industry itself.

Precast concrete buildings do not behave in the same way as cast-in situ ones. The components which make up the completed precast structure are subjected to different forces and movements from the concrete in the monolithic structure. It is necessary to understand where these physical effects come from, where they go to, and how they are transferred through the structure.

Consequently, this book aims to disseminate understanding of the disparate procedures involved in precast structural design, from drawing office practice to explaining the reasons for some of the more
inherent operations performed by precast contractors on site. The principal focus is upon skeletal-frame type structures, the most extensively used form of precast structural concrete. They are defined as frameworks consisting essentially of beams, columns, slabs and a small number of shear walls.

From the structural and architectural viewpoints, skeletal frames are the most demanding of all precast structures. They contain the smallest quantity of structural concrete per unit volume. The precast components can be coordinated into the architectural façade, both internally and externally, to meet the social, economic and ecological demands that are now required. Ever greater accuracy, quality control, and on-site construction efficiency are being demanded and achieved. The construction industry is turning to high-specification prefabricated concrete for its advancement, using ‘factory engineered’ precasting techniques.

The chapters in this book have been arranged so that different parts of the design process can be either isolated (for example in the cases of precast flooring, or of connections), without the reader necessarily referring to the overall frame design, or read sequentially to realise the entire design. Chapters 1 to 3 present an overview of the subject in a non-technical way. Chapters 4 to 9 describe, in detail, the design procedures that would be carried out in a precast manufacturing company’s design office. Chapter 10 describes the relevant site construction methods. Numerous examples have been used to demonstrate the application of design rules, many of which are not code-dependent.

There are many aspects to the design of precast skeletal frames that have evolved through the natural development of precast frame design since the 1950s. One aim of this book is to update and coordinate this information for the future. Historically, the precast concrete industry considered many of its design techniques commercially sensitive, particularly those for connector design, and was consequently criticised by developers and consultants. More information is now freely available since the expiry of many patents of ideas. One of the main purposes of the first edition was to bring together in a coherent manner, for the benefit of everyone, the widely varied design methods used in the industry. The second edition aims to extend that process in the context of continually developing technology and the introduction of Europe-wide design requirements embodied in the Eurocodes. It also demonstrates the trend towards greater, often fully serviced, spatial precast components.

Precast concrete designs are not entirely code-dependent, but the primary recommendations are in accordance with Eurocode 2 (BS EN 1992-1-1) and its predecessor BS 8110. Where the design procedures from the two codes differ, they are explained. Where major differences occur, or accumulate in design examples, the text is presented in two parallel columns with the Eurocode version in the left column and the BS 8110 text in the right column. When minor textual differences occur for the application of the two codes, Eurocode 2 forms the basic text, with the alternative BS text within braces or curly brackets thus: {to BS 8110}. It may help the reader to know that the authors have retained braces exclusively for this purpose, leaving the use of round brackets for the two contextually differentiable functions of parenthesis or mathematical grouping, and square brackets for references.

The combination of a broad overview, background research, and detailed analysis, the references to the familiar British Standards and the new Eurocodes, and an extensive range of illustrations together combine to offer a valuable resource for both undergraduate and practising engineers in the field of precast concrete.

The authors are indebted to the following individuals and companies for their personal assistance and corporate help in the preparation of this book: Beresford Flooring Ltd (Derby, UK), Bison Manufacturing (Swadlincote, UK), British Precast Concrete Federation and Precast Flooring Federation (Leicester, UK), CERIB (Epernon, France), Composites Ltd (formerly Composite Structures, Eastleigh, UK), Consmit Consulting Engineers (Rijswijk, Netherlands), The Concrete Centre (formerly British Cement Association, Camberley, UK), Creagh Concrete (Antrim, UK), Ergon (formerly Partek, Lier, Belgium), Andrew T. Curd & Partners (USA), Federation International du Beton (fib), Gruppo Centro Nord (Cerano, Italy), Hume Industries Berhad (Malaysia), The New Civil Engineer (London), Peikko Finland Oy (Lahti, Finland), Precast Concrete Structures Ltd (Gloucester, UK), SCC Ltd (Stockport, UK), Spenncon AS (Sandvika, Norway), Spiroll Precast Services Ltd (Derby, UK), Strängbetong AB (Stockholm, Sweden), T&A Prefabricados (Igarrasu, Brazil), Tarmac Building Products Ltd (Ettingshall, UK), Trent Concrete Ltd (Nottingham, UK), University of California (San Diego, USA), Waycon (Plymouth, UK) and Mr Arnold van Acker (fib Commission member).
Latin upper-case letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Accidental action</td>
</tr>
<tr>
<td>Ab</td>
<td>Cross-sectional area of bolts</td>
</tr>
<tr>
<td>Abld</td>
<td>Area of bursting reinforcement</td>
</tr>
<tr>
<td>Ac</td>
<td>Cross-sectional area of concrete</td>
</tr>
<tr>
<td>Ac'</td>
<td>Gross cross-sectional area of hollow-core slabs</td>
</tr>
<tr>
<td>Ac,(net)</td>
<td>Net cross-sectional area of hollow-core slabs</td>
</tr>
<tr>
<td>Ad</td>
<td>Area of diagonal reinforcement</td>
</tr>
<tr>
<td>Aj</td>
<td>Cross-sectional area of flange</td>
</tr>
<tr>
<td>Ahd</td>
<td>Area of diaphragm reinforcement</td>
</tr>
<tr>
<td>Ai</td>
<td>Contact area in castellated joint</td>
</tr>
<tr>
<td>Ap, Apb</td>
<td>Area of a prestressing tendon or tendons</td>
</tr>
<tr>
<td>Ai'</td>
<td>Cross-sectional area of tension reinforcement</td>
</tr>
<tr>
<td>Ai''</td>
<td>Area of compression reinforcement</td>
</tr>
<tr>
<td>Ai''</td>
<td>Area of longitudinal reinforcement in top of boot of beam</td>
</tr>
<tr>
<td>At</td>
<td>Total area of reinforcement in column</td>
</tr>
<tr>
<td>Abh</td>
<td>Area of horizontal reinforcement</td>
</tr>
<tr>
<td>Adv</td>
<td>Area of horizontal punching shear reinforcement</td>
</tr>
<tr>
<td>As,min</td>
<td>Minimum cross-sectional area of reinforcement</td>
</tr>
<tr>
<td>Av</td>
<td>Area of shear reinforcement</td>
</tr>
<tr>
<td>Aw</td>
<td>Cross-sectional area of shear reinforcement; area of reinforcing bars welded to plate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Breadth of void in slab; breadth of building; breadth of foundation</td>
</tr>
<tr>
<td>C</td>
<td>Compressive force</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of mandrel; depth of pocket in foundation; depth of floor diaphragm; depth of hcu</td>
</tr>
<tr>
<td>DEd</td>
<td>Fatigue damage factor</td>
</tr>
<tr>
<td>E</td>
<td>Effect of action; Young’s modulus of elasticity</td>
</tr>
<tr>
<td>E'</td>
<td>Equivalent Young’s modulus in precast in situ joint</td>
</tr>
<tr>
<td>Ec</td>
<td>Tangent modulus of elasticity of normal weight concrete at a stress of $\sigma_c = 0$</td>
</tr>
<tr>
<td>Ec'</td>
<td>Young’s modulus of in situ concrete</td>
</tr>
<tr>
<td>Ec(28)</td>
<td>Tangent modulus of elasticity of normal weight concrete at 28 days</td>
</tr>
<tr>
<td>Ec,eff</td>
<td>Effective modulus of elasticity of concrete</td>
</tr>
<tr>
<td>Estd</td>
<td>Design value of modulus of elasticity of concrete</td>
</tr>
<tr>
<td>Etr</td>
<td>Young’s modulus of concrete at transfer</td>
</tr>
<tr>
<td>Ect</td>
<td>Secant modulus of elasticity of concrete</td>
</tr>
<tr>
<td>Ec(0)</td>
<td>Tangent modulus of elasticity of normal weight concrete at a stress of $\sigma_c = 0$</td>
</tr>
<tr>
<td>Ec(t)</td>
<td>Tangent modulus of elasticity of normal weight concrete at time t</td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>E_i</td>
<td>Young’s modulus of infill concrete</td>
</tr>
<tr>
<td>E_p</td>
<td>Design value of modulus of elasticity of prestressing steel</td>
</tr>
<tr>
<td>E_s</td>
<td>Design value of modulus of elasticity of reinforcing steel</td>
</tr>
<tr>
<td>EI</td>
<td>Bending stiffness</td>
</tr>
<tr>
<td>EQU</td>
<td>Static equilibrium</td>
</tr>
<tr>
<td>F</td>
<td>Action; force</td>
</tr>
<tr>
<td>F_{bt}</td>
<td>Ultimate tensile force in bars at start of bends</td>
</tr>
<tr>
<td>F_c</td>
<td>Compressive force in concrete</td>
</tr>
<tr>
<td>F_{cr}</td>
<td>Ultimate compressive resistance force</td>
</tr>
<tr>
<td>F_d</td>
<td>Design value of an action; tensile force in diagonal reinforcing bars</td>
</tr>
<tr>
<td>F_h</td>
<td>Tensile force in horizontal reinforcing bars</td>
</tr>
<tr>
<td>F_k</td>
<td>Characteristic value of an action</td>
</tr>
<tr>
<td>F_i</td>
<td>Tensile force in reinforcing bars</td>
</tr>
<tr>
<td>F_i'</td>
<td>Notional tensile force in stability ties</td>
</tr>
<tr>
<td>F_{ir}</td>
<td>Ultimate tensile resistance force</td>
</tr>
<tr>
<td>F_s</td>
<td>Shear force to one side of interface (composite construction)</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus</td>
</tr>
<tr>
<td>G_k</td>
<td>Characteristic permanent action</td>
</tr>
<tr>
<td>H</td>
<td>Total height of building; length of foundation; horizontal force</td>
</tr>
<tr>
<td>H_{bt}</td>
<td>Bursting force</td>
</tr>
<tr>
<td>H_s</td>
<td>Horizontal resistance of infill wall</td>
</tr>
<tr>
<td>I</td>
<td>Second moment of area of concrete section</td>
</tr>
<tr>
<td>I_c</td>
<td>Transformed second moment of area of composite section</td>
</tr>
<tr>
<td>I_{co}</td>
<td>Compound second moment of area</td>
</tr>
<tr>
<td>K</td>
<td>Stress factor $M/f_{ck b} d^2$; shrinkage factor</td>
</tr>
<tr>
<td>K_b</td>
<td>Flexural stiffness of connections between members</td>
</tr>
<tr>
<td>K_i</td>
<td>Shear stiffness of connections between members</td>
</tr>
<tr>
<td>K_t</td>
<td>Bond length parameter</td>
</tr>
<tr>
<td>L</td>
<td>Length; span; length of void in slab; length of building base plate overhang distance</td>
</tr>
<tr>
<td>L'</td>
<td>Clear opening between columns; length of wall</td>
</tr>
<tr>
<td>L_e</td>
<td>Effective length</td>
</tr>
<tr>
<td>L_c</td>
<td>Clamping length</td>
</tr>
<tr>
<td>L_{ab}</td>
<td>Bond length</td>
</tr>
<tr>
<td>L_1</td>
<td>Distance from face of column to load</td>
</tr>
<tr>
<td>L_2, L_3</td>
<td>Length of stress block (insert design)</td>
</tr>
<tr>
<td>L_4</td>
<td>Length of embedment of insert</td>
</tr>
<tr>
<td>M</td>
<td>Bending moment</td>
</tr>
<tr>
<td>M'</td>
<td>Moment of resistance based on strength of concrete = 0.206 $f_{ck} b^2 d^2$; shrinkage factor</td>
</tr>
<tr>
<td>M_{add}</td>
<td>Additional bending moment due to deflection = Na_u</td>
</tr>
<tr>
<td>M_b</td>
<td>Bending moment due to shrinkage</td>
</tr>
<tr>
<td>M_{c}</td>
<td>Balancing bending moment due to shrinkage</td>
</tr>
<tr>
<td>M_{Ed}</td>
<td>Design value of the applied internal bending moment</td>
</tr>
<tr>
<td>M_{h}</td>
<td>Bending moment in floor diaphragm</td>
</tr>
<tr>
<td>M_{max}, M_{min}</td>
<td>Maximum and minimum bending moment</td>
</tr>
</tbody>
</table>
M_{net} $= M_{\text{max}} - M_{\text{min}}$

M_d Decompression bending moment

M_{kr} Moment of resistance

M_{sr} Serviceability moment of resistance

$M_{rd} \{ M_{re} \}$ Ultimate moment of resistance

M_1, M_2, M_3 Strength of connections in frames

N Axial force; number of strands/wires/bolts

N_{Ed} Design value of the applied axial force (tension or compression)

P Prestressing force

P_0 Initial force at the active end of the tendon immediately after stressing

$P_{ps} \{ P_f \}$ Prestressing force after all losses

$P_{pi} \{ P_i \}$ Initial prestressing force

P_{psi} Prestressing force at installation

$P_{pm0} \{ P_1 \}$ Prestressing force at transfer

P_r Prestressing force after initial relaxation

P_t Prestressing force at transfer

Q_k Characteristic variable action

Q_{fat} Characteristic fatigue load

R Resistance; prop force

R_y Roughness factor

R_y Diagonal resistance of infill wall

S Internal forces and moments; first moment of area; plastic section modulus

S_x First moment of area to one side of interface

SLS Serviceability limit state

T Torsional moment; tension force

T_{Ed} Design value of the applied torsional moment

ULS Ultimate limit state

V Shear force; reaction force

V_{or} Shear resistance in flexurally uncracked prestressed section

V_{r} Shear resistance in flexurally cracked prestressed section

V_d Shear force in dowel

V_{Ed} Design value of the applied shear force

V_h Horizontal shear force

V_r Increased shear capacity due to additional reinforcement (insert design)

$V_{rd,le} \{ V_{or} \}$ Shear resistance in flexurally uncracked prestressed section

$V_{rd,cr} \{ V_{r} \}$ Shear resistance in flexurally cracked prestressed section

$V_{rd,CF}$ Ultimate shear capacity (compression field theory)

V_{sh} Ultimate horizontal shear force

W Self weight of column

W_k Characteristic wind load

W_u Ultimate wind load

X Distance to neutral axis; stress block depth factor
Notation

Z Elastic section modulus
Zb, Zt Elastic section modulus at extreme bottom and top fibres
Zb,co, Zt,co Compound elastic section modulus at extreme bottom and top fibres
Zc Elastic cracked concrete section modulus
Zu Elastic uncracked concrete section modulus

Latin lower-case letters

a Distance; lever arm distance; distance to wall from shear centre; geometrical data
Δa Deviation for geometrical data
a' Distance from compression face to point where crack width is calculated
a0 Clear distance between bars; cover to inside face of bars
acr Distance from nearest bar to point where crack width is calculated
aef Effective bearing length at corbel
αf Tangent of coefficient of friction, i.e. \(\mu = \tan \alpha_f \)
aa Sway deflection
as Lever arm distance to shear force

b Overall width of a cross-section, or actual flange width in a T- or L-beam
b', bef Effective breadth
b1 Length of bearing
b, Breadth of bearing
b1 Breadth of section at centroid of steel in tension
b, Breadth of shear section or shear web
bw Width of the web on T-, I- or L-beams

c Cover distance; distance to centre of bar
cmin Minimum distance to bar in tension
cw Crack width

d Diameter; depth; effective depth of a cross-section to tension steel; depth of web in steel sections
d' Effective depth to compression steel
d" Effective depth to tension steel in boot of beam
d1 Effective depth to edge of foundation pocket
dc Largest nominal maximum aggregate size
dh Effective depth of half joint
dn Depth to centroid of compression zone

e Eccentricity
e' Effective eccentricity; lack of verticality
ei, \{eadd\} Second order eccentricity
e Net eccentricity
e, Minimum eccentricity (infill wall)

fb Ultimate bearing stress; limiting flexural compressive stress in concrete
fbc Bottom fibre stress due to prestress after losses
fbc, Bottom fibre stress due to prestress at transfer
fbd Ultimate bond stress
fbd, Ultimate bond stress within the anchorage length
fbd, Bond stress within the transmission length
fc Compressive strength of bearing material
f_c'
Effective compressive strength of precast in situ concrete joint

f_{ct}
Prestress at centroid of tendons after losses

f_{cti}
Prestress at centroid of tendons at transfer

f_{cd}
Design value of concrete compressive strength

f_{ci}
Characteristic compressive cube strength of concrete at transfer

f_{ck}
Characteristic compressive cylinder strength of concrete at 28 days

f_{cm}
Mean value of cylinder compressive strength

f_p
Prestress at centroidal axis (taken as positive)

f_{px}
Prestress at centroidal axis at distance x from end of section

f_{ct}
Limiting flexural tensile stress in concrete

f_{ck}
Characteristic axial tensile strength of concrete

f_{cm}
Mean value of axial tensile strength of concrete

f_{cu}
Characteristic compressive cube strength of concrete

f_{cu}' Characteristic compressive cube strength of infill concrete, ditto at lifting

f_{cyl}
Characteristic compressive cylinder strength of concrete

f_k
Characteristic compressive strength of brickwork

f_p
Tensile strength of prestressing steel

f_p^d
Design tensile stress in tendons/wires

f_{pe}
Final prestress in tendons/wires after losses

f_i
Initial prestress in tendons

f_{pk}
Characteristic tensile strength of prestressing steel

f_{p0}
Prestress at transfer

f_{po}
Final prestress in tendons/wires after losses

$f_{p0.1}$
0.1% proof-stress of prestressing steel

$f_{p0.1k}$
Characteristic 0.1% proof-stress of prestressing steel

$f_{p0.2k}$
Characteristic 0.2% proof-stress of reinforcement

f_p
Characteristic strength of prestressing tendons/wires

f_{Rd}
Ultimate bearing stress

f_i
Stress in reinforcing steel bars

f_i
Tensile strength of reinforcement; limiting direct (splitting) tensile stress in concrete

f_{tc}
Top fibre stress due to prestress after losses

f_{ti}
Top fibre stress due to prestress at transfer

f_{tk}
Characteristic tensile strength of reinforcement

f_u
Characteristic shear strength of brickwork

f_y
Yield strength of reinforcement

f_{yb}
Characteristic strength of bolts

f_{yd}
Design yield strength of reinforcement

f_k
Characteristic yield strength of reinforcement

f_{xw}
Strength of weld material

f_{yr}
Characteristic strength of reinforcing steel links/stirrups

f_{yd}
Design yield of shear reinforcement

f_{yuk}
Characteristic strength of reinforcing steel links/stirrups

g_k
Characteristic uniformly distributed dead load

h
Height; floor-to-floor height; overall depth of section

h'
Clear floor-to-floor height; reduced depth at half joint

h_{agg}
Nominal size of aggregate

h_i
Depth of slab in composite construction

i
Radius of gyration
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Coefficient; factor; core distance = $I/(0.5hA)$</td>
</tr>
<tr>
<td>k_s</td>
<td>Shear stiffness in joints</td>
</tr>
<tr>
<td>k_b</td>
<td>Flexural stiffness in joints</td>
</tr>
<tr>
<td>k_t</td>
<td>Rotational stiffness in joints</td>
</tr>
<tr>
<td>l</td>
<td>Length; span; distance between column-to-column centres</td>
</tr>
<tr>
<td>l_p</td>
<td>Bearing length</td>
</tr>
<tr>
<td>l_{bd}</td>
<td>Design anchorage length</td>
</tr>
<tr>
<td>l_e</td>
<td>Effective length</td>
</tr>
<tr>
<td>l_0</td>
<td>Clear height between restraints</td>
</tr>
<tr>
<td>$l_{pdp} {l_p}$</td>
<td>Prestress anchorage (development) length</td>
</tr>
<tr>
<td>l_{pet}</td>
<td>Prestress transmission length, lower bound</td>
</tr>
<tr>
<td>$l_{petz} {l_e}$</td>
<td>Prestress transmission length, upper bound</td>
</tr>
<tr>
<td>l_r</td>
<td>Distance between columns or walls (stability ties)</td>
</tr>
<tr>
<td>l_t</td>
<td>Prestress transmission length</td>
</tr>
<tr>
<td>l_w</td>
<td>Length of weldment</td>
</tr>
<tr>
<td>l_c</td>
<td>Penetration of starter bar into hole</td>
</tr>
<tr>
<td>l_z</td>
<td>Distance between positions of zero bending moment</td>
</tr>
<tr>
<td>m</td>
<td>Mass; distance from centre of starter bar to holding down bolt (base plate); modular ratio</td>
</tr>
<tr>
<td>m_{add}</td>
<td>Additional bending moment due to deflection = $N_{Ed}e_i$</td>
</tr>
<tr>
<td>m_s</td>
<td>Modular ratio (of elastic moduli) at service</td>
</tr>
<tr>
<td>m_u</td>
<td>Modular ratio (of strength) at ultimate</td>
</tr>
<tr>
<td>n</td>
<td>Number of columns in one plane frame, number of bars in tension zone of wall; number of storeys</td>
</tr>
<tr>
<td>p_b</td>
<td>Bearing strength of steel plate</td>
</tr>
<tr>
<td>p_{weld}</td>
<td>Strength of weld material</td>
</tr>
<tr>
<td>$p_y {p_y}$</td>
<td>Strength of steel plate</td>
</tr>
<tr>
<td>q</td>
<td>Pressure (key elements)</td>
</tr>
<tr>
<td>q_k</td>
<td>Characteristic uniformly distributed live load</td>
</tr>
<tr>
<td>r</td>
<td>Radius; radius of gyration; bend radius of reinforcing bar</td>
</tr>
<tr>
<td>$1/r$</td>
<td>Curvature at a particular section</td>
</tr>
<tr>
<td>s</td>
<td>Spacing of reinforcing bars</td>
</tr>
<tr>
<td>t</td>
<td>Thickness; time being considered; temperature range</td>
</tr>
<tr>
<td>t_{eff}</td>
<td>Effective thickness</td>
</tr>
<tr>
<td>t_0</td>
<td>The age of concrete at the time of loading</td>
</tr>
<tr>
<td>u</td>
<td>Perimeter of concrete cross-section, having area A_c; perimeter distance</td>
</tr>
<tr>
<td>u, v, w</td>
<td>Components of the displacement of a point</td>
</tr>
<tr>
<td>v</td>
<td>Thickness of in situ infill; $v_{Ed} {v}$ ultimate shear stress</td>
</tr>
<tr>
<td>v_{ave}</td>
<td>Average interface shear stress</td>
</tr>
<tr>
<td>v_c</td>
<td>Design concrete shear stress</td>
</tr>
<tr>
<td>v_h</td>
<td>Design interface shear stress</td>
</tr>
<tr>
<td>$v_{Rd} {v_u}$</td>
<td>Ultimate shear stress resistance</td>
</tr>
<tr>
<td>v_t</td>
<td>Design torsion stress</td>
</tr>
</tbody>
</table>
w Length of steel plate; uniformly distributed load; breadth of compressive strut

w' Diagonal length of infill shear wall

w_k Characteristic uniformly distributed wind pressure

x Neutral axis depth; dimension of stirrup in boot of beam; distance to centroid of stabilising system

x, y, z Coordinates

x_{se} Average crack spacing

y_{po} Half bearing breadth ($b_f/2$)

y_0 Half section breadth ($b/2$)

z Lever arm of internal forces

Greek upper-case letters

Δ Second order deflection; deformation; construction tolerance distance

Φ Reinforcing bar or dowel diameter; ductility factor

Greek lower-case letters

α Angle; ratio; ratio Z_e/Z_b; coefficient of thermal expansion; characteristic contact length in infill wall

α_c Ratio of sum of column stiffness to beam stiffness

α_{min} Minimum value of α_c

α_i Ratio of distance to shear plane/transmission length l_s/l_{pt2}

β Angle; ratio; coefficient

γ Partial factor

γ_A Partial factor for accidental actions, A

γ_C Partial factor for concrete

γ_F Partial factor for actions, F

γ_{fat} Partial factor for fatigue actions

$\gamma_{c,fat}$ Partial factor for fatigue of concrete

γ_P Partial factor for permanent actions, G

γ_{mat} Partial factor for a material property, taking account of uncertainties in the material property itself, in geometric deviation and in the design model used

γ_P Partial factor for actions associated with prestressing, P

γ_Q Partial factor for variable actions, Q

γ_s Partial factor for reinforcing or prestressing steel

$\gamma_{s,fat}$ Partial factor for reinforcing or prestressing steel under fatigue loading

γ_f Partial factor for actions without taking account of model uncertainties

γ_c Partial factor for permanent actions without taking account of model uncertainties

γ_m Partial factors for a material property, taking account only of uncertainties in the material property

δ Increment/redistribution ratio; deflection; shear slip

ε Strain

ε_b Free shrinkage strain in precast beam or slab

ε_{bb} Free shrinkage strain in bottom of precast beam or slab

ε_{st} Free shrinkage strain in top of precast beam or slab

ε_c Compressive strain in the concrete
ε_{tu} Compressive strain in the concrete at the peak stress f_c

ε_{cu} Ultimate compressive strain in the concrete

ε_{tu} Strain of reinforcement or prestressing steel at maximum load

ε_{m} Free shrinkage strain in in situ concrete flange or topping

ε_{u} Average strain at level where crack width is calculated

ε_{tu} Steel strain; relative shrinkage strain $\varepsilon_{\text{f}} - \varepsilon_{\text{bt}}$

ε_{m} Strain at the level where crack width is calculated

ε_{uk} Characteristic strain of reinforcement or prestressing steel at maximum load

ζ Reduction factor/distribution coefficient

η Total losses in prestressing force; force reduction factors

θ Angle; slope of infill wall

λ Slenderness ratio; relative stiffness parameter; joint deformability

μ Coefficient of friction; degree of prestress force P/P

ν Poisson's ratio; strength reduction factor for concrete cracked in shear

ξ Ratio of bond strength of prestressing and reinforcing steel; bursting coefficient; prestress loss due to elastic shortening

ρ Stress; reinforcement ratio $= A/bd$; oven-dry density of concrete in kg/m3

ρ_{1000} Value of relaxation loss (in %), at 1000 hours after tensioning and at a mean temperature of 20°C

ρ_{lt} Reinforcement ratio for longitudinal reinforcement

ρ_{tw} Reinforcement ratio for shear reinforcement

σ_c Compressive stress in the concrete

σ_{sp} Compressive stress in the concrete from axial load or prestressing

σ_p Spalling stress

σ_{cu} Compressive stress in the concrete at the ultimate compressive strain, ε_{cu}

τ Torsional shear stress; shear stress

ϕ Diameter of a reinforcing bar or of a prestressing duct; rotation; diameter

ϕ_{eq} Equivalent diameter of a bundle of reinforcing bars

$\phi_{(t,t_0)}$ Creep coefficient, defining creep between times t and t_0, related to elastic deformation at 28 days

$\phi_{(\infty,t_0)}$ Final value of creep coefficient

ψ Factor defining representative values of variable actions

ψ_{0} Factor for combination values

ψ_{f} Factor for frequent values

ψ_{2} Factor for quasi-permanent values
CHAPTER 1

Precast Concepts, History and Design Philosophy

The background to the relevance of precast concrete as a modern construction method for multi-storey buildings is described. The design method is summarised.

1.1 A Historical Note on the Development of Precast Frames

Precast concrete is not a new idea. William H. Lascelles (1832–85) of Exeter, England devised a system of precasting concrete wall panels, 3 ft × 2 ft × 1 inch thick, strengthened by forged, ¼ inch-square iron bars. The cost was 3d (£0.01) per ft². Afterwards, the notion of 'pre-casting' concrete for major structural purposes began in the late nineteenth century, when its most obvious application – to span over areas with difficult access – began with the use of flooring joists. François Hennebique (1842–1921) first introduced precast concrete into a cast-in situ flour mill in France, where the self-weight of the prefabricated units was limited to the lifting capacity of two strong men! White [1.1] and Morris [1.2] give good historical accounts of these early developments.

The first precast and reinforced concrete (rc) frame in Britain was Weaver’s Mill in Swansea. In referring to the photograph of the building, shown in Figure 1.1, a historical note states: *The large building was part of the flour mill complex of Weaver and Co. The firm established themselves at the North Dock basin in 1895–6, and caused the large ferro-concrete mill to be built in 1897–98. It was constructed on the system devised by a Frenchman, F. Hennebique, the local architect being H. C. Portsmouth. At this time Louis Gustave Mouchel (1852–1908, founder of the Mouchel Group) was chosen to be Hennebique’s UK agent. Mouchel used a mix of cast-in situ and prefabricated concrete for a range of concrete framed structures, building at the rate of 10 per year for the next 12 years.*

The structure was a beam-and-column skeletal frame, generally of seven storeys in height, with floor and beams spans of about 20 feet. The building has since been demolished owing to changes in land utilisation, but as a major precast and reinforced concrete construction it pre-dates the majority of early precast frames by about 40 years.

Bachmann and Steinle [1.3] note that the first trials in structural precast components took place around 1900, for example at Coignet’s casino building in Biarritz in 1891, and Hennebique and Züblin’s signalman’s lodge in 1896, a complete three-dimensional cellular structure weighing about 11 tons [1.3].

During the First World War storehouses for various military purposes were prefabricated using rc walls and shells. Later, the 1930s saw expansions by companies such as Bison, Trent Concrete and
Multi-storey Precast Concrete Framed Structures

Girling, with establishments positioned close to aggregate reserves in the Thames and Trent Valley basins. The reason why precast concrete came into being in the first place varies from country to country. One of the main reasons was that availability of structural timber became more limited. Some countries, notably the Soviet Union, Scandinavia and others in northern Continental Europe, which together possess more than one-third of the world’s timber resources but experience long and cold winters, regarded its development as a major part of their indigenous national economy. Structural steelwork was not a major competitor at the time outside the United States, since it was batch-processed and thus relatively more expensive.

During the next 25 years developments in precast frame systems, prestressed concrete (psc) long-span rafters (up to 70 feet), and precast cladding increased the precasters’ market share to around 15 per cent in the industrial, commercial and domestic sectors. Influential articles in such journals as the *Engineering News Record* encouraged some companies to begin producing prestressed floor slabs, and in order to provide a comprehensive service by which to market the floors these companies diversified into frames. In 1960 the number of precast companies manufacturing major structural components in Britain was around thirty. Today it is about eight.

Early structural systems were rather cumbersome compared with the slim-line components used in modern construction. Structural zones of up to 36 inches, giving rise to span/depth ratios of less than 9, were used in favour of more optimised precasting techniques and designs. This could have been called the ‘heavy’ period, as shown in C. Glover’s now classic handbook *Structural Precast Concrete* [1.4]. Some of the concepts shown by Glover are still practised today and one cannot resist the thought that the new generation of precast concrete designers should take heed of books such as this. It is also difficult to avoid making comparisons with the ‘lighter’ precast period that was to follow in the 1980s, when the saving on total building height could, in some instances, be as much as 100 to 150 mm per floor.

Attempts to standardise precast building systems in Britain led to the development of the National Building Frame (NBF) and, later, the Public Building Frame (PBF). The real initiative in developing these systems was entrenched more in central policy from the then Ministry of Public Building and Works than by the precasting engineers of the building industry. The NBF was designed to provide: . . . a flexible and economical system of standardised concrete framing for buildings up to six
storeys in height. It comprises a small number of different precast components produced from a few standard moulds [1.5].

The consumer for the PBF was the Department of Environment, for use within the public sector’s expanding building programme of the 1960s. Unlike the NBF, which was controlled by licence, the PBF was available without patent restrictions to any designer. The structural models were simple and economical: simply supported, long-span, prestressed concrete slabs up to 20 inches deep were half recessed into beams of equal depth. By controlling the main variables, such as loading (3+1 kN/m² superimposed was used throughout), concrete strength and reinforcement quantities, limiting spans were computed against structural floor depths. Figures 1.2 and 1.3 show some of the details of these frames. Diamant [1.6] records the international development of industrialised buildings between the early 1950s and 1964. During this period the authoritative Eastern European work by Mokk [1.7] was translated into English, and with it the documentation of precast concrete had begun.

Unfortunately, the modular design philosophy was reflected in the façade architecture. The results were predictable, exemplified at Highbury Technical College in Portsmouth (now a part of the University of Portsmouth) shown in Figure 1.4. The precast industry has found it difficult to dispel the legacy of such architectural brutalism.

Following the demise of the NBF and PBF, precast frame design evolved towards more of a client-based concept. Standard frame systems gave way to the incorporation of standardised components into bespoke solutions. The result, shown in Figure 1.5 of Western House (1990), Surrey Docks (1990) and Merchant’s House (1991), established the route to the versatile precast concrete concepts of the present day.

In the mid-1980s, the enormous demands on the British construction industry led developers to look elsewhere for building products, as the demands on the British precast industry far exceeded its capacity. Individual frame and cladding companies (with annual turnovers of between £1 m and £3 m) were being asked to tender for projects that were singularly equal to or greater in value than their annual turnovers. Programmes were unreasonably tight and it seemed that the lessons learned from mass-market-led production techniques of the 1960s had gone unheeded. One solution was to turn to Northern Europe, where the larger structural concrete prefabricators were able to cope with these demands. Concrete prefabricated in Belgium was duly transported to the London Docklands project, shown in Figure 1.6.

In making a comparison of developments in Europe and North America, Nilson [1.8] states: Over the past 30 years, developments of prestressed concrete in Europe and in the United States have taken place along quite different lines. In Europe, where the ratio of labor cost to material cost has been relatively low, innovative one-of-a-kind projects were economically feasible. . . . In the U.S. the demand for skilled on-site building labor often exceeded the supply, so economic conditions favored the greatest possible standardisation of construction . . .

North America’s production capabilities are an order of magnitude greater than those of Europe. Figure 1.7 shows the construction of a 30-storey, 5000-room hotel and leisure complex in Las Vegas. The conditions to which Nilson refers are changing. The gap between labour and material costs in Europe is now closer to that of North America. At the same time, progressively lower oil and transportation costs into the early twenty-first century made it feasible to manufacture components virtually anywhere in the world and transport them to regions of high construction demand. Recent indications are that increasingly scarce energy resources and narrowing pay differentials will reverse this trend.

While the market share for complete precast concrete frames has remained constant in the UK, the development of high-strength concrete for columns and the use of innovative shallow prestressed concrete beams, together with speed of construction to rival that of steelwork, has led to successful tower buildings in Northern Europe, particularly in Belgium and Holland. The twin-tower building ‘galaxy’ in Brussels, Figure 1.8, is such an example. With column sizes of 600 mm diameter (cast in two-storey heights using 95 N/mm² concrete strength) and beam and floor spans up to 9.2 m × 405 mm depth, construction rates achieved 2 storeys in 8 working days [1.9].
Figure 1.2 Typical structural details for the National Building Frame [1.4].
Figure 1.3 Floors used in the National Building Frame [1.4].
Figure 1.4 Precast construction of the 1960s using the National Building Frame. The building is Highbury College, now part of the University of Portsmouth (courtesy of Costain Building Products).

Figure 1.5 Examples of precast construction of the 1980s. (a) Western House, Swindon (courtesy Trent Concrete Ltd); (b) Surrey Docks, London (courtesy Crendon Structures); (c) Merchant House, London [1.10].
Changes to the way in which the construction industry should operate in a ‘zero-waste and zero-defects’ environment were given in the 1998 Egan Report [1.11]. The report called for sustained improvement targets: 10 per cent in capital construction costs; 10 per cent in construction time; 20 per cent of defects, and a 20 per cent increase in predictability. Further, the report goes on:

The industry must design projects for ease of construction, making maximum use of standard components and processes. Although the reports did not use the term ‘prefabrication’, to many people that is what ‘predictability’ and ‘standard components’ mean. The precast concrete industry is ideally placed to accommodate these higher demands by using experienced design teams and skilled labour in a quality-controlled environment to produce high-specification components. Figure 1.9 illustrates this in the repetitive use of granite cast spandrel beams and columns to form a building in the convoluted shape of a shell. Since 2000, high-quality architectural finishes have been more widely adopted for the exposed structural components, as illustrated in the integrated structure in Figure 1.10. The requirement for off-site fabrication will continue to increase as the rapid growth in management contracting, with its desire for reduced on-site processes and high-quality workmanship, will favour controlled prefabrication methods. The past five years have witnessed extensive developments in student accommodation – for example in Figure 1.11, where some 600 rooms were constructed using precast wall and floor systems in just over eight months, and were completed for occupancy within 18 months of site possession in 2009.
Figure 1.6 An early example of quality architecturally detailed precast concrete imported from Belgium. (a) Overall impression. (b) Architectural detail. (Courtesy of A. Van Acker, TU Ghent.)
Figure 1.7 MGM Hotel and Casino at Las Vegas, US constructed in 1992 (courtesy of A. T. Curd).

Figure 1.8 36-storey precast skeletal tower buildings in Brussels (courtesy of Ergon, Belgium).
Figure 1.9 Granite aggregates in spandrel beams and columns, polished to reflect the Australian sunshine at No. 1 Spring Street, Melbourne, 1990.

Figure 1.10 Asticus Building, London, 2010. Precast cruciforms form (a) the exterior structure, and (b) architectural finish.